Imagens de Aeronave Remotamente Pilotada na Análise da Cobertura Florestal em um Lote de Assentamento com Área Degradada na Amazônia
DOI:
https://doi.org/10.5433/2447-1747.2023v32n2p163Keywords:
Fototriangulação; Geoprocessamento; Código Florestal.Abstract
The implementation of settlements in the Amazon, in some cases, resulted in environmental problems. In Amapá, shifting agriculture is one of the main production models used by family farmers, but this technique has been increasing soil degradation. Since, the objective work uses aerial photogrammetry to accurately assess the environmental conditions of a settlement with environmental liabilities. Therefore, a drone was used to map a study area and a geodetic GPS for the topographic survey. Through this, it was possible to obtain terrain data with centimeter precision error allowing the vectorization of Permanent Protection Areas and Remnants of Native Vegetation. With this, the calculation of special areas provided important information for the elaboration of a management plan, aiming at the recovery of the area with environmental liabilities.
Downloads
References
AGAPIOU, Athos. Vegetation extraction using visible-bands from openly licensed unmanned aerial vehicle imagery. Drones, [s. l.], v. 4, n. 2, p. 1-15, 2020. DOI: https://doi.org/10.3390/drones4020027
AMERICAN Society for Photogrammetry and Remote Sensing. Survey Review, Surrey, v. 30, n. 231, p. 45–47, 2012. DOI: https://doi.org/10.1179/003962689791474320
AVILA, Silvia Regina Starling et al. Estudo exploratório sobre dinâmica do desmatamento em assentamentos localizados no território portal da Amazônia. Retratos de Assentamentos, Araraquara, v. 22, n. 1, p. 139–152, 2019. DOI: https://doi.org/10.25059/2527-2594/retratosdeassentamentos/2019.v22i1.330
BAUTISTA, Rodrigo et al. Diseño e implementación de un sistema de visión artificial para análisis de datos NDVI en imágenes espectrales de cultivos de brócoli obtenidos mediante una aeronave pilotada remotamente. Infociencia, São Luís, v. 12, n. 1, p. 30–35, 2019. DOI: https://doi.org/10.24133/infociencia.v12i1.1230
BERTEŠKA, Tautvydas; RUZGIENĖ, Birutė. Photogrammetric mapping based on uav imagery. Geodesy and Cartography, Washington, v. 39, n. 4, p. 158–163, 2013. DOI: https://doi.org/10.3846/20296991.2013.859781
BONNAIRE RIVERA, Lou; MONTOYA BONILLA, Bibiana; OBANDO-VIDAL, Francisco. Procesamiento de imágenes multiespectrales captadas con drones para evaluar el índice de vegetación de diferencia normalizada en plantaciones de café variedad Castillo. Ciencia & Tecnología Agropecuaria, Bogotá, v. 22, n. 1, p. 1–16, 2021. DOI: https://doi.org/10.21930/rcta.vol22_num1_art:1578
BRASIL. Lei Nº 12.651, de 25 de maio de 2012. Dispõe sobre a proteção da vegetação nativa. Diário Oficial da União, Brasília, DF, 28 maio 2012. Disponível em: https://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12651.htm. Acesso em: 15 out. 2022.
BRASIL. Ministério do Desenvolvimento Agrário. Instituto Nacional de Colonização e Reforma Agrária. Norma Técnica para Georreferenciamento de Imóveis Rurais. 3. Ed. Brasília: INCRA, 2013.
COSTA, Elaine Reis; TOMMASELLI, Antonio Maria Garcia; GALO, Maurício. Técnicas de pré-análise do processo de correlação visando a geração de modelo digital de terreno. RBC Revista Brasileira de Cartografia, Rio de Janeiro, v. 57, n. 3, p. 252–262, 2005. DOI: https://doi.org/10.14393/rbcv57n3-43541
COSTA, Maria José Nascimento et al. Nível de informação de produtores rurais do município de soledade sobre Área de Preservação Permanente e Reserva Legal. Revista de Ciências Ambientais, [s. l.], v. 15, n. 3, p. 1–14, 2021. DOI: https://doi.org/10.18316/rca.v15i3.7603
ENG, Lim Soon et al. The use of VARI, GLI, And VIgreen formulas in detecting vegetation in aerial images. International Journal of Technology, New York, v. 10, n. 7, p. 1385–1394, 2019.
FAISAL, Muhammad; RANI, Abdur; RUSLI, Noradila. The accuracy assessment of agisoft photoscan and Pix4D mapper software in orthophoto production. Geomatics Research Innovation Competition Gric, [s. l.], v. 1, p. 1–4, 2017.
FARIAS, Monique Helen Cravo Soares et al. Impact of rural settlements on the deforestation of the amazon. Mercator, Fortaleza, v. 17, n. 5, p. 1–20, 2018. DOI: https://doi.org/10.4215/rm2018.e17009
FONSECA, Luciana Costa. A função social da propriedade rural e a Reserva Legal na Amazônia. Veredas do Direito: Direito Ambiental e Desenvolvimento Sustentável, Belo Horizonte, v. 16, n. 36, p. 143–169, 2019. DOI: https://doi.org/10.18623/rvd.v16i36.1480
GUEDES, Marcelino Carneiro et al. ‘Castanha na roça’: expansão da produção e renovação dos castanhais em áreas de agricultura itinerante no Amapá, Brasil. Boletim do Museu Paraense Emílio Goeldi - Ciências Naturais, Belém, v. 9, n. 2, p. 381–398, ago. 2014. DOI: https://doi.org/10.46357/bcnaturais.v9i2.532
LIU, Xinghe; WANG, Le. Feasibility of using consumer-grade unmanned aerial vehicles to estimate leaf area index in mangrove forest. Remote Sensing Letters, New York, v. 9, n. 11, p. 1040–1049, 2018.
LOUHAICHI, Mounir; BORMAN, Michael; JOHNSON, Douglas. Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, Hong Kong, v. 16, n. 1, p. 65–70, 2001. DOI: https://doi.org/10.1080/10106040108542184
MIECOANSKI, Flávia Regina; PALAVECINI, Andressa Carla. Área de Reserva Legal: a percepção dos pequenos proprietários rurais de Francisco Beltrão. Revista Agropampa, Dom Pedrito, v. 1, n. 1, p. 100–113, 2020.
MUGNAI, Francesco; TUCCI, Grazia. A comparative analysis of unmanned aircraft systems in low altitude photogrammetric surveys. Remote Sensing, Ottawa, v. 14, n. 3, p. 726–744, 2022. DOI: https://doi.org/10.3390/rs14030726
OCALAN, Taylan. Accuracy assessment of GPS precise point positioning (PPP) technique using different web-based online services in a forest environment. Sumarski List, [s. l.], v. 140, n. 7–8, p. 357–367, 2016. DOI: https://doi.org/10.31298/sl.140.7-8.4
OLIVEIRA, Diondetson Rocha et al. Geração de modelo digital do terreno a partir de imagens obtidas por veículo aéreo não tripulado. Revista Brasileira de Cartografia, Rio de Janeiro, v. 69, n. 6, p. 1143–1151, 2017.
RIBEIRO FILHO, Antunes Alexandre; ADAMS, Cristina; MURRIETA, Rui Sergio Sereni. The impacts of shifting cultivation on tropical forest soil: a review. Boletim do Museu Paraense Emílio Goeldi. Ciências Humanas, Belém, v. 8, p. 693–727, 2013. DOI: https://doi.org/10.1590/S1981-81222013000300013
RUY, Roberto da Silva et al. Fototriangulação com parâmetros adicionais para câmaras digitais: Uma avaliação experimental. Boletim de Ciencias Geodesicas, Curitiba, v. 14, n. 4, p. 571–587, 2008.
SANTOS FILHO, Altair Oliveira et al. A evolução do Código Florestal Brasileiro. Caderno de Graduação - Ciências Humanas e Sociais - UNIT, Aracaju, v. 2, n. 3, p. 271–290, 2015.
SILVA, Jadson Freire da et al. Remote Sensing vegetation index for processing images in the visible band (RGB) Journal of Hyperspectral Remote Sensing. Open Journal Systems, [s. l.], v. 9, n. 4, p.228–239, 2019.
SILVA, Thamyres Marques et al. Classificação de uso e cobertura da terra e o monitoramento de áreas em restauração florestal por RPAS. Revista Cerrados, Brasília, v. 19, n. 01, p. 84–112, 2021. DOI: https://doi.org/10.46551/rc24482692202104
STRAHLER, Arthur. Quantitative analysis of watershed geomorphology. Eos, Transactions American Geophysical Union, Washongton, v. 38, n. 6, p. 913–920, 1957. DOI: https://doi.org/10.1029/TR038i006p00913
TUNDISI, José Galizia; TUNDISI, Takako Matsumura. Impactos potenciais das alterações do Código Florestal nos recursos hídricos. Biota Neotropica, São Paulo, v. 10, n. 4, p. 67–75, 2010. DOI: https://doi.org/10.1590/S1676-06032010000400010
WANG, Zhe et al. Study on GLI values of Polygonatum odoratum base on multi-temporal of unmanned aerial vehicle remote sensing. Zhongguo Zhongyao Zazhi, [s. l.], v. 45, n. 23, p. 5663–5668, 2020.
WIGGLESWORTH, J. B.; ALLAN, A. L. Digital Aerial Survey: Theory and Practice. Survey Review, Surrey, v. 37, n. 288, p. 162–164, 2003. DOI: https://doi.org/10.1179/sre.2003.37.288.162
YOAKUM, Cody; CERRETA, Joseph. A Review of DJI’s Mavic Pro Precision Landing Accuracy. International Journal of Aviation, Aeronautics, and Aerospace, [s. l.], v. 7, n. 4, p. 1–19, 2020. DOI: https://doi.org/10.15394/ijaaa.2020.1524
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Gabriela Ribeiro, Raphael Santana Araújo, Carlos Rodrigo Tanajura Caldeira
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright simultaneously licensing the work under the Creative Commons Attribution-NonCommercial 4.0 International license. This license allows third parties to distribute, remix, adapt, and develop the material in any medium or format for non-commercial purposes, giving due credit for authorship and initial publication in this journal.
The journal reserves the right to make normative, orthographic, and grammatical changes to the originals in order to maintain the standardized language and the credibility of the vehicle while still respecting the authors' writing style. Conceptual suggestions, changes, or corrections will be communicated to the authors when necessary.
The opinions expressed by the authors of the articles are their sole responsibility.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license.