Aplicação das quimiocinas no diagnóstico, prognóstico e tratamento da doença renal do diabetes

Autores/as

Palabras clave:

Nefropatias Diabéticas, Quimiocinas, Citocinas, Biomarcadores

Resumen

As quimiocinas consistem em potenciais marcadores para o diagnóstico e prognóstico da doença renal do diabetes (DRD), além de serem alvos terapêuticos interessantes para o desenvolvimento de fármacos mais eficazes para o tratamento desta complicação do diabetes mellitus (DM). Esse foi um estudo de revisão narrativa, com o objetivo de descrever as quimiocinas como possíveis marcadores e alvos terapêuticos na DRD. O entendimento do papel das quimiocinas nos mecanismos fisiopatológicos da DRD é crucial para o desenvolvimento de tratamentos farmacológicos mais eficazes. Além disso, algumas quimiocinas têm demonstrado consistirem em marcadores precoces para o diagnóstico da DRD, já que seus níveis parecem aumentar antes da redução da TFG ou do aumento da albuminúria. Os níveis de algumas quimiocinas ainda parecem refletir a gravidade da DRD, indicando seu potencial como marcadores para o monitoramento e avaliação do prognóstico desta complicação do DM.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Magliano DJ, Boyko EJ, IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th edition. Brussels: International Diabetes Federation; 2021.

2. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2019-2020. São Paulo: Clanad Editora científica, 489 p, 2019.

3. Sociedade Brasileira de Nefrologia. Posicionamento Oficial Tripartite nº01/2016 SBD / SBEM / SBN: Prevenção, diagnóstico e conduta terapêutica na doença renal do diabetes, 100p, 2016.

4. Gomes BF, Accardo CM. Immuno inflammatory mediators in the pathogenesis of diabetes mellitus. Einstein, 17(1): eRB4596, 2019. doi: 10.31744 / einstein_journal / 2019RB4596.

5. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Intern Suppl, 3: 1-150, 2013. doi:10.1038/kisup.2012.76

6. Porto JR, Gomes KB, Fernandes AP, Domingueti CP. Avaliação da função renal na doença renal crônica. Rev Bras Anal Clin, 49(1): 26-35, 2017. doi: 10.21877/2448-3877.201500320.

7. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta, 1843(11): 2563-2582, 2014. doi: 10.1016/j.bbamcr.2014.05.014.

8. Simões e Silva AC, Pereira BA, Teixeira MM, Teixeira AL. Chemokines as potential markers in pediatric renal diseases. Dis Markers, 2014: 278715, 2014. doi: 10.1155/2014/278715.

9. Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci, 18(10), 2088: 1-16, 2017. doi: 10.3390/ijms18102088.

10. Palomino DCT, Marti LC. Chemokines and immunity. Einstein, 13(3): 469-473, 2015. doi: 10.1590/S1679-45082015RB3438.

11. Guerreiro R, Santos-Costa Q, Azevedo-Pereira JM. As quimiocinas e os seus receptores: Características e funções fisiológicas. Acta Med Port, 24 S4: 967-976, 2011.

12. Navarro-González JF, Mora-Fernández C, De Fuentes MM. Gárcia-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol, 7(6): 327-340, 2011. doi: 10.1038/nrneph.2011.51.

13. Cui S, Zhu Y, Du J, Khan MN, Wang B, Wei J, et al. CXCL8 Antagonist Improves Diabetic Nephropathy in Male Mice With Diabetes and Attenuates High Glucose-Induced Mesangial Injury. Endocrinology, 158(6): 1671-1684, 2017. doi: 10.1210/en.2016-1781.

14. Zhang Y, Ma KL, Gong YX, Wang GH, Hu ZB, Liu L, et al. Platelet Microparticles Mediate Glomerular Endothelial Injury in Early Diabetic Nephropathy. J Am Soc Nephrol, 29(11): 2671-2695, 2018. doi: 10.1681/ASN.2018040368.

15. Xu J, Zheng S, Kralik PM, Krishnan L, Huang H, Hoying JB, et al. Diabetes Induced Changes in Podocyte Morphology and Gene Expression Evaluated Using GFP Transgenic Podocytes. Int J Biol Sci, 12(2): 210-218, 2016. doi:10.7150/ijbs.13057.

16. Cui S, Zhu Y, Du J, Khan MN, Wang. B, Wei J, et al. CXCL8 antagonist improves diabetic nephropathy in male mice with diabetes and attenuates high glucose-induced mesangial injury. Endocrinology, 158(6): 1671–1684, 2017. doi: 10.1210/en.2016-1781.

17. Yu J, Wu H, Liu ZY, Zhu Q, Shan C, Zhang KQ. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med, 40(4): 1185-1193, 2017. doi: 10.3892/ijmm.2017.3098.

18. Zhang Y, Thai K, Kepecs DM, Winer D, Gilbert RE. Reversing CXCL10 Deficiency Ameliorates Kidney Disease in Diabetic Mice. Am. Am J Pathol, 188(12): 2763-2773, 2018. doi: 10.1016/j.ajpath.2018.08.017.

19. Tuttle KR, Brosius FC, Adler SG, Kretzler M, Mehta RL, Tumlin JA, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transplant, 33(11): 1950-1959, 2018. doi: 10.1093/ndt/gfx377.

20. Takashima S, Fujita H, Fujishima H, Shimizu T, Sato T, Morii T, et al. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy. Kidney Int, 90(4): 783-796, 2016. doi: 10.1016/j.kint.2016.06.012.

21. Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G, et al. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood, 118(22): e156-167, 2011. doi: 10.1182/blood-2011-04-348946.

22. Cockwell P, Chakravorty SJ, Girdlestone J, Savage COS. Fractalkine expression in human renal inflammation. J Pathol, 196(1): 85-90, 2002. doi: 10.1002/path.1010.

23. Song KH, Park J, Park JH, Natarajan R, Ha H. Fractalkine and its receptor mediate extracellular matrix accumulation in diabetic nephropathy in mice. Diabetologia, 56: 1661–1669, 2013. doi: 10.1007/s00125-013-2907-z.

24. Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia, 50(2): 471-480, 2007. doi: 10.1007/s00125-006-0497-8.

35. Garibotto G, Carta A, Picciotto D, Viazzi F, Verzola D. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol, 30(6): 719-727, 2017. doi: 10.1007/s40620-017-0432-8.

26. Kaifu K, Ueda S, Nakamura N, Matsui T, Yamada-Obara N, Ando R, et al. Advanced glycation end products evoke inflammatory reactions in proximal tubular cells via autocrine production of dipeptidyl peptidase-4. Microvasc Res, 120: 90-93, 2018. doi: 10.1016/j.mvr.2018.07.004.

27. Hao J, Ren L, Zhang L, Kong D, Hao L. Aldosterone-induced inflammatory response of mesangial cells via angiotension II receptors. J Renin Angiotensin Aldosterone Syst, 16(4): 739-748, 2015. doi: 10.1177/1470320313519486.

28. Chen XW, Liu WT, Wang YX, Chen WJ, Li HY, Chen YH, et al. Cyclopropanyldehydrocostunolide LJ attenuates high glucose-induced podocyte injury by suppressing RANKL/RANK-mediated NF-kappaB and MAPK signaling pathways. J Diabetes Complications, 30(5): 760-769, 2016. doi: 10.1016/j.jdiacomp.2016.03.013.

29. Wang J, Yan W, Peng X, Jiang Y, He L, Peng Y, et al. Functional Role of SUV39H1 in Human Renal Tubular Epithelial Cells Under High-glucose Ambiance. Inflammation, 41(1): 1-10, 2018. doi: 10.1007/s10753-017-0657-7.

30. Orellana JM, Kampe K, Schulze F, Sieber J, Jehle AW. Fetuin-A aggravates lipotoxicity in podocytes via interleukin-1 signaling. Physiol Rep, 5(10): e13287, 2017. doi: 10.14814/phy2.13287.

31. Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Zheng B, Martín-Cleary C, Ruiz-Ortega M, et al. Targeting inflammation in diabetic kidney disease: Early clinical trials. Expert Opin Investig Drugs, 25(9): 1045-1058, 2016. doi: 10.1080/13543784.2016.1196184.

32. Tuttle KR, Brosius FC, Adler SG, Kretzler M, Mehta RL, Tumlin JA, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transplant, 33(11): 1950-1959, 2018. doi: 10.1093/ndt/gfx377.

33. Tesch GH, Pullen N, Jesson MI, Schlerman FJ, Nikolic-Paterson DJ. Combined inhibition of CCR2 and ACE provides added protection against progression of diabetic nephropathy in Nos3 deficient mice. Am J Physiol Renal Physiol, 317(6): F1439-F1449, 2019. doi: 10.1152/ajprenal.00340.2019.

34. Sayyed SG, Ryu M, Kulkarni OP, Schmid H, Lichtnekert J, Grüner S, et al. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int, 80(1): 68-78, 2011. doi: 10.1038/ki.2011.102.

35. Gale JD, Gilbert S, Blumenthal S, Elliott T, Pergola PE, Goteti K, et al. Effect of PF-04634817, an Oral CCR2/5 Chemokine Receptor Antagonist, on Albuminuria in Adults with Overt Diabetic Nephropathy. Kidney Int Rep, 3(6): 1316-1327, 2018. doi: 10.1016/j.ekir.2018.07.010.

36. Montero RM, Bhangal G, Pusey CD, Frankel AH, Tam FHK. CCL18 synergises with high concentrations of glucose in stimulating fibronectin production in human renal tubuloepithelial cells. BMC Nephrol, 17(1): 139, 2016. doi: 10.1186/s12882-016-0352-1.

37. Wang G, Lai FMN, Chow KM, Kwan BCH, Pang WF, Luk CCW, et al. Urinary mRNA levels of ELR-negative CXC chemokine ligand and extracellular matrix in diabetic nephropathy. Diabetes Metab Res Rev, 31(7): 699-706, 2015. doi: 10.1002/dmrr.2654.

38. Wong CK, Ho AW, Tong PC, Yeung CY, Kong AP, Lun SW, et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin Exp Immunol, 149(1): 123-131, 2007. doi: 10.1111/j.1365-2249.2007.03389.x.

39. Tashiro K, Koyanagi I, Saitoh A, Shimizu A, Shike T, Ishiguro C, et al. Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. J Clin Lab Anal, 16(1): 1-4, 2002. doi: 10.1002/jcla.2057.

40. Higurashi M, Ohya Y, Joh K, Muraguchi M, Nishimura M, Terawaki H, Yagui K, et al. Increased urinary levels of CXCL5, CXCL8 and CXCL9 in patients with Type 2 diabetic nephropathy. J Diabetes Complications, 23(3): 178-184, 2009. doi: 10.1016/j.jdiacomp.2007.12.001.

41. Zhao L, Wu F, Jin L, Lu T, Yang L, Pan X, et al. Serum CXCL16 as a novel marker of renal injury in type 2 diabetes mellitus. PLoS One, 9(1): e87786, 2014. doi: 10.1371/journal.pone.0087786.

42. Scurt FG, Menne J, Brandt S, Bernhardt A, Mertens PR, Haller H, et al. Systemic Inflammation Precedes Microalbuminuria in Diabetes. Kidney Int Rep, 4(10): 1373-1386, 2019. doi: 10.1016/j.ekir.2019.06.005.

43. Lee YH, Kim PK, Park SH, Kim DJ, Kim YG, Moon JY, et al. Urinary chemokine C-X-C motif ligand 16 and endostatin as predictors of tubulointerstitial fibrosis in patients with advanced diabetic kidney disease. Nephrol Dial Transplant, 36(2): 295-305, 2021. doi: 10.1093/ndt/gfz168.

44. Elewa U, Sanchez-Niño MD, Mahillo-Fernández I, Martin-Cleary C, Belen Sanz A, Perez-Gomez MV et al. Circulating CXCL16 in Diabetic Kidney Disease. Kidney Blood Press Re, 41(5): 663-671, 2016. doi: 10.1159/000447935.

45. Kolseth IB, Reine TM, Parker K, Sudworth A, Witczak BJ, Jenssen TG, et al. Increased levels of inflammatory mediators and proinflammatory monocytes in patients with type I diabetes mellitus and nephropathy. J Diabetes Complications, 31(1): 245-252, 2017. doi: 10.1016/j.jdiacomp.2016.06.029.

46. Cummings LAM, Clarke A, Sochett E, Daneman D, Cherney DZ, Reich HN, et al. Social Determinants of Health Are Associated with Markers of Renal Injury in Adolescents with Type 1 Diabetes. J Pediatr, 198: 247-253, 2018. doi: 10.1016/j.jpeds.2018.03.030.

47. Elmarakby AA, Sullivan JC. Relationshipbetween oxidative stress and inflammatory cytokines indiabetic nephropathy. Cardiovasc Ther, 30(1): 49-59, 2012. doi: 10.1111/j.1755-5922.2010.00218.x.

48. Kim MJ, Tam FWK. Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta, 412(23-24): 2022-2030, 2011. doi: 10.1016/j.cca.2011.07.023.

49. Schettini IVG, Faria DV, Nogueira LS, Otoni A, Simões e Silva AC, Rios DRA. Renin angiotensin system molecules and chemokine (C-C motif) ligand 2 (CCL2) in chronic kidney disease patients. J Bras Nefrol, 44(1): 19-25, 2022. doi: 10.1590/2175-8239-JBN-2021-0030.

50. Ho J, Wiebe C, Rush DN, Rigatto C, Storsley L, Karpinski M, et al. Increased urinary CCL2: Cr ratio at 6 months is associated with late renal allograft loss. Transplantation, 95(4): 595-602, 2013. doi: 10.1097/TP.0b013e31826690fd.

51. Dubi´Nski B, Boratyńska M, Kopeć W, Szyber P, Patrzałek D, Klinger M. Activated cells in urine and monocyte chemotactic peptide-1 (MCP-1)—sensitive rejection markers in renal graft recipients. Transpl Immunol, 18(3): 203-207, 2008. doi: 10.1016/j.trim.2007.07.005.

52. Nadkarni GN, Rao V, Ismail-Beigi F, Fonseca VA, Shah SV, Simonson MS, et al. Association of Urinary Biomarkers of Inflammation, Injury, and Fibrosis with Renal Function Decline: The ACCORD Trial. Clin J Am Soc Nephrol, 11(8): 1343-1352, 2016. doi: 10.2215/CJN.12051115.

Publicado

2025-10-10

Cómo citar

Rodrigues, I. M., Martins, J. F., Oliveira, W. N., & Domingueti, C. P. (2025). Aplicação das quimiocinas no diagnóstico, prognóstico e tratamento da doença renal do diabetes. Biosaúde, 24(1/2). Recuperado a partir de https://ojs.uel.br/revistas/uel/index.php/biosaude/article/view/46183

Número

Sección

Revisões