Aplicação das quimiocinas no diagnóstico, prognóstico e tratamento da doença renal do diabetes
Palabras clave:
Nefropatias Diabéticas, Quimiocinas, Citocinas, BiomarcadoresResumen
As quimiocinas consistem em potenciais marcadores para o diagnóstico e prognóstico da doença renal do diabetes (DRD), além de serem alvos terapêuticos interessantes para o desenvolvimento de fármacos mais eficazes para o tratamento desta complicação do diabetes mellitus (DM). Esse foi um estudo de revisão narrativa, com o objetivo de descrever as quimiocinas como possíveis marcadores e alvos terapêuticos na DRD. O entendimento do papel das quimiocinas nos mecanismos fisiopatológicos da DRD é crucial para o desenvolvimento de tratamentos farmacológicos mais eficazes. Além disso, algumas quimiocinas têm demonstrado consistirem em marcadores precoces para o diagnóstico da DRD, já que seus níveis parecem aumentar antes da redução da TFG ou do aumento da albuminúria. Os níveis de algumas quimiocinas ainda parecem refletir a gravidade da DRD, indicando seu potencial como marcadores para o monitoramento e avaliação do prognóstico desta complicação do DM.
Descargas
Citas
1. Magliano DJ, Boyko EJ, IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th edition. Brussels: International Diabetes Federation; 2021.
2. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes 2019-2020. São Paulo: Clanad Editora científica, 489 p, 2019.
3. Sociedade Brasileira de Nefrologia. Posicionamento Oficial Tripartite nº01/2016 SBD / SBEM / SBN: Prevenção, diagnóstico e conduta terapêutica na doença renal do diabetes, 100p, 2016.
4. Gomes BF, Accardo CM. Immuno inflammatory mediators in the pathogenesis of diabetes mellitus. Einstein, 17(1): eRB4596, 2019. doi: 10.31744 / einstein_journal / 2019RB4596.
5. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Intern Suppl, 3: 1-150, 2013. doi:10.1038/kisup.2012.76
6. Porto JR, Gomes KB, Fernandes AP, Domingueti CP. Avaliação da função renal na doença renal crônica. Rev Bras Anal Clin, 49(1): 26-35, 2017. doi: 10.21877/2448-3877.201500320.
7. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta, 1843(11): 2563-2582, 2014. doi: 10.1016/j.bbamcr.2014.05.014.
8. Simões e Silva AC, Pereira BA, Teixeira MM, Teixeira AL. Chemokines as potential markers in pediatric renal diseases. Dis Markers, 2014: 278715, 2014. doi: 10.1155/2014/278715.
9. Miller MC, Mayo KH. Chemokines from a Structural Perspective. Int J Mol Sci, 18(10), 2088: 1-16, 2017. doi: 10.3390/ijms18102088.
10. Palomino DCT, Marti LC. Chemokines and immunity. Einstein, 13(3): 469-473, 2015. doi: 10.1590/S1679-45082015RB3438.
11. Guerreiro R, Santos-Costa Q, Azevedo-Pereira JM. As quimiocinas e os seus receptores: Características e funções fisiológicas. Acta Med Port, 24 S4: 967-976, 2011.
12. Navarro-González JF, Mora-Fernández C, De Fuentes MM. Gárcia-Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol, 7(6): 327-340, 2011. doi: 10.1038/nrneph.2011.51.
13. Cui S, Zhu Y, Du J, Khan MN, Wang B, Wei J, et al. CXCL8 Antagonist Improves Diabetic Nephropathy in Male Mice With Diabetes and Attenuates High Glucose-Induced Mesangial Injury. Endocrinology, 158(6): 1671-1684, 2017. doi: 10.1210/en.2016-1781.
14. Zhang Y, Ma KL, Gong YX, Wang GH, Hu ZB, Liu L, et al. Platelet Microparticles Mediate Glomerular Endothelial Injury in Early Diabetic Nephropathy. J Am Soc Nephrol, 29(11): 2671-2695, 2018. doi: 10.1681/ASN.2018040368.
15. Xu J, Zheng S, Kralik PM, Krishnan L, Huang H, Hoying JB, et al. Diabetes Induced Changes in Podocyte Morphology and Gene Expression Evaluated Using GFP Transgenic Podocytes. Int J Biol Sci, 12(2): 210-218, 2016. doi:10.7150/ijbs.13057.
16. Cui S, Zhu Y, Du J, Khan MN, Wang. B, Wei J, et al. CXCL8 antagonist improves diabetic nephropathy in male mice with diabetes and attenuates high glucose-induced mesangial injury. Endocrinology, 158(6): 1671–1684, 2017. doi: 10.1210/en.2016-1781.
17. Yu J, Wu H, Liu ZY, Zhu Q, Shan C, Zhang KQ. Advanced glycation end products induce the apoptosis of and inflammation in mouse podocytes through CXCL9-mediated JAK2/STAT3 pathway activation. Int J Mol Med, 40(4): 1185-1193, 2017. doi: 10.3892/ijmm.2017.3098.
18. Zhang Y, Thai K, Kepecs DM, Winer D, Gilbert RE. Reversing CXCL10 Deficiency Ameliorates Kidney Disease in Diabetic Mice. Am. Am J Pathol, 188(12): 2763-2773, 2018. doi: 10.1016/j.ajpath.2018.08.017.
19. Tuttle KR, Brosius FC, Adler SG, Kretzler M, Mehta RL, Tumlin JA, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transplant, 33(11): 1950-1959, 2018. doi: 10.1093/ndt/gfx377.
20. Takashima S, Fujita H, Fujishima H, Shimizu T, Sato T, Morii T, et al. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy. Kidney Int, 90(4): 783-796, 2016. doi: 10.1016/j.kint.2016.06.012.
21. Kim KW, Vallon-Eberhard A, Zigmond E, Farache J, Shezen E, Shakhar G, et al. In vivo structure/function and expression analysis of the CX3C chemokine fractalkine. Blood, 118(22): e156-167, 2011. doi: 10.1182/blood-2011-04-348946.
22. Cockwell P, Chakravorty SJ, Girdlestone J, Savage COS. Fractalkine expression in human renal inflammation. J Pathol, 196(1): 85-90, 2002. doi: 10.1002/path.1010.
23. Song KH, Park J, Park JH, Natarajan R, Ha H. Fractalkine and its receptor mediate extracellular matrix accumulation in diabetic nephropathy in mice. Diabetologia, 56: 1661–1669, 2013. doi: 10.1007/s00125-013-2907-z.
24. Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH. Monocyte chemoattractant protein-1-induced tissue inflammation is critical for the development of renal injury but not type 2 diabetes in obese db/db mice. Diabetologia, 50(2): 471-480, 2007. doi: 10.1007/s00125-006-0497-8.
35. Garibotto G, Carta A, Picciotto D, Viazzi F, Verzola D. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol, 30(6): 719-727, 2017. doi: 10.1007/s40620-017-0432-8.
26. Kaifu K, Ueda S, Nakamura N, Matsui T, Yamada-Obara N, Ando R, et al. Advanced glycation end products evoke inflammatory reactions in proximal tubular cells via autocrine production of dipeptidyl peptidase-4. Microvasc Res, 120: 90-93, 2018. doi: 10.1016/j.mvr.2018.07.004.
27. Hao J, Ren L, Zhang L, Kong D, Hao L. Aldosterone-induced inflammatory response of mesangial cells via angiotension II receptors. J Renin Angiotensin Aldosterone Syst, 16(4): 739-748, 2015. doi: 10.1177/1470320313519486.
28. Chen XW, Liu WT, Wang YX, Chen WJ, Li HY, Chen YH, et al. Cyclopropanyldehydrocostunolide LJ attenuates high glucose-induced podocyte injury by suppressing RANKL/RANK-mediated NF-kappaB and MAPK signaling pathways. J Diabetes Complications, 30(5): 760-769, 2016. doi: 10.1016/j.jdiacomp.2016.03.013.
29. Wang J, Yan W, Peng X, Jiang Y, He L, Peng Y, et al. Functional Role of SUV39H1 in Human Renal Tubular Epithelial Cells Under High-glucose Ambiance. Inflammation, 41(1): 1-10, 2018. doi: 10.1007/s10753-017-0657-7.
30. Orellana JM, Kampe K, Schulze F, Sieber J, Jehle AW. Fetuin-A aggravates lipotoxicity in podocytes via interleukin-1 signaling. Physiol Rep, 5(10): e13287, 2017. doi: 10.14814/phy2.13287.
31. Perez-Gomez MV, Sanchez-Niño MD, Sanz AB, Zheng B, Martín-Cleary C, Ruiz-Ortega M, et al. Targeting inflammation in diabetic kidney disease: Early clinical trials. Expert Opin Investig Drugs, 25(9): 1045-1058, 2016. doi: 10.1080/13543784.2016.1196184.
32. Tuttle KR, Brosius FC, Adler SG, Kretzler M, Mehta RL, Tumlin JA, et al. JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a Phase 2 randomized controlled clinical trial. Nephrol Dial Transplant, 33(11): 1950-1959, 2018. doi: 10.1093/ndt/gfx377.
33. Tesch GH, Pullen N, Jesson MI, Schlerman FJ, Nikolic-Paterson DJ. Combined inhibition of CCR2 and ACE provides added protection against progression of diabetic nephropathy in Nos3 deficient mice. Am J Physiol Renal Physiol, 317(6): F1439-F1449, 2019. doi: 10.1152/ajprenal.00340.2019.
34. Sayyed SG, Ryu M, Kulkarni OP, Schmid H, Lichtnekert J, Grüner S, et al. An orally active chemokine receptor CCR2 antagonist prevents glomerulosclerosis and renal failure in type 2 diabetes. Kidney Int, 80(1): 68-78, 2011. doi: 10.1038/ki.2011.102.
35. Gale JD, Gilbert S, Blumenthal S, Elliott T, Pergola PE, Goteti K, et al. Effect of PF-04634817, an Oral CCR2/5 Chemokine Receptor Antagonist, on Albuminuria in Adults with Overt Diabetic Nephropathy. Kidney Int Rep, 3(6): 1316-1327, 2018. doi: 10.1016/j.ekir.2018.07.010.
36. Montero RM, Bhangal G, Pusey CD, Frankel AH, Tam FHK. CCL18 synergises with high concentrations of glucose in stimulating fibronectin production in human renal tubuloepithelial cells. BMC Nephrol, 17(1): 139, 2016. doi: 10.1186/s12882-016-0352-1.
37. Wang G, Lai FMN, Chow KM, Kwan BCH, Pang WF, Luk CCW, et al. Urinary mRNA levels of ELR-negative CXC chemokine ligand and extracellular matrix in diabetic nephropathy. Diabetes Metab Res Rev, 31(7): 699-706, 2015. doi: 10.1002/dmrr.2654.
38. Wong CK, Ho AW, Tong PC, Yeung CY, Kong AP, Lun SW, et al. Aberrant activation profile of cytokines and mitogen-activated protein kinases in type 2 diabetic patients with nephropathy. Clin Exp Immunol, 149(1): 123-131, 2007. doi: 10.1111/j.1365-2249.2007.03389.x.
39. Tashiro K, Koyanagi I, Saitoh A, Shimizu A, Shike T, Ishiguro C, et al. Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. J Clin Lab Anal, 16(1): 1-4, 2002. doi: 10.1002/jcla.2057.
40. Higurashi M, Ohya Y, Joh K, Muraguchi M, Nishimura M, Terawaki H, Yagui K, et al. Increased urinary levels of CXCL5, CXCL8 and CXCL9 in patients with Type 2 diabetic nephropathy. J Diabetes Complications, 23(3): 178-184, 2009. doi: 10.1016/j.jdiacomp.2007.12.001.
41. Zhao L, Wu F, Jin L, Lu T, Yang L, Pan X, et al. Serum CXCL16 as a novel marker of renal injury in type 2 diabetes mellitus. PLoS One, 9(1): e87786, 2014. doi: 10.1371/journal.pone.0087786.
42. Scurt FG, Menne J, Brandt S, Bernhardt A, Mertens PR, Haller H, et al. Systemic Inflammation Precedes Microalbuminuria in Diabetes. Kidney Int Rep, 4(10): 1373-1386, 2019. doi: 10.1016/j.ekir.2019.06.005.
43. Lee YH, Kim PK, Park SH, Kim DJ, Kim YG, Moon JY, et al. Urinary chemokine C-X-C motif ligand 16 and endostatin as predictors of tubulointerstitial fibrosis in patients with advanced diabetic kidney disease. Nephrol Dial Transplant, 36(2): 295-305, 2021. doi: 10.1093/ndt/gfz168.
44. Elewa U, Sanchez-Niño MD, Mahillo-Fernández I, Martin-Cleary C, Belen Sanz A, Perez-Gomez MV et al. Circulating CXCL16 in Diabetic Kidney Disease. Kidney Blood Press Re, 41(5): 663-671, 2016. doi: 10.1159/000447935.
45. Kolseth IB, Reine TM, Parker K, Sudworth A, Witczak BJ, Jenssen TG, et al. Increased levels of inflammatory mediators and proinflammatory monocytes in patients with type I diabetes mellitus and nephropathy. J Diabetes Complications, 31(1): 245-252, 2017. doi: 10.1016/j.jdiacomp.2016.06.029.
46. Cummings LAM, Clarke A, Sochett E, Daneman D, Cherney DZ, Reich HN, et al. Social Determinants of Health Are Associated with Markers of Renal Injury in Adolescents with Type 1 Diabetes. J Pediatr, 198: 247-253, 2018. doi: 10.1016/j.jpeds.2018.03.030.
47. Elmarakby AA, Sullivan JC. Relationshipbetween oxidative stress and inflammatory cytokines indiabetic nephropathy. Cardiovasc Ther, 30(1): 49-59, 2012. doi: 10.1111/j.1755-5922.2010.00218.x.
48. Kim MJ, Tam FWK. Urinary monocyte chemoattractant protein-1 in renal disease. Clin Chim Acta, 412(23-24): 2022-2030, 2011. doi: 10.1016/j.cca.2011.07.023.
49. Schettini IVG, Faria DV, Nogueira LS, Otoni A, Simões e Silva AC, Rios DRA. Renin angiotensin system molecules and chemokine (C-C motif) ligand 2 (CCL2) in chronic kidney disease patients. J Bras Nefrol, 44(1): 19-25, 2022. doi: 10.1590/2175-8239-JBN-2021-0030.
50. Ho J, Wiebe C, Rush DN, Rigatto C, Storsley L, Karpinski M, et al. Increased urinary CCL2: Cr ratio at 6 months is associated with late renal allograft loss. Transplantation, 95(4): 595-602, 2013. doi: 10.1097/TP.0b013e31826690fd.
51. Dubi´Nski B, Boratyńska M, Kopeć W, Szyber P, Patrzałek D, Klinger M. Activated cells in urine and monocyte chemotactic peptide-1 (MCP-1)—sensitive rejection markers in renal graft recipients. Transpl Immunol, 18(3): 203-207, 2008. doi: 10.1016/j.trim.2007.07.005.
52. Nadkarni GN, Rao V, Ismail-Beigi F, Fonseca VA, Shah SV, Simonson MS, et al. Association of Urinary Biomarkers of Inflammation, Injury, and Fibrosis with Renal Function Decline: The ACCORD Trial. Clin J Am Soc Nephrol, 11(8): 1343-1352, 2016. doi: 10.2215/CJN.12051115.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Biosaúde

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Esta licença permite copiar e redistribuir o material em qualquer meio ou formato, remixar, transformar e desenvolver o material, desde que não seja para fins comerciais. E deve-se atribuir o devido crédito ao autor.



