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ABSTRACT

This study proposes the expansion of the functionalities of the ContExt software, designed for contour
extraction and mesh generation for numerical simulations in medical imaging. The main innovation is
the incorporation of interpolation methods to enlarge contours after image resolution reduction, thereby
enabling greater computational efficiency. Bilinear, bicubic, biquadratic, and cubic spline methods were
evaluated, along with refinement techniques such as node removal and the Ramer—Douglas—Peucker algorithm.
Reducing the image to half of its original resolution resulted in a significant decrease in processing time
(over 95%) while maintaining satisfactory contour quality. However, a reduction to one-quarter resolution
compromised the fidelity of the extracted structures. Bilinear method achieved the highest overlap rate,
whereas the cubic spline proved to be the most accurate. Tests demonstrate that the new functionalities
integrated into ContExt make the software more versatile and efficient for processing high-resolution images,
with potential applications in various clinical and computational contexts.
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RESUMO

Este trabalho propde a expansdo das funcionalidades do software ContExt, voltado a extracao de contornos
e geracao de malhas para simulagdes numéricas em imagens médicas. A novidade é a incorporagdo de
métodos de interpolacdo para ampliacdo de contornos ap6s reducao da resolucao da imagem, permitindo
maior eficiéncia computacional. Foram avaliados os métodos bilinear, bictibico, biquadratico e spline cubica,
além de técnicas de refinamento como remocdo de nds e o algoritmo Ramer-Douglas-Peucker. A reducgéo
da imagem para 1/2 da resolugéo original resultou em uma queda significativa no tempo de processamento
(mais de 95%), com manutengdo satisfatéria da qualidade dos contornos. Ja a resolugdo 1/4 comprometeu a
fidelidade das estruturas extraidas. O método bilinear obteve a maior taxa de sobreposi¢do, enquanto a spline
ctibica foi mais precisa. Os testes demonstram que as novas funcionalidades integradas ao ContExt tornam o
software mais versatil e eficiente para o tratamento de imagens de alta resolucdo, com potencial de aplicacdo
em diferentes contextos clinicos e computacionais.
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Introduction

Image processing, particularly in medical imaging, has emerged as a promising tool for the diagnosis of
lesions and as a means of supporting the identification of diseases such as cancer. The onset of cancer
occurs due to modifications in the genetic structure of cells, resulting in uncontrolled cell proliferation and
the formation of tumors (Feng et al., 2018). In particular, breast cancer is the most common cancer in
women over the course of their lifetime (Instituto Nacional de Cancer José Alencar Gomes da Silva, 2004),
and mammography is essential, as it is an effective method for the early detection of breast abnormalities
(Azevedo et al., 2016), often before they become palpable to the patient or detectable during a clinical
examination.

Advances in image processing technology have therefore become increasingly significant, enabling analy-
ses with greater precision and focus on specific details within images (Liu et al., 2021). However, the growing
dimensionality of images poses a challenge, as high-resolution imaging demands the adoption of discrete
and simplified representations, as well as effective correspondence measures, to maintain computational
efficiency (Zare et al., 2013), without compromising image quality. Furthermore, the literature explores
various approaches to optimize the processing of ultra—high—definition images.

Dumic et al. (2007) investigated the use of the Discrete Wavelet Transform (DWT) as a technique for image
interpolation. The authors analyzed the method’s potential to enhance image quality by increasing resolution,
highlighting that DWT can be highly effective for compression, encoding, and interpolation tasks, often
producing superior results compared to traditional methods such as bilinear or spline interpolation. However,
they noted that although the technique preserves important image details, its computational complexity and
the risk of introducing processing artifacts are limitations that must be considered.

In downscaling—upscaling, Jarosch et al. (2010) discussed advanced methods applied to temperature data
to improve efficiency in glacier modeling, adapting broad climate datasets to smaller and more specific scales,
such as a particular region or geographic area.

Cirilo et al. (2023) modeled a new quality parameter for generating two-dimensional image edges via
spline interpolation. The motivation of the study was to define a parameter that would allow establishing a
stopping criterion for inserting image data and obtaining a sufficiently faithful spline representation.

Chai et al. (2023) developed a strategy aimed at increasing computational efficiency when processing
ultra-large satellite images by applying downscaling upscaling techniques. The method employs bilinear
interpolation during resizing, allowing for the temporary reduction of high-resolution images before enlarging
them back to their original resolution, thereby enhancing the region of interest.

Yu et al. (2023) proposed an approach using a non-uniform, spatially variable resizer, in contrast to the
conventional method of uniform reduction followed by upscaling. The proposed neural network model
demonstrated superiority in both efficiency and quality for ultra—high-definition images.

Although techniques such as interpolation, resizing, DWT, and advanced downscaling—upscaling methods
have demonstrated effectiveness in various applications, they often require greater computational resources
and may not fully address the specificities of the medical domain. Sickles (2007) investigates features
of breast asymmetries in digital images to identify possible benign or pathological conditions, describing
additional evaluation steps, such as biopsies and complementary examinations, necessary to determine the
cause of these asymmetries.

Conversely, Yang et al. (2009) highlight that analyzing the symmetry of breast tumor shapes, using contour
extraction and processing techniques combined with quantitative analysis, can provide valuable diagnostic
information. The authors observe that benign tumors generally present greater symmetry compared to
malignant ones, underscoring the need for image-processing approaches that are both efficient and tailored to
the clinical characteristics of medical data.

Nonetheless, medical image processing faces significant challenges, especially with the substantial increase
in data volume, which, as noted by Scholl et al. (2011), has grown from kilobytes to terabytes. This exponential
growth demands adaptations in processing and visualization algorithms to effectively handle the increasing
load. Consequently, image preprocessing becomes fundamental for the accurate classification of diseases,
particularly in mammography, which can contain various types of noise.

Noise can compromise the quality of information but can be mitigated through advanced filtering tech-
niques, preparing images to emphasize relevant information while discarding irrelevant data (Canayaz, 2021;
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Jasti et al., 2022; Suman et al., 2014). This approach opens opportunities for improvements in preprocess-
ing software, which, by enhancing images prior to their integration into machine learning algorithms, can
facilitate lesion segmentation in laboratory images.

In this framework, the ContExt software (ContExt, 2024) plays an important role in image processing
and contour extraction, facilitating contour segmentation, an essential preliminary step for isolating and
analyzing regions that may indicate lesions in mammography. Despite the effectiveness of ContExt in contour
extraction through advanced image processing techniques (Casamaximo et al., 2021; Silva et al., 2025), the
high dimensionality of medical images can make the process computationally expensive.

Therefore, this study proposes the integration of a new functionality into the ContExt software for contour
enlargement using interpolation methods such as bilinear, bicubic, biquadratic, and cubic spline (Fadnavis,
2014; Patel et al., 2013; Smith, 2020; Thévenaz et al., 2000). The selection of interpolation methods aims to
enhance resolution and minimize quality loss in the extracted contours, adjusting the image for improved
representation of regions of interest. Additionally, fine detail recovery techniques, such as node removal and
the Ramer—Douglas—Peucker algorithm (Ramer, 1972), were employed to reduce data noise and improve
contour smoothing, thereby enhancing the quality of the extracted structures.

The overall objective is to understand how these approaches can improve computational efficiency while
maintaining contour quality in image processing. The methodology of this study encompasses a process of
contour reduction and enlargement, followed by a comparative analysis based on the calculation of overlap
percentage and the mean distances between interpolated contours and the originals from the reduced image,
for each interpolation method, with and without the application of fine detail recovery techniques.

Materials and methods

Breast cancer encompasses various malignant neoplasms of the mammary glands, with carcinomas being the
most common and sarcomas less frequent (Feng et al., 2018). Understanding clinical and epidemiological
characteristics (Romeiro et al., 2022) complements early detection strategies, which have broadened the iden-
tification of cases across all age groups and contributed significantly to reducing mortality, especially among
women aged 50 to 70 (Nystrom et al., 2002; Siegel et al., 2018; Thornton, 2001). Digital mammography is
currently considered the gold standard for screening (Kosters & Ggtzsche, 2003).

As one of the most widely used examinations, mammography requires the adaptation of image processing
algorithms to improve efficiency and accuracy in image analysis, especially in light of the substantial
increase in data volume. Digital imaging enables the separation of acquisition, processing, and display stages,
facilitating the optimization of each step (Kosters & Ggtzsche, 2003). Processing is used to adjust contrast,
remove noise, sharpen edges, and filter images, thereby improving visualization and providing valuable
diagnostic information (Kshatri & Singh, 2023; Schulz-Wendtland et al., 2009; Silva et al., 2025). Noise
reduction techniques and the use of multi-loss functions help improve segmentation by addressing variations
in the representation of different regions, enabling more accurate analysis even when certain regions are less
frequent or more difficult to identify.

In this study, the original mammogram was analyzed to identify asymmetric regions that may indicate the
presence of breast cancer (Sickles, 2007). To highlight possible lesions, image binarization was performed
using the ContExt software (ContExt, 2024). The process begins with brightness and contrast adjustment of
the mammogram image, followed by the application of thresholding. The same parameters can be applied
to images of both the right and left breast, allowing for the overlay of binarized images to assess potential
asymmetries.

According to Yang et al. (2009), analyzing the symmetry of tumor shapes can provide important diagnostic
information, as benign tumors tend to exhibit greater symmetry compared to malignant ones. Once a lesion
is confirmed, the high-resolution image is reduced in two stages: first to half of the original resolution (1/2
resolution), and then to one quarter of the original resolution (1/4 resolution).

The contours extracted from the reduced images were enlarged using the new functionality of the ContExt
software, applying interpolation methods such as bilinear, bicubic, biquadratic, and Cubic Spline. To minimize
noise, fine detail recovery techniques, such as node removal and the Ramer—Douglas—Peucker algorithm,
were considered as alternatives in the extraction of interpolated contours.

The flowchart shown in Figure 1 illustrates the steps of the mammogram image analysis process.
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Figure 1 - Steps of the mammogram image analysis process.
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Interpolation techniques

Interpolation, the process of reconstructing continuous data from discrete points within a known interval, is
essential in the medical field. Techniques such as bilinear, bicubic, biquadratic, and Splines (Thévenaz et al.,
2000) are widely used, as the final quality of processed images when resampling, downscaling, or upscaling
directly depends on the chosen interpolation method. In the ContExt software, under the interpolation tab,
the main interpolation methods were implemented as follows:

1. Bilinear: bilinear interpolation calculates the value of an interpolated point using a weighted average
of the values of four neighboring pixels (px) in the horizontal and vertical directions. This method is
simple, fast, and produces smooth results, but may fail to capture fine image details. Nonetheless, it is
widely used for image scaling (Patel et al., 2013).

2. Bicubic: bicubic interpolation, an extension of bilinear, uses a third-degree polynomial to fit the values
within a 4x4 px neighborhood instead of only four neighboring pixels, resulting in better preservation
of details and image quality (Fadnavis, 2014).

3. Biquadratic: biquadratic interpolation uses a second-degree polynomial to fit neighboring pixel values.
Similar to bicubic, it seeks a quadratic function that best fits the surrounding points to determine the
interpolated value (Smith, 2020).

4. Cubic spline: cubic spline interpolation uses smooth curves formed by segments of cubic polynomials
to interpolate values between known points. The polynomials are fitted to ensure a smooth curve with
continuous first and second derivatives, resulting in an interpolation that preserves both smoothness
and image detail (Fadnavis, 2014).

Downscaling-upscaling

Resizing is a common operation in image processing, necessary for adjusting the resolution of high-definition
files while maintaining visual appearance. In contrast to downscaling, upscaling, also known as resolution
enhancement or super-resolution, seeks to reconstruct a high-resolution image from a low-resolution input
(Sun & Chen, 2020).

During upscaling, interpolation methods are often used to fill in newly created pixels, helping to smooth
edges and improve the overall appearance of the enlarged image. However, the recovery of fine details
remains a challenge, especially when the original image resolution is very low (Shannon, 1949). The present
study applies node spacing and node removal (NR) techniques, along with the Ramer—Douglas—Peucker
(RDP) contour simplification algorithm, to adjust resolution and enhance contour smoothing.

Node spacing

Node spacing (NS) is a method proposed in this study to adjust the distance between nodes along a contour
in digital images while preserving relative node density across different image resolutions. The method
works by inserting intermediate placeholder points between the original contour points, which are later filled
through interpolation. Specifically, for images at half the original resolution (1/2), the node spacing value is
set to 1, meaning one null point is inserted between each original node.
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For images at one quarter of the original resolution (1/4), the spacing value is set to 3, inserting three
null points between each node. During interpolation, these null points are filled, ensuring that the distance
between nodes scales proportionally with the reduced pixel size. This approach preserves the relative node
density along the contour and guarantees that the contour representation remains accurate and consistent
across different image resolutions.

Node removal

Node removal (NR) is another proposed method aimed at adjusting the density of points along an image
contour by removing intermediate nodes and replacing them with null values according to a defined node
removal parameter. The process begins by keeping the initial and final nodes of the contour intact, while
intermediate nodes are replaced with nulls in specific groups. For instance, if the node removal parameter
is set to 2, each pair of intermediate nodes is replaced by nulls, and the third is retained, and so on. This
approach effectively smooths contours and reduces insignificant variations caused by image noise.

In applications such as mammography analysis, this method is used to prepare data before applying more
advanced techniques such as interpolation or contour fitting, thus contributing to fine detail recovery for
more precise and efficient interpretation of medical data.

Contour approximation: Ramer-Douglas-Peucker algorithm

The Ramer—Douglas—Peucker (RDP) algorithm is a technique used to simplify a contour while preserving
its overall shape (Ramer, 1972). It identifies and removes points that do not significantly affect the general
contour shape, based on a defined tolerance value. If the perpendicular distance of a point to the nearest
line segment is greater than the tolerance, that point is retained; otherwise, it is removed. This method is
useful for reducing contour data complexity without losing important features of the original shape and was
implemented in the ContExt software as a contour approximation functionality.

Case study and image processing

This case study analyzes digital mammography images with the aim of evaluating the performance of contour-
focused downscaling and upscaling processes. The study was previously approved by the Institutional Ethics
Committee (CAAE 65942122.9.0000.5231).

Images from two patients, each with a resolution of 3584 x3584 px, were used in craniocaudal right
(CCR) and craniocaudal left (CCL) views for breast symmetry assessment and the identification of possible
suspicious regions. One image was provided by a patient with informed consent, while the other is available
in the public repository described in (Jales, 2022).

The procedure followed these steps:

1. Image Analysis: Digital mammography images were processed in the ContExt software (ContExt,
2024) to identify asymmetric regions between the breasts.

2. Processing and Contour Extraction: The original image was processed in the filtering tab of ContExt.
Contours were then extracted in the contour extraction tab, with the applied filter values recorded and
the resulting data stored.

3. Resolution Reduction: The original 3584 x3584 px image was reduced in two stages: first to
17921792 px, and subsequently to 896896 px. The reduced images were then used in the following
steps.

4. Filtering and Interpolation: Using the same parameters defined in step 2, filters were applied to the
reduced images. Contours extracted from these images were upscaled using different interpolation
methods.

5. Noise Reduction: Contours were smoothed using node spacing and node removal, as well as the
Ramer—Douglas—Peucker algorithm, combined with interpolation, to minimize imperfections and noise.

6. Comparative Analysis: Finally, contours obtained from the reduced images were compared with those
extracted from the original image to assess quality loss, distortions, and shape variations after reduction,
enlargement, and smoothing procedures.
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Discussion and results

Mammography images, shown in Figure 2, with a resolution of 3584 <3584 px, were used to assess the
breasts in the craniocaudal right (CCR) and craniocaudal left (CCL) views, aiming to identify potential
asymmetric regions, as asymmetry may indicate pathological conditions such as breast cancer (Sickles, 2007).
Patients were labeled as Patients 1 and 2 for visual distinction.

Figure 2 - Mammograms of Patients 1 and 2 showing: (a) and (c) the right breast; (b) and (d) the left breast.

(a) ) (c) (d)

Upon examining the mammography images, a significant difference in internal structures can be observed:
Figures 2(a) and 2(d) display an area of increased density in the upper breast region, possibly a mass or
lesion, which is absent in the breasts shown in Figures 2(b) and 2(c).

Using the ContExt software, it is possible to identify, segment, and highlight the contours of the potential
lesions observed in Figures 2(a) and 2(d), corresponding to Patients 1 and 2, respectively, thereby supporting
evaluation by a medical professional.

The process begins with image preprocessing, which includes brightness and contrast adjustments, as well
as the application of filters to highlight the suspected area. The parameters used are described in Table 1, and
the settings applied in ContExt software are shown in Figure 3, under the Filtering tab.

Table 1 - Parameters applied to ContExt filters.

Filter Patient 1  Patient 2
Brightness -70 -45
Contrast 1.506 1.714
Threshold 100 73

Figure 3 - Data used in the Filtering tab for processing the original image: (a) right breast of Patient 1 and
(b) left breast of Patient 2.

200 400 600 800 1000 1200 1400 1600 1800
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After applying the filters described in Table 1, the main image features, such as contrast and contours, are
enhanced, facilitating the visualization of the potential lesion. The pre-processing performed in the ContExt
software improves image quality by highlighting relevant details and reducing unwanted noise, thereby
contributing to more accurate segmentation and enabling a clearer and more objective analysis.

Subsequently, each image shown in Figures 3(a) and 3(b) is analyzed using the Thresholding tab for
binarization. ContExt implements the Chain of Responsibility design pattern (Silva et al., 2025), allowing
processing requests to be sequentially passed through different handlers, which ensures flexibility and
organization in the image processing workflow.

Figure 4 shows the results from the Thresholding tab, indicating the lesion contours of the patients.

Figure 4 - Data used in the Thresholding tab indicating the lesion contour: (a) right breast of Patient 1 and
(b) left breast of Patient 2.

(a) (b)

Threshoiding | Contour Extraction _ Interpolation _ Mesh Generation Fiterng Thresholdng Contour Extraction  Interpolation  Mesh Generation
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The Thresholding process highlights the regions corresponding to the suspected lesions, as illustrated in
Figures 4(a) and 4(b).

To identify possible asymmetric regions, since asymmetry may indicate pathological conditions such as
breast cancer (Sickles, 2007), and to ensure consistency in the analysis, the same parameters from Table 1
were applied to the breast images shown in Figures 2(b) and 2(c), resulting in the binarized images shown in
Figure 5.

Figure 5 - Data used in the Thresholding tab for the original image, after applying the Filtering tab according
to Table 1: (a) left breast of Patient 1 and (b) right breast of Patient 2.

(a) (b)
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The images in Figures 4(a), 4(b), 5(a) and 5(b) reveal the absence of symmetry in the evaluated region
between the breasts, underscoring the need for further analysis. In some cases, such asymmetries may
warrant additional examinations, such as biopsies, reinforcing the importance of effective processing and
visualization methods.

In this study, the binarized images were overlaid to assess asymmetries using advanced image manipulation
techniques. The breast shown in Figures 2(a) and 2(d) was colored red, with 30% opacity and the Darker Color
blending mode, while the one in Figures 2(b) and 2(c) was marked in blue, with 20% opacity. The images
were then superimposed to evaluate symmetry, as shown in Figure 6.
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Figure 6 - Mammogram overlay for symmetry assessment between breasts: (a) breasts of Patient 1, (b)
breasts of Patient 2.

(a) (b)

In Figure 6, shades of red, blue, and purple can be observed. The purple tone indicates symmetric regions
between the breasts, while predominantly red or blue areas highlight asymmetries. Both patients present
significant breast asymmetries, as already noted in Figure 2. The Lighten blending mode was applied to
facilitate visual comparison between mammograms, emphasizing structural similarities and differences.

Finally, with the aid of ContExt, the lesion region highlighted in Figures 6(a) and 6(b), corresponding to
Patients 1 and 2 respectively, was segmented using the Contour Extraction tab, as illustrated in Figure 7.

Figure 7 - Data used in the Contour Extraction tab for lesion contour extraction, Patients 1 and 2, respectively:
(a) region highlighted in Figure 6(a), and (b) region highlighted in Figure 6(b).

(a)
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As shown in Figure 7(a) and 7(b), the highlighted regions obtained using the Contour Extraction tab for
Patients 1 and 2 present distinct contours, yet both are asymmetric. As pointed out by Yang et al. (2009), the
absence of symmetry in segmented contours, depicted in green, can provide relevant diagnostic information,
since benign tumors tend to be more symmetric when compared to malignant ones. In addition to assisting in
segmenting regions that may contain lesions, the software offers various parameters for mesh generation,
considering the application of the finite difference method, which facilitates mathematical modeling and
numerical simulations (Silva et al., 2025).

All segmentation and contour extraction steps were carried out based on the images of two patients. How-
ever, to meet the study’s objectives, which include optimizing image processing and integrating interpolation
functionalities into the ContExt software, detailed analysis was conducted using the image of Patient 1,
specifically the right breast presented in Figure 2(a), whose segmented lesion is highlighted in Figure 7(a).

Contour Analysis

The original image of Patient 1, with a resolution of 3584 x3584 px, was downscaled in two stages: first
to 1792x 1792 px (1/2 of the original resolution) and then to 896 x896 px (1/4 of the original resolution).
The resulting images, processed using the ContExt software, followed the same procedures described for the
generation of Figure 7(a), enabling a comparative analysis of contour quality across different resolutions.
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For the analysis of the image at 1/2 of the original resolution, a node spacing of 1 and the contour expansion
option were applied. For the image at 1/4 of the original resolution, the node spacing was set to 3, and the
threshold in the thresholding tab was increased to 106. Noise reduction was tested through node removal
and contour approximation using the Ramer—Douglas—Peucker algorithm. The parameters are described in
Table 2.

Table 2 - Parameters applied to thresholding and interpolation in ContExt.

Filter 1/2 of original resolution 1/4 of original resolution
Lesion Lesion
Threshold 100 106
Node spacing 1 3
Node removal 2 2
Contour approximation (e) 0.002 0.002

Using the software, it was possible to obtain information on the segmented lesion region’s area and
position, considering both the original and the downscaled images. Such information can be used for medical
analysis as well as to guide clinical interventions. The data were exported into text files containing the
minimum and maximum X and Y coordinates, along with the number of cells in the x and y directions,
represented by n, and n,, as presented in Table 3.

Table 3 - Lesion contour data for the original-resolution image and the downscaled images.

Property Original resolution 1/2 of original resolution 1/4 of original resolution
Area 28644 28472 25600
Xmin 3003 2996 3004
Yinin 2279 2282 2288
Xmax 3282 3286 3276
Yinax 2503 2508 2500
Ng 280 291 273
Ny 225 227 213

Table 3 shows that lesion area reduction results in a 0.60% loss for the image at 1/2 resolution, indicating
good preservation of clinical information. In contrast, the 10.63% loss at 1/4 resolution is significant,
suggesting a compromise in image quality and accuracy in lesion assessment. These results emphasize the
importance of balancing resolution reduction with the maintenance of diagnostic quality, which directly
impacts the performance of contour extraction methods for mammography images at different resolutions.

Contour extraction performance at different resolutions

Based on preliminary tests performed on a machine with an i5-12400F processor, an RTX 4060 GPU, and 16
GB of RAM (6000 MHz), the software yielded the following average times for contour extraction from a
mammography image at original and reduced resolutions:

+ At the original resolution, the average contour extraction time was 217.29 seconds.

+ At 1/2 resolution, processing time dropped to 9.17 seconds, representing a significant performance gain
without substantial compromise in contour quality, as shown in Table 3, where the area remained close
to the original resolution.

» At 1/4 resolution, extraction time was 0.58 seconds. However, this extreme reduction resulted in a
considerable loss of contour information, with significant area differences as shown in Table 3.

Ten trials were conducted to calculate the average contour extraction performance at both original and
reduced resolutions. The comparison of processing times highlighted a trade-off between performance and
quality: while reducing resolution to 1/2 and 1/4 drastically decreased extraction time, it came at the cost of
a significant loss of detail, particularly at 1/4 resolution.
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Reduced-resolution contour analysis with interpolation

To evaluate contours at reduced resolution, the interpolation functionality of ContExt was employed to
enhance image precision and quality. The Interpolation tab offers four methods bilinear, bicubic, bi-quadratic,
and cubic spline, implemented using the Pandas library (McKinney, 2011) in Python (Python Software
Foundation, 2021). Additionally, this tab includes two fine-detail recovery techniques: Node Removal
(RN) and the Ramer—Douglas—Peucker algorithm (RDP), both designed to approximate the contour while
preserving its overall shape.

Furthermore, the Expand Dimensions method was applied, which adjusts contour size by multiplying its
spacing according to the value set in the Node Spacing Increment parameter. For the 1/2 resolution contour,
the value was set to 1, resulting in a doubling of contour size. For the 1/4 resolution contour, the Node
Spacing Increment was set to 3, producing a fourfold enlargement. This adjustment facilitates comparison
between the original contour and the interpolated contour from the reduced image.

Accordingly, using the parameters presented in Table 2, the data generated in the Interpolation tab for the
1/2 resolution image were computed using the bicubic method.

Fine-detail recovery techniques were not applied, meaning the interpolated contour, in orange, represents
the raw interpolation result without additional adjustments. In contrast, the reduced and resized contour
without interpolation is shown in blue. The results are presented in Figure 8.

Figure 8 - Data used in the Interpolation tab for the 1/2 resolution image corresponding to the lesion region
of Patient 1.
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Figure 8 presents the comparison between the resized original contour (in blue) and the contour obtained
after bicubic interpolation (in orange), illustrating how the method improves contour definition. A smoothing
of the edges and preservation of lesion details can be observed.

Given that displaying all results simultaneously within the Interpolation tab would result in an overly
cluttered visualization, separate data files containing different contour representations of the lesion were
generated. These files were created from multiple resolutions and processing techniques, with the aid of
MATLAB, to facilitate result evaluation and interpretation.

The contours were extracted from reduced resolutions and from the techniques implemented in the
Interpolation functionality, all compared to the original-resolution image contour. Fine-detail recovery was
performed using node removal and the Ramer—Douglas—Peucker algorithm.

The results are illustrated in Figures 9 and 10, where:

* CL represents the lesion contour at original resolution,
* CR corresponds to the reduced-resolution contour without fine-detail recovery,

* RN and RDP show the reduced-resolution contour with fine-detail recovery using node removal and
the Ramer—Douglas—Peucker algorithm, respectively.
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Figure 9 - Comparison of lesion contours at 1/2 of the original resolution using the following interpolation

methods: (a) bicubic, (b) bilinear, (c) biquadratic, and (d) cubic spline.
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Figure 10 - Comparison of lesion contours at 1/4 of the original resolution using the following interpolation
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The images in Figures 9 and 10 present, respectively, the results of contour upsampling obtained through
different interpolation methods: bicubic, bilinear, bi-quadratic, and cubic spline. These methods were applied
at two resolutions (1/2 and 1/4), with and without fine-detail recovery techniques. In each plot, the original
contour is compared with the interpolated results, highlighting the versions using RN and RDP.

* At 1/2 resolution, all methods produce contours closely resembling the original, with slight variations
in smoothness and shape. Differences in fine-detail representation between RN and RDP become
noticeable, with node removal contributing to reduced noise compared to the interpolated version
without additional techniques.

+ At 1/4 resolution, the loss of detail becomes more pronounced regardless of the technique employed.
While the general contour structure is preserved, smoothness precision is lower than at 1/2 resolution,
underscoring the importance of detail-recovery strategies to maintain shape fidelity.

It is noteworthy that at 1/4 resolution, greater discrepancies are observed among interpolation methods,
particularly in how each handles information loss and detail recovery; however, the lesion shape remains
preserved. Among the methods shown in Figure 9 and 10, bilinear interpolation stands out in both resolutions
(1/2 and 1/4) for maintaining a balance between contour definition and smoothness, while cubic spline
interpolation can be more effective in cases where smoothing is desired, it may not be the best choice for
accuracy.

These differences can be observed in the zoomed-in regions shown in Figures 9(a)—9(d), and 10(a)-10(d).

To assess the similarity between lesion contours at reduced resolutions and the interpolated contours, the
data were processed to include the minimum and maximum X and Y coordinates, as well as the number of
cells in the x and y directions (n, and n,), providing a simplified representation that highlights variations
and trends among the different interpolation methods. This process included variance calculation, which
measures data dispersion relative to the mean. The results are presented in Table 4.

Table 4 - Standard deviation of data obtained from each type of interpolation applied to the lesion contours.

Property  1/2 of original resolution  1/4 of original resolution

Enlargement without detail recovery technique (RL)

Area 28493.56 + 77.73 25796.28 + 69.23
Xomin 2995.92 + 0.08 3004
Yiin 2281.86 + 0.09 2287.59 4+ 0.24
Xax 3286.31 + 0.20 3276
Yinax 2508.17 + 0.11 2500.52 £+ 0.53
Ny 291.25 + 0.43 273
Ny 227.25 + 0.43 214 £+ 0.70
Node removal (RN)
Area 28641.48 + 42.60 26178.81 + 18.56
Xnin 2995.98 + 0.02 3007.9 + 0.10
Yiin 2281.95 + 0.05 2287.47 4+ 0.48
Xinax 3286.06 + 0.06 3272.57 +0.52
Yinax 2508.06 £+ 0.03 2500.48 + 0.49
Ny 291.25 + 0.43 265.75 £ 0.43
Ny 227 214.25 + 0.82

Contour approximation: Ramer—-Douglas—Peucker (RDP)

Area 28551.35 £ 79.75 26026.32 + 70.10
Xmin 2995.32 £ 0.41 3004
Yhin 2281.58 £+ 0.25 2287.37 + 0.38
Xinax 3286.59 £ 0.67 3277.08 £+ 0.77
Yinax 2508.11 £ 0.19 2500.83 £+ 0.76
Ny 292.25 + 1.09 274 +0.70
Ny 227.75 + 0.43 2145+ 1.11
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To analyze the similarity between the original and interpolated contours (CR, RN, and RDP), Algorithm 1

was used, which calculates the Euclidean distance between the original points and the others, evaluating the

similarity between the two point sets.

Algorithm 1 Similarity calculation between two sets of points

Require: Files filel and file2, containing the coordinates of the point sets. A threshold value for distance

comparison.

Ensure: Overlap percentage perc_interpolated between filel and file2 and mean distance difference

40

mean_diff.

: function load_points(file_name)

Create an empty list points;

for linha no arquivo nomeArquivo do
Extract coordinates x and y from line;
Add (%, y) to points;

end for

return points;

end function
: function euclidean_distance(p1, p2)

return \/(pl, — p2,)% + (pl, — p2,)?

: end function
: function calculate_similarity(filel, file2, threshold = radius)

Load points from filel into original_points using load_points();
Load points from file2 into interpolated_points using load_points();
Initialize overlapping_points < 0;
Create empty list dist_within_radius;
Create list points_used of size interpolated_points, initialized as false;
for pointl in original_points do
Setmin_dist < oo, min_dist_index <+ —1;
for point2 in interpolated_points do
if point2 is not used in points_used then
Calculate aux_dist = euclidean_distance(point1, point2);
if aux_dist <min_dist then
Update min_dist < aux_dist;
Update min_dist_index < index of point2;
end if
end if
end for
if min_dist < threshold then
Increment overlapping_points by 1;
Addmin_dist todist_within_radius;
Mark point2 at min_dist_index as used in points_used;
end if
end for
perc_interpolated < overlapping_points/(length of interpolated_points);
mean_diff < mean(dist_within_radius) if not empty, else O;

return perc_interpolated, mean_diff;

: end function
: Use the function calculate_similarity() to compute the similarity between points in filel and file2;
: Print perc_interpolated and mean_diff;

Semin., Ciénc. Exatas Tecnol,, Londrina, 2025, v. 46, e53582



Tokairin, R; Casamaximo, R. F; Romeiro, N. M. L;; Silva, P. Z,; Cirilo, E. R.

Using Algorithm 1, the percentage of overlap was calculated with a radius of 2.5 px as the threshold limit,
as well as the mean distances for each interpolation method. Additionally, each original point was evaluated
within the radius, verifying whether the corresponding point in the downsampled image fell within the defined
area. If it was within the radius, the point was considered overlapped, which reinforces the accuracy of the
interpolation. The results are presented in Table 5.

Table 5 - Percentage of overlap and mean distances between the interpolated contours and the original
downsampled image for each interpolation method, with and without detail recovery techniques.

. 1/2 of original resolution 1/4 of original resolution
Interpolation
Overlap (%) Mean (px) Overlap (%) Mean (px)
Enlargement without detail recovery (LR)
bilinear 90.42 1.57 64.98 1.68
bicubic 89.83 1.59 63.58 1.68
biquadratic 89.90 1.60 63.76 1.67
Cubic spline 88.32 1.49 62.17 1.65
Node removal (RN)
bilinear 88.32 1.48 58.99 1.51
bicubic 88.06 1.55 60.58 1.65
biquadratic 88.19 1.54 59.83 1.63
Cubic spline 84.71 1.41 60.21 1.61
Contour approximation: Ramer—-Douglas—Peucker (RDP)
bilinear 89.34 2.06 69.10 2.02
bicubic 83.67 2.02 69.10 1.95
biquadratic 86.00 2.01 69.58 1.93
Cubic spline 87.30 2.02 68.87 1.94

The results presented in Table 5 indicate that different interpolation methods have similar impacts on the
quality of the enlarged contours. Bilinear method, without additional techniques, exhibited the highest overlap
rate of 90.42% and a relatively low mean distance of 1.57 px at half the original contour, demonstrating good
structural preservation. The cubic spline, although showing a slightly lower overlap of 88.32%, achieved the
lowest mean distance of 1.49 px, indicating greater accuracy in contour reconstruction. With node removal,
all methods consistently reduced distances, with cubic spline reaching 1.41 px, while bilinear maintained
a good overlap of 88.32%. Under the contour approximation condition, overlap ranged from 83.67% to
89.34%, with mean distances slightly above 2.00 px.

For 1/4 of the original contour resolution, a more significant loss of detail was observed, with overlaps
dropping to between 62% and 64% and mean distances around 1.65 px. This indicates that, although
interpolation still preserves the contour structure, reducing to 1/4 resolution results in greater information
loss, making this resolution less suitable in terms of accuracy, especially when compared to the 1/2 resolution,
which maintains a more advantageous balance between quality and performance.

Conclusion

Medical image processing, particularly in mammography analysis, has proven crucial for effective diagnosis.
Tests conducted demonstrated that reducing image resolution can significantly optimize processing time,
especially when reduced to half the original resolution, where contour extraction time dropped to 9.17
seconds, corresponding to only 4.22% of the original time, a reduction of approximately 95.78%, while
preserving contour quality.

At 1/4 resolution, extraction time was even shorter, 0.58 seconds, equivalent to just 0.27% of the original
time, or a reduction of 99.73%. However, this sharp decrease resulted in significant information loss, with
noticeable differences in contour areas.

The evaluated interpolation methods, particularly bilinear and Cubic Spline, demonstrated distinct perfor-
mance, with the former more effective in maintaining overlap rates, while the latter excelled in achieving
lower mean distances to the original points.
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Detail recovery techniques, such as node removal and the Ramer—Douglas—Peucker algorithm, proved
valuable in preserving contour quality, especially at lower resolutions. Thus, this study reinforces the
importance of balancing performance and quality in contour extraction, highlighting that while resolution
reduction can accelerate processing, it must be carefully considered to avoid compromising diagnostic
effectiveness.

Implementing interpolation functionalities in the ContExt software can significantly contribute to advance-
ments in mammography image analysis, enabling faster and more accurate diagnoses with a positive impact
on clinical practice.

Information on the Software Developed

The software used in the analyses of this study is registered with the Brazilian National Institute of Industrial
Property (INPI) under the Certificate of Computer Program Registration, Process No. BR512025005492-0,
which provides legal protection for the source code and certifies its authorship. In addition, the ContExt
software is open-source and available on GitHub under the GNU General Public License v3.0, allowing
modification, copying, and redistribution. The repository includes executables and installation instructions
for the required libraries. GitHub also enables users to report issues, ask questions, suggest improvements,
and propose new functionalities (ContExt, 2024).
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