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ABSTRACT
This paper applies the stability theory of discrete systems to a predator–prey model with a specific structure,formulated directly in discrete time. This approach offers didactic and computational advantages for modelingecological systems with non-overlapping generations, contrasting with methods that discretize continuousmodels. This direct formulation captures the inherently discrete nature of ecological monitoring and non-overlapping generations, while presenting particular analytical challenges. Through linearization and spectralanalysis, we obtain explicit stability conditions for the system’s three equilibria: total extinction, which isalways unstable; predator exclusion; and coexistence, whose local behaviors depend on conditions amongbiotic parameters. The results provide practical criteria for predicting population persistence, offering afoundation for applied studies in control and conservation.
keywords Lotka-Volterra, mathematical modeling, population dynamics, stability of discrete systems
RESUMO
Este trabalho aplica a teoria de estabilidade de sistemas discretos a um modelo predador-presa com estruturaespecífica, formulado diretamente em tempo discreto. Esta abordagem oferece vantagens didáticas e computa-cionais para a modelagem de sistemas ecológicos com gerações não sobrepostas, contrastando com métodosque discretizam modelos contínuos. Esta formulação direta captura a natureza inerentemente discreta domonitoramento ecológico e de gerações não sobrepostas, ao mesmo tempo que apresenta desafios analíticosparticulares. Por meio de linearização e análise espectral, obtemos condições explícitas de estabilidade paraos três equilíbrios do sistema: extinção total, que é sempre instável; exclusão de predadores e coexistência,cujos comportamentos locais dependem de condições entre os parâmetros bióticos. Os resultados fornecemcritérios práticos para prever a persistência populacional, oferecendo uma base para estudos aplicados emcontrole e conservação.
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Introduction
In predator-prey model studies, a pertinent question is: how can we translate the mathematical properties
of these equations, often elegant and continuous, into practical answers for ecologists dealing with limited
data? This work applies discrete systems stability theory to analyze a predator-prey model formulated
directly in discrete time. This approach offers didactic and computational advantages while providing a more
natural framework for systems with non-overlapping generations and ecological monitoring at fixed intervals,
contrasting with common approaches that discretize continuous models. This sensitivity to discretization is
well documented in recent studies, where numerical step size and parameter values may induce qualitative
changes in the system dynamics (Kekulthotuwage Don et al., 2023).
This study stems from the interest in deepening theoretical aspects and applications of discrete models

in population ecology; this approach involves the qualitative study of difference equations (Diniz, 2011).
Although ecological processes occur in continuous time, practical research in population dynamics often
deals with discrete data: seasonal censuses, annual monitoring, or non-overlapping generations. This dis-
crete modeling has historical roots: the logistic equation of Verhulst (1838), proposed as a counterpoint
to the unlimited growth of Malthus (1826), was later popularized by May (1976) in its discrete ver-
sion, which revealed its potential to model complex behaviors such as bifurcations and chaos in simple
systems.
Contemporary studies have significantly expanded this field: Braverman and Kinzebulatov (2006)

established rigorous stability criteria for perturbed Ricker discrete models, while Seno (2008) demonstrates
how management strategies can lead to counterintuitive effects in discrete population dynamics.
These advances have not only consolidated the theory of one-dimensional systems, but have also paved the
way for the analysis of more complex interactions. More recent approaches have also investigated stability
in Lotka–Volterra systems from global and structural perspectives, including the use of invasion graphs and
geometric methods (Almaraz et al., 2024).
Additionally, discrete predator–prey models incorporating non-linear functional responses and semi-

discretization techniques have been studied in connection with stability and bifurcation phenomena (Lv
& Li, 2024). In the national context, Luiz et al. (2022) investigate a predator–prey model formulated as
a system of partial differential equations of Telegraph type and analyze the stability and convergence of
finite-difference discretization schemes. Although our model is formulated directly in discrete time, this
work is included to illustrate how discretization of continuous predator–prey systems may affect stability
properties and numerical behavior.
In this context, discrete versions of the Lotka-Volterra model emerge as powerful tools for capturing

predator-prey dynamics in systems with discrete temporal observations (Din, 2013; Khaliq et al., 2022).
While various discrete formulations exist in the literature, it is crucial to distinguish the approach adopted
here. Previous works, such as Din (2013), often investigate models incorporating logistic growth terms for
both predator and prey populations.
In contrast, this work adopts a distinct conceptual framework. For the prey, we use the classical form of

the discrete logistic equation, as presented by Smith in Fisher et al. (1979), suitable for populations with
non-overlapping generations. For the predators, we assume a simpler growth model, without a logistic
term, where the dynamics are governed essentially by the intrinsic mortality rate and predation success.
This choice reflects ecological scenarios where predators, being typically less abundant and more mobile, do
not experience strong enough intraspecific competition to impose an explicit carrying capacity in the short
term.
Thus, the discrete Lotka-Volterra model we study here serves as a tool to analyze observable scenarios in

the interaction of two species: xn (prey) with logistic growth and yn (predator):xn+1 = xn

[
1 + r

(
1− xn

K

)]
− bxnyn,

yn+1 = (1− c)yn + dxnyn,

(1)

where r is the prey growth rate,K is the carrying capacity, b and d are species interaction parameters, and c
is the predator decay rate.
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All biotic parameters are strictly positive, and in the absence of predators (yn = 0), the system of equa-
tions (1) reduces to the discrete logistic model presented by Maynard Smith in 1968, applied to populations
with non-overlapping generations Fisher et al. (1979).
Figure 1 shows the temporal evolution of these populations, obtained by numerical simulation of the

discrete-time system (1). The simulation was performed by directly iterating the system’s equations with
initial conditions x0 = 100 and y0 = 6. The parameter values r = 1.4, b = 0.01, c = 0.05, and d = 0.001

were selected to satisfy the coexistence equilibrium conditions derived in this work, and the simulation was
run over 200 iterations.
Figure 1 - Oscillations of the populations xn and yn in the predator-prey system (1).

The notion of equilibrium state is fundamental to the study of discrete systems dynamics. Across various
fields such as biology, economics, physics, and engineering, it is often desirable that all states or solutions of
a discrete system converge to an equilibrium state. This behavior lies at the heart of stability theory, a field of
great importance to scientists and engineers. In this context, a system is considered stable if, when subjected
to a small change in its initial conditions, it does not deviate indefinitely but rather maintains or returns to
predictable behavior.
The objective is to establish conditions among the biotic parameters that imply stability of the equilibria

for system of equation (1), which are identified as:
- Total extinction (E1),- Predator extinction (E2),- Coexistence (E3).
A systematic theoretical foundation is then established to support future applied investigations. The main

contributions are as follows:
• A self-contained stability analysis: We apply classical theory to obtain explicit stability conditions for
the three equilibria in the discrete-time Lotka-Volterra model given by the system of equations (1).

• Analysis of coexistence: We provide stability results for the coexistence equilibrium (E3) using thetrace-determinant method, revealing its parametric sensitivity.
• A bridge between theory and application: The primary value of this work lies in organizing these
mathematical results, establishing a foundation for future research in control, conservation, and numeri-
cal simulation for system of equation (1).

The results, obtained via linearization and spectral analysis of the Jacobian matrix, provide a mathemat-
ical methodology for interpreting dynamics observed in real systems with discrete sampling. This is the
first step for future applications in control and management. In summary, to analyze the stability of the
discrete Lotka-Volterra model, equation (1), we adopt a three-step approach: identification of the equilibria,
linearization of the system around these points, and application of stability criteria based on the eigenvalues of
the Jacobian matrix. This strategy is typical for dynamical systems Saber (2007) and Krabs and Pickl (2010).
The results reveal a subtle picture: while the equilibrium E1 is unconditionally unstable, the equilibria E2and E3 require fine adjustments between growth and interaction to guarantee stability.
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Materials and methods
In the study of stability for nonlinear discrete systems, a common approach is the linearization of the system
around equilibrium points. This method involves approximating the nonlinear equations by linear equations,
which simplifies the analysis of the system’s local behavior. Thus, stability analysis through linearization
becomes an essential tool for understanding the behavior of nonlinear systems and evaluating their ability to
return to an equilibrium state.
The theoretical foundation that follows, necessary for the local stability analysis, is primarily based on the

works of Krabs and Pickl (2010) and Saber (2005, 2007). The definitions and theorems have been adapted in
notation and scope to better suit the objectives of this research, particularly for the analysis of system (1).
The following definitions and theorems consist of classical results from discrete dynamical systems theory,
reformulated in a notation that better suits the context and objectives of the present work.
Local stability and linearization

To analyze the local stability of the system, we first recall key mathematical concepts and formal definitions
that will be used throughout work, in which a basic and standard concept in difference equations theory is
introduced, for which equivalent formulations can be found in the introductory chapters of Saber (2005, 2007),
as well as a classical concept adapted from Saber (2005). Moreover, the linearized system is formalized
following the standard procedure exemplified in Saber (2005, 2007), and the classical concept of a saddle
point in continuous systems is adapted to discrete systems, following the intuition established in Saber (2007)
for hyperbolic points.
Furthermore, we state a theorem essential for the analysis of stability; for the complete proofs of the

constituent results, see Theorem 1.5 and its corollary in Krabs and Pickl (2010), pp. 47, 49.
Definition 1 (Equilibrium Point). An element E in the domain of a function f ∈ C1 (continuously differen-
tiable on an open set) is called an equilibrium point or state for the system xn+1 = f(xn) if

E = f(E). (2)
Equation (2) states that E is a fixed point of the function f . Thus, an element E = (x∗, y∗) ∈ R2 is an
equilibrium point for system of equations (1) if, x∗

(
r
(
1− x∗

K

)
− by∗

)
= 0,

y∗ (−c+ dx∗) = 0.
(3)

By solving system of equations (3), we identify the equilibria:
- Total extinction: E1 = (0, 0).
- Predator extinction: E2 = (K, 0),
- Coexistence: E3 =

(
c
d ,

r
bK

(
K − c

d

)) withK > c
d .

Being compatible with biological hypotheses, we consider positive equilibria.
Local Stability means that, if we take an initial value (x0, y0) sufficiently close to E = (x∗, y∗), the
subsequent iterates (xn, yn) will remain close to (x∗, y∗).
Definition 2. Let E be an equilibrium point of the system xn+1 = f(xn).
1. E is called locally stable if, given ε > 0, there exists δ = δ(ε) > 0 such that if ||x0 − E|| < δ then

||xn − E|| < ε for all , ∀n ∈ N.
2. E is called unstable if it is not stable.
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3. A locally stable equilibrium E is called asymptotically stable if there exists η > 0 such that if
||x0 − E|| < η then lim

n→∞
||xn − E|| = 0.

To analyze the local stability of nonlinear systems of equations (1), it is appropriate to consider linearization
around equilibrium points, which simplifies the analysis by approximating nonlinear equations with linear
equations. This technique is essential for understanding the system’s local behavior and its ability to return
to a predictable state.
Using vector notation, the system of equations (1) can be written as

(xn+1, yn+1) = (f1(xn, yn), f2(xn, yn)) , (4)
as shown in equation (4), where

f1(x, y) = x
[
1 + r

(
1− x

K

)]
− bxy and f2(x, y) = (1− c)y + dxy. (5)

These component functions, defined in (5), capture the prey and predator dynamics, respectively. Thus, the
Jacobian matrix of the vector field f(x, y) is defined as

Jf (x, y) =

 ∂f1
∂x (x, y) ∂f1

∂y (x, y)

∂f2
∂x (x, y) ∂f2

∂y (x, y)

 . (6)
The Jacobian matrix (6) is central to our stability analysis. Next, we define the linearized system.
Definition 3 (Linearized System). Let (x∗, y∗) be an equilibrium of system (1). The Linearized System
around this equilibrium is defined by the following linear system:xn+1 = a11xn + a12yn

yn+1 = a21xn + a22yn

(7)

where [aij ]2×2 = Jf (x
∗, y∗).

If (x∗, y∗) is an equilibrium point under the conditions of Definition 3, and denoting byXn = (xn, yn),
J = [aij ]2×2, we can rewrite the Linearized System as

Xn+1 = JXn, (8)
where

J =

1 + r(1− 2x∗

K )− by∗ −bx∗

dy∗ 1− c+ dx∗

 . (9)
The local stability of an equilibrium can be determined by analyzing the linearized system. The Theorem 1

provides a criterion based on the eigenvalues of the Jacobian matrix (9).
Theorem 1 (Spectral Criterion for Local Stability). LetX be an open subset of Rk and x∗ ∈ X a fixed point

of a function f : X → X , with f ∈ C1, and let Jf (x∗) be the Jacobian matrix of f evaluated at x∗. Denote

by ϱ(Jf (x∗)) the spectral radius of Jf (x∗), i.e., the largest modulus of the eigenvalues of Jf (x∗). Then, the

following statements hold:

a) (Asymptotic Stability) If ϱ(Jf (x∗)) < 1, and xn = fn(x0), then lim
n→∞

||xn − x∗|| = 0. This establishes

an asymptotically stable equilibrium.

b) (Source-Type Instability) If Jf (x∗) is invertible, xn = fn(x0), and every eigenvalue of Jf (x∗) has

modulus greater than 1, then there exists δ > 0 such that if ||fk(x0)− x∗|| < δ for 0 ≤ k ≤ n− 1,

then lim
n→∞

||xn − x∗|| = +∞. This establishes an unstable equilibrium point of source type.
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Theorem 1 is a restatement of the classical result from Krabs and Pickl (2010). This approach is more
natural for discrete systems in Rk, and is directly applicable to ecological contexts where the behavior of
iterates xn = fn(x0) provides clear dynamic interpretation regarding equilibria.
Definition 4 (Saddle Point). If J(E) has eigenvalues λ1, λ2 with |λ1| < 1 < |λ2|, then E is an unstable
equilibrium of Saddle Point type.
This definition is consistent with the previous criteria based on spectral radius. Indeed, it suffices for

a single eigenvalue with modulus greater than 1 to make the equilibrium point unstable, even if the other
eigenvalue lies within the unit disk. The saddle point case precisely illustrates this situation: the presence
of a dominant eigenvalue |λ2| > 1 guarantees local instability of the equilibrium. A broader theoretical
justification can be provided by the Hartman-Grobman Theorem, which in the context of discrete systems
ensures the validity of linear analysis around hyperbolic points of nonlinear systems Saber (2007).
Results and discussion
With the theoretical foundation established, we now turn to the study of the equilibrium points’ behavior in the
discrete Lotka-Volterra system. An equilibrium point E = (x∗, y∗) of system (1) is, by definition, a solution
of system (3). Next, we will analyze each of these points to better understand their local characteristics.
We emphasize that our analysis will be conducted from the perspective of hyperbolic equilibrium points,

that is, those for which the eigenvalues of the associated Jacobian satisfy |λi| ≠ 1. This restriction allows us
to employ classical local stability criteria, since non-hyperbolic cases require more in-depth study.
Trivial equilibrium

The equilibrium E1 = (0, 0) corresponds to the scenario of complete extinction, where both populations are
absent. The Jacobian matrix, equation (9), at this point takes a simple diagonal form:

J∗
1 =

1 + r 0

0 1− c

 (10)
whose eigenvalues are λ1 = 1 + r and λ2 = 1− c.
Since r > 0 by biological hypothesis, it follows that |λ1| = 1 + r > 1. This condition, as previously

explained, already allows us to conclude that the equilibrium E1 is unstable, regardless of the predatormortality rate c. The nature of this instability depends on the behavior of λ2, that is, on the parameter c. Thus,the instability can be classified according to two criteria:
1. When c > 2: Both eigenvalues of the Jacobian matrix, equation (10), have modulus greater than one,
characterizing E1 as an unstable source according to item b) of Theorem 1.

2. When 0 < c < 2: We have |1 − c| < 1, thus |λ2| < 1 < |λ1| reveals a saddle point, followingDefinition 4.

Predator extinction equilibrium

This equilibrium corresponds to prey survival at their carrying capacityK, with predator extinction. The
Jacobian matrix, equation (9), at E2 = (K, 0) is upper triangular:

J∗
2 =

1− r −bK

0 1− (c− dK)

 (11)
whose eigenvalues are λ1 = 1− r and λ2 = 1− (c− dK).
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Note that in this case, the eigenvalues of the Jacobian matrix, equation (11) depend on a more complex
interaction between the model parameters. Beyond r and c, they explicitly involve b, d and the carrying
capacityK, making the analysis more sensitive to system variations. This richer parametric structure requires
careful examination of possible combinations influencing the local stability of equilibrium E2.Depending on these parameter combinations, three types of local behavior can occur: Asymptotic stability,
Source-type instability, and Saddle point.
Asymptotic stability

Applying item (a) of Theorem 1 we obtain that E2 is an asymptotically stable equilibrium if,
0 < r < 2 and dK < c < 2 + dK.

From a biological perspective, this means the populations remain stable at the point E2 = (K, 0) when
the prey growth rate r is moderate and predators are ineffective at invading the system. That is, the predator
mortality rate exceeds the benefits gained from predation at maximum prey density. Note also that the
carrying capacity lies in a narrow intervalK ∈

(
c−2
d , c

d

).
Figure 2 illustrates the asymptotic stability at the predator-free equilibrium E2 = (K, 0). To satisfy the

stability conditions for E2 established in the analytical section (0 < r < 2 and dK < c < 2 + dK), a
different parameter set (r = 1.2, b = 0.015, c = 1.45, d = 0.01, K = 120) was used. The results were
obtained through numerical simulation of system of equations (1), with parameters selected to meet these
specific analytical conditions.
Figure 2 - Asymptotic stability at E2 = (120, 0).

Figure 2 shows that, as Trajectories 1-4 approach sufficiently close to E2, they begin to converge towardthe equilibrium.
Source-type instability

Considering item (b) of Theorem 1 we obtain that E2 is a source-type unstable equilibrium if,
r > 2 and (c− dK < 0 or c− dK > 2).

Let us consider two relevant scenarios:
. r > 2 and c < dK: Note that λ1 < −1 and λ2 > 1. The system trajectory diverges from the
equilibrium point.

Semin., Ciênc. Exatas Tecnol., Londrina, 2025, v. 46, e53574 7
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. r > 2 and c > 2 + dK: Observe that in this case λ1, λ2 < −1, and since yn ≈ λn
2y0, the predatorpopulation trajectory alternates between positive and negative values with increasing amplitudes. While

this is mathematically valid behavior within the linearized system context, the ecological interpretation
encounters issues due to positivity violation.

In Figure 3, three systems were configured to demonstrate different types of local instabilities at
E2 = (120, 0), using the parameter values K = 120, b = 0.015, and d = 0.01, and considering
250 iterations:
(i) The unstable source (red trajectory), for which r > 2 and c < dK (r = 2.2, c = 1.45, d = 0.05);
(ii) Predator invasion (blue trajectory), with r < 2 and c < dK (r = 1.2, c = 1.45, d = 0.02);
(iii) Prey overshoot (green trajectory), for which r > 2 and c > dK (r = 2.2, c = 1.45, d = 0.01).
Figure 3 - Three systems configured to illustrate different local instabilities at E2 = (120, 0).

The source-type instability configuration is represented by the red Trajectory 1 in Figure 3, where we
observe the progressive divergence from the equilibrium point E2 = (K, 0).
Saddle Point

We verify that this type of instability manifests in two distinct regimes:
. When r < 2 and c < dK, we have |λ1| < 1 < |λ2|. In this case, we observe moderate prey growthwhile the predator population increases, characterizing species invasion into the system. This behavior
is illustrated by the blue Trajectory 2 in Figure 3.

. When r > 2 and dK < c < 2 + dK, |λ2| < 1 < |λ1|. In this case, we find prey growth exceedingK,causing abrupt variations at each iteration due to the model’s nonlinear structure. The predator density,
meanwhile, remains near equilibrium without growth tendency, due to the condition c > dK. See the
green Trajectory 4 in Figure 3 (iii).

Figure 3 illustrates the trajectories of three different systems, obtained through numerical simulation with
parameters selected for each instability regime. Each trajectory is initiated near the equilibriumE2 = (120, 0)

and configured to represent the instability regimes discussed previously. The source-type instability is
represented by the red Trajectory 1, which shows progressive divergence from the equilibrium point E2. InTrajectory 2 (blue), we visualize the predator invasion scenario, where the system begins nearE2 and evolves
8 Semin., Ciênc. Exatas Tecnol., Londrina, 2025, v. 46, e53574
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away from this equilibrium, allowing predator population growth. Finally, Trajectory 3 (green) displays the
case where prey exceedK, with predators remaining extinct (or near-zero) while prey density shows abrupt
variations above and belowK at each iteration.
Coexistence equilibrium

This equilibrium E3 = (x∗, y∗) corresponds to the coexistence of both species in the same environment,
with positive populations of prey and predators. To determine its coordinates, we start from system of
equations (3), assuming x∗ > 0 and y∗ > 0, which allows us to rewrite it as:

0 = r

(
1− x∗

K

)
− by∗

0 = dx∗ − c

(12)

The second equation of system, equation (12), directly yields

x∗ =
c

d
.

Substituting this value into the first equation of system, equation (12), we obtain

y∗ =
r

Kb

(
K − c

d

)
.

Thus, the coexistence equilibrium point is given by

E3 =
( c

d
,
r

Kb

(
K − c

d

))
, K >

c

d
.

Note that E3 will have both coordinates positive wheneverKd− c > 0, guaranteeing biologically viable
populations. Proceeding with the local analysis, the Jacobian matrix, equation (9) evaluated at E3 = (x∗, y∗)

takes the form:

J∗
3 =

 1− rc

dK
−bc

d
rd

bK

(
K − c

d

)
1

 (13)

Although the eigenvalues of the Jacobian matrix, equation (13), can be obtained analytically, the resulting
expression, given by

λ =
2− rc

dK
±
√(

2− rc

dK

)2

− 4
(
1− rc

dK
(1 + c− dK)

)
2

. (14)

is algebraically intricate and not very enlightening. We therefore reserve equation (14) for the analysis of
the specific Case II, rc

dK
= 2.

To further analyze the coexistence equilibrium E3, we now employ the trace-determinant plane approach,although this classical stability criterion appears in various texts under different presentations, we adopt here
the formulation in Saber (2007) for its particular convenience in our analysis of the coexistence equilibriumE3.The trace-determinant criterion proves especially suitable for establishing explicit stability conditions in
terms of the trace and determinant of the Jacobian matrix.
To support the previous criteria, we now present a classical result for matrices A = [aij ]2×2, whichestablishes conditions on the trace trA = a11 + a22 and determinant detA = a11a22 − a12a21 to guaranteethat ϱ(A) < 1. This result, together with Theorem 1, will be instrumental for analyzing the stability of the

coexistence equilibrium E3. For a complete proof and a detailed development of this methodology, see(Saber, 2007), Chapter 4, Theorem 4.4, pages 200–201.
Semin., Ciênc. Exatas Tecnol., Londrina, 2025, v. 46, e53574 9
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Theorem 2. (Stability in the Trace-Determinant Plane) LetA = (aij) be a 2× 2 matrix. Then the spectral

radius ϱ(A) < 1 if and only if

|trA| − 1 < detA < 1. (15)
We apply this result to our problem withA = J∗

3 to identify relationships between the parameters r, b, c, dandK that satisfy inequality (15). For this purpose, we observe that:
|trJ∗

3| − 1 < detJ∗
3 < 1 (16)

Inequality (16) expands to the following explicit form:
∣∣∣2− rc

dK

∣∣∣ < 2− rc

dK
(1 + c− dK) < 2. (17)

Furthermore, the modulus function in inequality (17) can be expanded as

∣∣∣2− rc

dK

∣∣∣ =


2− rc

dK
, if rc

dK
< 2;

0 , if rc

dK
= 2

rc

dK
− 2 , if rc

dK
> 2.

(18)

To resolve inequality (17), we use the piecewise expansion of the modulus function (18) to break the
problem into cases. This enables a straightforward application of Theorem 2 to each parameter regime.

Case I: 0 <
rc

dK
< 2

In this case, inequality (17) is written as:
2− rc

dK
< 2− rc

dK
(1 + c− dK) < 2 (19)

Developing the expression (19), we obtain

− rc

dK
< − rc

dK
(1 + c− dK) < 0

0 < 1 + c− dK < 1

c

d
< K <

c+ 1

d
.

Applying Theorems 1 and 2, we conclude that the equilibrium E3 is asymptotically stable when
K ∈

(
c

d
,
c+ 1

d

)
.

The conditionK ∈
(
c

d
,
c+ 1

d

)
is equivalent to dK − 1 < c < dK, and in biological terms, this means

the mortality rate c cannot be excessively low (which would lead to instability) nor excessively high (which
would prevent predator persistence). This result highlights the sensitivity of the system’s stability to small
variations in mortality rate, particularly relative to maximum predation (dK).
To illustrate the local asymptotic stability of E3, we return to the parameter set used in Figure 1 (r = 1.4,

b = 0.01, c = 0.05, d = 0.001), which satisfies the asymptotic stability conditions established for E3.Figure 4 shows numerical simulations of system of equation (1), approach to this equilibrium from three
different initial conditions: Trajectory 1 (red) starts near the trivial equilibrium E1; Trajectory 2 (blue) startsnear the predator-free equilibrium E2; and Trajectory 3 (purple) starts near the coexistence equilibrium E3.Figure 4 illustrates how the dynamics approach equilibrium, using the parameter values r = 1.4, b = 0.01,
c = 0.05, and d = 0.001, showing 250 and 1000 iterations, respectively.
10 Semin., Ciênc. Exatas Tecnol., Londrina, 2025, v. 46, e53574
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Figure 4 - Asymptotically stable at E3, with the same parameters as in Figure 1: (a) 250 iterations and (b)1000 iterations.
(a)

(b)

Case II:
rc

dK
= 2

Since we have an explicit value, we will use a combination of two tools: eigenvalue computation from
(14) and application of Theorem 1. Thus, the eigenvalues are:

λ1,2 = ±
√
1 + 2c− 2dK. (20)

Stability requires |λ1,2| < 1 (Theorem 1), which is equivalent to |λ1,2|2 < 1. To eliminate the square
root in equation (20), we obtain:

|λ1,2|2 = |1 + 2c− 2dK|. (21)
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Substituting equation (21) into the stability criterion |λ1,2|2 < 1 gives:

|λ1,2|2 < 1 ⇐⇒ |1 + 2c− 2dK| < 1

⇐⇒ −1 < 1 + 2c− 2dK < 1

⇐⇒ 0 < dK − c < 1

If (dK − c) ∈ (0, 1) ⇒ |λ|2 < 1 ⇒ |λ| < 1.
Note that this condition mirrors Case I, highlighting the same ecological constraints.

Remark: For rc

dK
> 2, algebraic manipulations do not preserve the equivalence of inequality (17), yielding

only partial implications. Investigating this interval requires different methods, whose analysis will be
considered in future work.
The local stability analysis revealed explicit conditions for each system. Table 1 summarizes these

conditions as functions of biological parameters, highlighting the associated equilibrium regimes.
Table 1 - Classification of the system’s equilibria according to parameter values.

Equilibrium Parameters Classification

E1 = (0, 0)
c > 2 Unstable source

0 < c < 2 Unstable saddle point

E2 = (K, 0)

0 < r < 2
dK < c < 2 + dK Asymptotically Stable

c < dK or c > 2 + dK Unstable saddle point
r > 2

dK < c < 2 + dK

c < dK or c > 2 + dK Unstable source

E3 =
( c

d
,

r

Kb

(
K − c

d

)) 0 <
rc

dK
< 2

K ∈
(
c

d
,
c+ 1

d

)
Asymptotically Stable

rc

dK
= 2

Conclusions

This work has presented a local stability analysis for a system of the Lotka-Volterra type formulated directly
in discrete time. The main contribution lies in obtaining explicit and interpretable stability conditions for
each of the three biologically relevant equilibria, based on linearization and spectral analysis of the Jacobian
matrix.
Our stability analysis reveals three distinct dynamical regimes governed by the system’s biological param-

eters. This classification enables comparative identification of critical intervals for coexistence, exclusion, or
population collapse, serving as a practical reference for both theoretical interpretations and future applications
in simulations or management. The analysis establishes that:
• The total extinction equilibrium (E1) is always unstable. This result is biologically consistent: sincethe prey growth rate r > 0 and predators are near zero, any small initial prey population will inevitably
grow, leading the system away from the trivial equilibrium.

• The asymptotic stability of the predator-free equilibrium (E2) requires the predator mortality rate (c) toexceed the benefit gained from predation when prey are at carrying capacity (dK) - a condition that
12 Semin., Ciênc. Exatas Tecnol., Londrina, 2025, v. 46, e53574
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validates the model, as ecologically predators are not expected to invade a system where mortality
exceeds the gains from prey availability. Simultaneously, it requires the prey growth rate to remain
between 0 and 2, reaffirming the stability boundary established by May (1976) for the discrete logistic
equation that models prey growth.

• The asymptotic stability of coexistence (E3) reveals a high sensitivity to parameter variations, oc-curring only within narrow ranges of the carrying capacityK, determined by the predator mortality-
to-regeneration ratio ( cd < K < (c+1)

d ). The requirement for fine parameter tuning (0 < rc
dK ≤ 2)

reinforces that small variations can destabilize the coexistence equilibrium, leading to predator extinc-
tion or population collapse. Furthermore, parameter rearrangement reveals that dK must lie within
the interval (c, c + 1) - a fixed interval of width 1. This implies that the net benefit from predation
(dK) must be quite close to the mortality rate (c) for coexistence to be stable, demonstrating significant
parametric sensitivity.

Although the parameter b, representing the predation rate, does not directly affect local stability criteria, it
determines the predator density at the coexistence equilibrium. Thus, its variation strongly influences the
configuration of the coexistence equilibrium or ecological viability.
Beyond the theoretical results, this work provides a pedagogical synthesis and application of classical

stability methods for discrete systems. This unified framework, which includes linearization, spectral analysis,
and the trace-determinant criterion, is computationally efficient as it is developed entirely in discrete time.
The numerical simulations, while challenging to calibrate, were designed not only to visualize the dynamic
regimes but also to show the practical utility of this methodological integration in an ecological context.
This approach, which explicitly bridges analytical results with interpretable dynamics, establishes discrete
modeling as a powerful tool for both education and the analysis of ecosystems with sparse monitoring data,
providing a foundation for future studies on management strategies.
Finally, although the model depicts natural interactions, its transposition to the human realm reveals a

reality difficult to ignore: the same species capable of rapid regeneration and longevity exerts, through its
actions, one of the most intense predatory pressures on the very system that sustains it. Recognizing this
force is not an invitation to resignation, but to active awareness. Models like this not only outline the fragile
contours of stability but also remind us that it endures only when understood and respected.
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