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ABSTRACT
In this article, we present a methodology to solve radiative transfer problems in spherical geometry without
other forms of heat exchange. We use a decomposition method based on the Adomian formulations, together
with a diamond difference scheme and a trapezoidal rule to approximate the integral part of the solution.
The algorithm is simple, highly reproducible, and can be easily adapted to further problems or geometries.
Also, we demonstrate its consistency and showed that using an analytical solution with a trapezoidal rule
improves the order of convergence compared to using the finite difference method. These considerations are
necessary for future applications in more complex cases. The numerical results are compared with some
classical and recent cases in the literature, along with a simplified version of a complete (fully coupled with
heat exchange) case.

keywords radiative transfer, spherical geometry, decomposition method, diamond difference, discrete
ordinates

RESUMO
Neste artigo, apresentamos uma metodologia para resolver problemas de transferência radiativa em geometria
esférica, sem outras formas de troca de calor. Usamos um método de decomposição, baseado nas formulações
de Adomian, além de um esquema de diamond difference e uma regra do trapézio para aproximar a parte
integral da solução. O algoritmo é simples, altamente reproduzível e facilmente pode ser adaptado para
demais problemas ou geometrias. Além disso, demonstramos sua consistência e mostramos que usar uma
solução analítica com uma regra do trapézio melhora a ordem de convergência em relação a utilizar o método
das diferenças finitas. Essas considerações são necessárias para futuras aplicações em casos mais complexos.
Os resultados numéricos são comparados com alguns casos clássicos e recentes da literatura, juntamente
com uma versão simplificada de um caso completo (com total acoplamento à transferência de calor).
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Introduction

Extensive research on the radiative transfer equation in spherical geometry has been developed over the last
decades (Howell et al., 2016; Stamnes et al., 2017). The present discussion considers the radiative transfer
problem in hollow spheres. Solutions found in the literature are typically determined by numerical methods;
see, for instance, Abulwafa (1993), Ladeia et al. (2020), and Sghaier (2013).

There are few recent papers about solving the radiative transfer equation. Xu et al. (2023) used an
approximate technique for remote sensing and Li et al. (2020) used a moment-based method to solve the
non-linear transport equation, but there is little effort in showing numerical analysis like consistency and
convergence.

In this work, we will present a hybrid semi-analytical methodology with a focus on formalism, thus
standing out from other works in the literature that do not present such necessary formalism for iterative,
recursive, and discretization methods. This methodology is characterized by the combination of the methods
of discrete ordinates and diamond difference in the treatment of the angular variable and a decomposition
method based on Adomian (1988) to solve the resulting system of ordinary differential equations.

Many researchers have been using the decomposition technique for many fields of science and technology,
for example, Allahviranloo (2005), Haq et al. (2018), and Wazwaza and El-Sayed (2001). For instance,
in transport theory, Ladeia et al. (2019) used the modified decomposition method for nonlinear radiative
conductive transfer problem in solid sphere and Segatto et al. (2017) solved the multi-group neutron transport
equation in slab geometry using a combination of the Adomian decomposition method and the discrete
ordinates technique.

In the present discussion, we demonstrate the consistency of the solution obtained from the recursive
scheme. Also, we show the order of convergence of part of our methodology and compare with the finite
difference method. Furthermore, we report cases with numerical solutions that are compared with data in the
literature (Abulwafa, 1993; Ladeia et al., 2020). Last, we make concluding remarks about the achievements
in developing this research together with future perspectives.

Materials and methods

We begin considering the radiative transfer equation in spherical geometry for hollow spheres (Ozisik, 1973),

µ

r2
∂

∂r

[
r2I(r, µ)

]
+

1

r

∂

∂µ

[ (
1− µ2

)
I(r, µ)

]
+ I(r, µ)

=
(
1− ω (r)

)
Ib (T ) +

ω (r)

2

∫ 1

−1

p (µ, µ′) I (r, µ′) dµ′ , (1)

where R1 ≤ r ≤ R2 is the optical space variable and −1 ≤ µ ≤ 1 is the direction cosine variable. R1 and
R2 are the inner and outer spherical surfaces radii, respectively. Further, I(r, µ) is the radiation intensity,
Ib (T ) is the black body radiation for temperature T , ω is the single scattering albedo and p (µ, µ′) is the
phase function. According to Chandrasekhar (1950), p (µ, µ′) may be expressed in terms of Legendre
polynomials,

p (µ, µ′) =

L∑
ℓ=0

βℓPℓ (µ)Pℓ (µ
′) , (2)

where βℓ are the expansion coefficients of the Legendre polynomials and Pℓ is the ℓ-th Legendre polynomial.
Here, L refers to the degree of anisotropy. The boundary conditions of equation (1) are

I(R1, µ) = ϵ1Ib1(T )− 2ρ1

∫ 0

−1

I (r, µ′)µ′ dµ′, (3)
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for 0 < µ ≤ 1 and

I(R2, µ) = ϵ2Ib2(T ) + 2ρ2

∫ 1

0

I (r, µ′)µ′ dµ′, (4)

for −1 ≤ µ < 0, where ϵ1 and ϵ2 are emissivities of the inner and outer surfaces, respectively. In the same
way, ρ1 and ρ2 are the diffusive reflectivities for the inner and outer surfaces, respectively. Ib1(T ) and Ib2(T )
are the black body radiations for inner and outer surfaces in temperature T , respectively. In this paper, we
consider standard units (I , Ib, Ib1 and Ib2 are in in W cm−2 sr−1, p is in sr−1, and the other parameters are
adimensional) and, for comparison purposes, we show only numerical values of the parameters.

To obtain a solution, we use the discrete ordinates diamond difference technique in the angular variable
Im(r) = I(r, µm) (Chandrasekhar, 1950). This technique is based on the angular variable discretization in
an enumerable set of angles or equivalently their direction cosines, and it is often called SM forM angles.
Here, the discretized direction cosines are the discrete ordinates µm form = 1, 2, . . . ,M , and wm are the
weights in a quadrature rule for integrals over [−1, 1]. Using the diamond difference algorithm (Lewis &
Miller, 1984), the discretized derivative term with term with respect to µ writes as[

∂

∂µ

[(
1− µ2

)
I (r, µ)

]]
µ=µm

=
αm+1/2Im+1/2 − αm−1/2Im−1/2

wm
,

where αm±1/2 are the angular differencing coefficients, obtained by the recursion formulas

α1/2 = 0 , (5)
αm+1/2 = αm−1/2 − 2µmwm , (6)
Im+1/2 = 2Im − Im−1/2 , (7)

form = 1, 2, . . . ,M . This generates a recursive set of differential equations, and to start the recursion, I1/2
is required. Here, we define I1/2 (r) = I (r,−1). Expanding both derivatives of equation (1) and evaluating
the whole equation at µ = −1 we get

− d
dr

I1/2 + I1/2 =
(
1− ω (r)

)
Ib (T ) +

ω (r)

2

M∑
m′=1

wm′p (−1, µm′) Im′ , (8)

whose solution starts the recursion in this diamond difference scheme. Then, taking equations (1), (3) and (4),
expanding derivatives with respect to r, using the diamond difference approximation in the derivative terms
with respect to µ, evaluating the equations in µ = µm and using the recursion formula in equation (7) we get

µm
d
dr

Im +
2µm

r
Im +

2αm+1/2

rwm
Im −

αm+1/2 + αm−1/2

rwm
Im−1/2 + Im

=
(
1− ω (r)

)
Ib (T ) +

ω (r)

2

M∑
m′=1

wm′p (µm, µm′) Im′ (9)

form = 1, 2, . . . ,M ,

Im (R1) = ϵ1Ib1(T )− 2ρ1

M/2∑
m′=1

wm′µm′Im′ (R1) (10)

form = M/2 + 1,M/2 + 2, . . . ,M , and

Im (R2) = ϵ2Ib2(T ) + 2ρ2

M∑
m′=M/2+1

wm′µm′Im′ (R2) (11)
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form = 1, 2, . . . ,M/2. Also, only even values are valid choices forM , so there is no integerm such that
µm = 0. Furthermore, without loss of generality, we are are choosing µm and wm to be the abscissas and
weights of aM -th order Gauss-Legendre quadrature rule.

To solve this set of equations from equation (9) to equation (8) we use the decomposition method (Adomian,
1988). To this end, first we write (9) as

d
dr

Im +

(
2

r
+

2αm+1/2

rµmwm
+

1

µm

)
Im =

(
1− ω (r)

)
Ib (T )

µm

+
ω (r)

2µm

M∑
m′=1

wm′p (µm, µm′) Im′ +
αm+1/2 + αm−1/2

rµmwm
Im−1/2 . (12)

Writing equation (12) in implicit form we get

d
dr

Im +

(
2

r
+

2αm+1/2

rµmwm
+

1

µm

)
Im = Ψm (r) ,

where

Ψm (r) =

(
1− ω (r)

)
Ib (T )

µm
+

ω (r)

2µm

M∑
m′=1

wm′p (µm, µm′) Im′ +
αm+1/2 + αm−1/2

rµmwm
Im−1/2 ,

whose solution is

Im (r) = exp

(
−
∫ r

c

(
2

τ
+

2αm+1/2

τµmwm
+

1

µm

)
dτ
)

×
[
Im (c) +

∫ r

c

exp

(∫ τ

c

(
2

η
+

2αm+1/2

ηµmwm
+

1

µm

)
dη
)
Ψm (τ) dτ

]
(13)

where c is an arbitrary point in [R1, R2].

To compute the last integral of equation (13) over τ a recursive scheme a quadrature rule is necessary.
The chosen rule applies over some key values of Im (r) at the abscissas rı, that are the assigned values in a
running code. We conveniently chose the trapezoidal rule, as it does not require any kind of interpolation for
the evaluation of the integral part. Thus, we discretize the interval [R1, R2] in N intervals

∆r =
R2 −R1

N
, (14)

rı = R1 + ı∆r , (15)

for ı = 0, 1, 2, . . . , N . Note that r0 = R1 and rN = R2, and this discretization is made only for evaluation
of the integral.

Depending on the sign of µm, the Iım are sequentially updated for crescent ı (µ > 0) or decrescent ı
(µ < 0), but always for crescentm, according to the diamond difference scheme. Considering this, the r
discretization and the trapezoidal rule for the last integral over τ , we write equations (10), (11) and (13) in
the final form for the diamond difference scheme (Iım = Im (rı) and Ψı

m = Ψm (rı)),

INm = ϵ2Ib2(T ) + 2ρ2

M∑
m′=M/2+1

wm′µm′INm′ (16)

Iım = Bı
m

(
Iı+1
m −Ψı

m

∆r

2

)
−Ψı+1

m

∆r

2
(17)
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where

Bı
m = exp

(∫ rı+1

rı

(
2

r
+

2αm+1/2

rµmwm
+

1

µm

)
dr
)

(18)

form = 1, 2, . . . ,M/2 (µ < 0) and ı = N − 1, N − 2, . . . , 0 (decreasing ı); and

I0m = ϵ1Ib1(T )− 2ρ1

M/2∑
m′=1

wm′µm′I0m′

Iım = Bı
m

(
Iım +Ψı

m

∆r

2

)
+Ψı−1

m

∆r

2
(19)

where

Bı
m = exp

(
−
∫ rı

rı−1

(
2

r
+

2αm+1/2

rµmwm
+

1

µm

)
dr

)
(20)

form = M/2 + 1,M/2 + 2, . . . ,M (µ > 0) and ı = 1, 2, . . . , N (increasing ı). Both in equations (17) and
(19) we compute Ψı

m as

Ψı
m =

(
1− ω (rı)

)
Ib (T )

µm
+

ω (rı)

2µm

M∑
m′=1

wm′p (µm, µm′) Iım′ +
αm+1/2 + αm−1/2

rıµmwm
Iım−1/2 (21)

for ı = 0, 1, . . . , N andm = 1, 2, . . . ,M .

To compute the last term of equation (21) we use equation (7), as it is valid for all r (hence, for all rı),

Iım+1/2 = 2Iım − Iım−1/2 .

Using the same procedures as in equation (17), the discretized equations of Iı1/2 (equations (4) and (8)
with µ = −1) are

IN1/2 = ϵ2Ib2(T ) + 2ρ2

M∑
m′=M/2+1

wm′µm′INm′ ,

Iı1/2 = Bı
1/2

(
Iı+1
1/2 −Ψı

1/2

∆r

2

)
−Ψı+1

1/2

∆r

2
,

where

Bı
1/2 = exp

(
−
∫ rı+1

rı

dr
)

, (22)

Ψı
1/2 = −

(
1− ω (rı)

)
Ib (T )−

ω (rı)

2

M∑
m′=1

wm′p (−1, µm′) Iım′ (23)

for ı = N − 1, N − 2, . . . , 0 (decreasing ı, as µ = −1 < 0).

Although it is possible to solve this linear algebraic system using an iterative method, we chose to
use a decomposition method based on Adomian (1988). It presents a standard algorithm for power-like
non-linearities, which is usual in radiative transfer modeling.

We did not consider non-linearities of any kind in this paper. However we are preparing
to tackle these non-linear problems in the future, hence the choice of a decomposition method.
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This method consists in expanding the unknowns in infinite series,

Iım =

∞∑
ȷ=0

[
Iı
m

]
ȷ
, (24)

Ψı
m =

∞∑
ȷ=0

[
Ψı

m

]
ȷ
, (25)

for m = 1/2, 1, 2, 3, . . . ,M and ı = 0, 1, . . . , N and making a recursive set of equations where the
heterogeneities are considered only when evaluating [Iı

m]0. For computational purposes, we truncate these
series when ȷ reaches some J , when a stop criterion is satisfied.
Substituting equations (24) and (25) in equations (16) to (23) and organizing the terms in a recursive set

of equations, we have [
Ψı

1/2

]
0
= −

(
1− ω (rı)

)
Ib (T ) , (26)[

Ψı
1/2

]
ȷ
= −ω (rı)

2

M∑
m′=1

wm′p (−1, µm′)
[
Iı
m′

]
ȷ−1

, (27)

[
Ψı

m

]
0
=

(
1− ω (rı)

)
Ib (T )

µm
+

ω (rı)

2µm

m−1∑
m′=1

wm′p (µm, µm′)
[
Iı
m′

]
0
+

αm+1/2 + αm−1/2

rıµmwm

[
Iı
m−1/2

]
0
,

(28)

[
Ψı

m

]
ȷ
=

ω (rı)

2µm

(
m−1∑
m′=1

wm′p (µm, µm′)
[
Iı
m′

]
ȷ

+

M∑
m′=m

wm′p (µm, µm′)
[
Iı
m′

]
ȷ−1

)
+

αm+1/2 + αm−1/2

rıµmwm

[
Iı
m−1/2

]
ȷ
, (29)

[
IN
m

]
0
= ϵ2Ib2(T ) , (30)[

IN
m

]
ȷ
= 2ρ2

M∑
m′=M/2+1

wm′µm′

[
IN
m′

]
ȷ−1

, (31)

[
I0
m

]
0
= ϵ1Ib1(T )− 2ρ1

M/2∑
m′=1

wm′µm′

[
I0
m′

]
0
, (32)

[
I0
m

]
ȷ
= −2ρ1

M/2∑
m′=1

wm′µm′

[
I0
m′

]
ȷ
, (33)

[
Iı
m

]
ȷ
= Bı

m

([
Iı+1
m

]
ȷ
−
[
Ψı

m

]
ȷ

∆r

2

)
−
[
Ψı+1

m

]
ȷ

∆r

2
, (34)[

Iı
m

]
ȷ
= Bı

m

([
Iı−1
m

]
ȷ
+
[
Ψı

m

]
ȷ

∆r

2

)
+
[
Ψı−1

m

]
ȷ

∆r

2
, (35)[

Iı
m+1/2

]
ȷ
= 2

[
Iı
m

]
ȷ
−
[
Iı
m−1/2

]
ȷ
. (36)

Equations (26) to (36) are valid for different ranges of ı,m and ȷ. Those ranges can be checked in Table 1.
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Table 1 - Ranges of i,m and j for equations (26)-(36).

Equation Range of i Range ofm Range of j
(26) i = 0, 1, . . . , N m = 1

2 j = 0

(27) i = 0, 1, . . . , N m = 1
2 j = 1, 2, . . . , J

(28) i = 0, 1, . . . , N m = 1, 2, . . . ,M j = 0

(29) i = 0, 1, . . . , N m = 1, 2, . . . ,M j = 1, 2, . . . , J

(30) i = N m = 1
2 , 1, 2, 3, . . . ,

M
2 j = 0

(31) i = N m = 1
2 , 1, 2, 3, . . . ,

M
2 j = 1, 2, . . . , J

(32) i = 0 m = M
2 + 1, M

2 + 2, . . . ,M j = 0

(33) i = 0 m = M
2 + 1, M

2 + 2, . . . ,M j = 1, 2, . . . , J

(34) i = 0, 1, . . . , N − 1 m = 1
2 , 1, 2, 3, . . . ,

M
2 j = 0, 1, . . . , J

(35) i = 1, 2, . . . , N m = M
2 + 1, M

2 + 2, . . . ,M j = 0, 1, . . . , J

(36) i = 0, 1, . . . , N m = 1
2 , 1, 2, 3, . . . ,M j = 0, 1, . . . , J

The steps of this recursive solver are listed below.

A. Input problem and numerical data: ω (r), Ib (r), Ib1 (r), Ib2 (r), βℓ for ℓ = 0, 1, . . . , L, R1, R2, ϵ1, ϵ2,
ρ1, ρ2,M and N .

B. Pre-processing:

i. Compute p (µ, µ′) as in equation (2); ∆r as in equation (14) and then rı for i = 0, 1, . . . , N

as in equation (15); µm and wm for m = 1, 2, . . . ,M using the M -th order Gauss-Legendre
quadrature.

ii. Compute αm±1/2 as in equations (5) and (6) form = 1, 2, . . . ,M .

iii. (Recommended, but unnecessary) Compute and have variables assigned to the coefficients
ω (rı)wmp (−1, µm′) /2, ω (rı)wmp (µm, µm′) /2µm,

(
αm+1/2 + αm−1/2

)
/rıµmwm,

µmwm and ∆r/2 for ı = 0, 1, . . . , N andm,m′ = 1, 2, . . . ,M .

iv. Compute Bı
m for ı = 0, 1, . . . , N and m = 1/2, 1, 2, 3, . . . ,M as in equations (18), (20) and

(22). Note that the Bı
m are computed analitically.

C. First terms. For j = 0,

i. Compute
[
Ψı

1/2

]
0
as in equation (26) for ı = 0, 1, . . . , N .

ii. Compute
[
IN
1/2

]
0
as in equation (30) form = 1/2.

iii. Sequentially, for ı = N − 1, N − 2, . . . , 0, compute
[
Iı
1/2

]
0
as in equation (34) form = 1/2.

vi. Sequentially, form = 1, 2, . . . ,M/2,

a. Compute
[
Ψı

m

]
0
as in equation (28) for ı = 0, 1, . . . , N .

b. Compute
[
IN
m

]
0
as in equation (30).

c. Sequentially, for ı = N − 1, N − 2, . . . , 0, compute
[
Iı
m

]
0
as in equation (34).

d. Compute
[
Iı
m+1/2

]
0
as in equation (36) for ı = 0, 1, . . . , N .

v. Sequentially, form = M/2 + 1,M/2 + 2, . . . ,M ,

a. Compute
[
Ψı

m

]
0
as in equation (28) for ı = 0, 1, . . . , N .

b. Compute
[
I0
m

]
0
as in equation (32).

c. Sequentially, for ı = 1, 2, . . . , N , compute
[
Iı
m

]
0
as in equation (35).

d. Compute
[
Iı
m+1/2

]
0
as in equation (36) for ı = 0, 1, . . . , N .
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D. Other recursions. For ȷ = 1, 2, . . . , J ,

i. Compute
[
Ψı

1/2

]
ȷ
as in equation (27) for ı = 0, 1, . . . , N .

ii. Compute
[
IN
1/2

]
ȷ
as in equation (31) form = 1/2.

iii. Sequentially, for ı = N − 1, N − 2, . . . , 0, compute
[
Iı
1/2

]
ȷ
as in equation (34) form = 1/2.

iv. Sequentially, form = 1, 2, . . . ,M/2,

a. Compute
[
Ψı

m

]
ȷ
as in equation (29) for ı = 0, 1, . . . , N .

b. Compute
[
IN
m

]
ȷ
as in equation (31).

c. Sequentially, for ı = N − 1, N − 2, . . . , 0, compute
[
Iı
m

]
ȷ
as in equation (34).

d. Compute
[
Iı
m+1/2

]
ȷ
as in equation (36) for ı = 0, 1, . . . , N .

v. Sequentially, form = M/2 + 1,M/2 + 2, . . . ,M ,

a. Compute
[
Ψı

m

]
ȷ
as in equation (29) for ı = 0, 1, . . . , N .

b. Compute
[
I0
m

]
ȷ
as in equation (33).

c. Sequentially, for ı = 1, 2, . . . , N , compute
[
Iı
m

]
0
as in equation (35).

d. Compute
[
Iı
m+1/2

]
0
as in equation (36) for ı = 0, 1, . . . , N .

E. Compute an approximation of Iım as in equation (24), adding up to ȷ = J for m = 1, 2, . . . ,M and
ı = 0, 1, . . . , N .

It is relatively simple to show the consistency of the decomposition by making the residual term go to zero
as the number of terms in the sum of equation (24) increases. Upon substituting the decomposition in equation
(24) truncated in the (J + 1)-th term (ȷ = J) in equations (9), (10) and (11) evaluated at (r, µ) = (rı, µm)

for all ı = 0, 1, . . . , N andm = 1, 2, . . . ,M we have an approximation, as the computation of each term in
the series follows equations (26) to (36) make many of them cancel each other out, except for a remaining
quantity we are calling the residual term. The residual terms of every node (rı, µm), denoted as [εım]J , are
computed as

[
εNm
]
J
= −2ρ2

M∑
m′=M/2+1

wm′µm′

[
IN
m′

]
J
, (37)

[εım]J = −∆r

2

(
Bı

m

M∑
m′=m

wm′p (µm, µm′)
[
Iı+1
m′

]
J
+

M∑
m′=m

wm′p (µm, µm′)
[
Iı
m′

]
J

)
, (38)[

ε0m
]
J
= 0 , (39)

[εım]J =
∆r

2

(
Bı

m

M∑
m′=m

wm′p (µm, µm′)
[
Iı−1
m′

]
J
+

M∑
m′=m

wm′p (µm, µm′)
[
Iı
m′

]
J

)
. (40)

Here, equation (37) is valid for m = 1, 2, . . . ,M/2, equation (38) is valid for i = 0, 1, . . . , N − 1 and
m = 1, 2, . . . ,M/2, equation (39) is valid form = M/2 + 1,M/2 + 2, . . . ,M and equation (40) is valid
for i = 1, 2, . . . , N and m = M/2 + 1,M/2 + 2, . . . ,M . This set of equations can be written in matrix
form,

εJ = CIJ , (41)

where εJ is the vector of [εım]J , IJ is the vector of [Iı
m]J andC is the associate matrix. Taking the maximum

norm of equation (41) we get ∥εJ∥∞ = ∥CIJ∥∞ ≤ ∥C∥∞ ∥IJ∥∞ . As C does not vary with J , one
may infer that ∥εJ∥∞ is majored by a constant scale of ∥IJ∥∞. In other words, if ∥IJ∥∞ → 0, then
∥εJ∥∞ → 0, hence the recursive system is consistent, given that the sum in equation (24) is convergent,
which is out of the scope of this paper.
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At this point we discuss with a little more detail the order of convergence of the proposed methodology.
We focus on the use of the analytical solution with numerical integration instead of a standard finite difference
method and we show a gain in the order of convergence, at least locally. To avoid extensive and repetitive

mathematical formulation, let am (r) =
2

r
+

2αm+1/2

rµmwm
+

1

µm
, so equation (13) is written in a simpler

version,
dIm
dr

+ am (r) Im = Ψm (r) . (42)

Its analytical solution is

Im (r) = exp

(
−
∫ r

c

am (τ) dτ
)[

Im (c) +

∫ r

c

exp

(∫ η

c

am (τ) dτ
)
Ψm (η) dη

]
.

Using the trapezoidal rule with the order of convergence term and setting r = rı and c = rı+1 and
m ≤ M/2 yields

Im (rı) = exp

(∫ rı+1

rı

am (τ) dτ
)[

Im (r0)

−∆r

2

(
exp

(
−
∫ rı+1

rı

am (τ) dτ
)
Ψm (r) + Ψm (r0)

)
+O

(
∆r3

)]
,

so the order of convergence term in computing Im (rı) would be exp
(∫ rı+1

rı
am (τ) dτ

)
O
(
∆r3

)
.

It can be shown that the integral is always negative, so the exponential is always less than one, but as
we make ∆r → 0, we conclude that the order of convergence of the present methodology gets closer to
O
(
∆r3

)
. Applying a finite difference scheme in equation (42) and carrying out the order of convergence

term O (∆r) will result in

Im (rı) =
Im (rı+1)−Ψm (rı)∆r

1− am (rı)∆r
+

O
(
∆r2

)
1− am (rı)∆r

.

Making ∆r → 0, we conclude that the order of convergence of this finite difference scheme gets closer
to O

(
∆r2

)
, hence the presented methodology shows an improvement in this aspect. We have shown this

approach form ≤ M/2, however the same conclusion is obtained form > M/2.

Results and discussion
The presented methodology was implemented in a Python script, ran an a domestic computer with some
literature inputs, separated into two cases. For comparison purposes, we define the backward and forward
radiation fluxes as

q− (ri) =

∫ 0

−1

I (r, µ)µ dµ =

M/2∑
m′=1

wm′µm′Iim′ ,

q+ (ri) =

∫ 1

0

I (r, µ)µ dµ =

M∑
m′=M/2+1

wm′µm′Iim′ ,

where the sums are the integral approximations using theM -th order quadrature rule. In both cases, the
coefficients βℓ in equation (2) are evaluated according to Table 2 (Abulwafa, 1993; Ladeia et al., 2020).
Besides, if β1 is positive or negative, we say we have a forward or backward scattering phase function,
respectively. Also, if βℓ = 0 for ℓ ≥ 1 we say it is an isotropic scattering phase function (Petty, 2006).
Nonetheless, the authors chose, for simplicity, N = 1280 andM = 24 for all cases, and the stop criterion is
that when the maximum value of

∣∣∣(Iı
m)ȷ

∣∣∣ for all ı = 0, 1, . . . , N andm = 1, 2, . . . ,M is less or equal than
10−6, the recursion stops.
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Table 2 - Values of βℓ in equation (2) for the phase function of different scattering types.

βℓ Forward Isotropic Backward
β0 1.00000 1.00000 1.00000
β1 1.98398 0.00000 -0.56524
β2 1.50823 0.00000 0.29783
β3 0.70075 0.00000 0.08571
β4 0.23489 0.00000 0.01003
β5 0.05133 0.00000 0.00063
β6 0.00760 0.00000 0.00000
β7 0.00048 0.00000 0.00000
β8 0.00000 0.00000 0.00000

In the following, we will demonstrate that our methodology can be applied to several sets of parameters
from the literature, considering inhomogeneous source terms and anistotropic scattering in Case 1 and to
sets of parameters that are commonly found in radiation transfer problems with non-linear coupling with
diffusion problems in Case 2.

Case 1
In the Case 1, the results were computed and compared with Abulwafa (1993) and Ladeia et al. (2020), where
considers several subcases about inhomogeneous hollow spheres, with numerical values R1 = 1 and R2 = 2

for the inner and outer radii. Also, the fixed parameters are ϵ1 = ϵ2 = 0.75, ρ1 = ρ2 = 0.25, Ib1 (T ) = 0,
Ib2 (T ) = 4/3.
The subcases differ in the combinations of (1− ω (r)) Ib (T ), ω (r) and p (µ, µ′) given by equation (2),

where the values of βℓ are given by Table 2 and the formulas for the different ω (r) are those in Table 3, for a
total of 99 subcases.

Table 3 - Different formulas of ω(r) for Case 1.

ωi(r) Formula ωi(r) Formula

ω1(r)
2r

3F
ω7(r) 1.0− 2r

3F

ω2(r) 0.2 +
2r

5F
ω8(r)

4r

15F
+

r2

2H

ω3(r) 0.4 +
2r

15F
ω9(r) 0.4− 4r

15F
+

r2

2H

ω4(r) 0.5 ω10(r) 0.6− 8r

15F
+

r2

2H

ω5(r) 0.6− 2r

15F
ω11(r) 1.0− 16r

15F
+

r2

2H

ω6(r) 0.8− 2r

5F

In the description of these subcases, we use two auxiliary constants F and H , computed as

F =
(R2)

4 − (R1)
4

(R2)
3 − (R1)

3 .

and

H =
(R2)

5 − (R1)
5

(R2)
3 − (R1)

3 . (43)

The values of q+ (R2) and q− (R1) for each subcase were compared with the data from the references
Abulwafa (1993) and Ladeia et al. (2020), denoted as REF1 and REF2, respectively, as well as with the
results of the current methodology, referred to as PM. The results are presented in Tables 4, 5 and 6 and
listed the largest values for each combination of (1− ω(r))Ib(T ) and scattering, as described next.
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Table 4 - Outgoing fluxes for Case 1, three types of scattering according to equation (2) and Table 2 and
eleven formulas for ω (r) from Table 3 and black body radiation term (1− ω (r)) Ib (T ) = 0.0.

Forward scattering Isotropic scattering Backward scattering

ω(r) REF1 REF2 PM REF1 REF2 PM REF1 REF2 PM
q+ (R2)

ω1 0.17334 0.17210 0.17344 0.19633 0.19692 0.19815 0.20305 0.20343 0.20463
ω2 0.16887 0.16764 0.16896 0.19069 0.19128 0.19248 0.19707 0.19745 0.19863
ω3 0.16466 0.16347 0.16477 0.18531 0.18590 0.18709 0.19136 0.19174 0.19290
ω4 0.16266 0.16149 0.16278 0.18273 0.18331 0.18450 0.18861 0.18898 0.19014
ω5 0.16073 0.15958 0.16086 0.18021 0.18079 0.18197 0.18592 0.18629 0.18745
ω6 0.15705 0.15597 0.15724 0.17537 0.17594 0.17711 0.18073 0.18111 0.18225
ω7 0.15364 0.15264 0.15389 0.17078 0.17135 0.17251 0.17581 0.17618 0.17732
ω8 0.17990 0.17867 0.18003 0.20451 0.20512 0.20637 0.21170 0.21210 0.21332
ω9 0.17047 0.16924 0.17055 0.19275 0.19337 0.19455 0.19927 0.19965 0.20084
ω10 0.16616 0.16496 0.16626 0.18728 0.18787 0.18907 0.19347 0.19385 0.19502
ω11 0.15837 0.15727 0.15854 0.17715 0.17773 0.17890 0.18265 0.18303 0.18418

−q− (R1)

ω1 0.26879 0.27017 0.27053 0.23659 0.23680 0.23724 0.22740 0.22768 0.22812
ω2 0.27264 0.27426 0.27465 0.23028 0.23949 0.23995 0.22978 0.23010 0.23056
ω3 0.27670 0.27855 0.27895 0.24221 0.24243 0.24291 0.23241 0.23278 0.23325
ω4 0.27881 0.28076 0.28117 0.24378 0.24400 0.24449 0.23383 0.23421 0.23471
ω5 0.28098 0.28303 0.28344 0.24541 0.24563 0.24614 0.23533 0.23572 0.23623
ω6 0.28549 0.28771 0.28815 0.24888 0.24911 0.24964 0.23853 0.23896 0.23949
ω7 0.29024 0.29261 0.29307 0.25266 0.25289 0.25345 0.24206 0.24251 0.24307
ω8 0.26448 0.26555 0.26590 0.23373 0.23394 0.23435 0.22492 0.22516 0.22557
ω9 0.27190 0.27348 0.27386 0.23876 0.23898 0.23943 0.22932 0.22963 0.23008
ω10 0.27591 0.27771 0.27811 0.24163 0.24185 0.24233 0.23189 0.23224 0.23272
ω11 0.28458 0.28678 0.28722 0.24817 0.24839 0.24892 0.23786 0.23829 0.23881

Table 5 - Outgoing fluxes for Case 1, three types of scattering according to equation (2) and Table 2 and
eleven formulas for ω (r) from Table 3 and black body radiation term (1− ω (r)) Ib (T ) = 1.0.

Forward scattering Isotropic scattering Backward scattering

ω(r) REF1 REF2 PM REF1 REF2 PM REF1 REF2 PM
q+ (R2)

ω1 0.83555 0.83675 0.84005 0.83979 0.84053 0.84361 0.84093 0.84174 0.84479
ω2 0.82646 0.82752 0.83080 0.83025 0.83097 0.83403 0.83125 0.83203 0.83504
ω3 0.81806 0.81904 0.82230 0.82139 0.82211 0.82515 0.82225 0.82302 0.82601
ω4 0.81413 0.81508 0.81833 0.81723 0.81794 0.82097 0.81802 0.81878 0.82176
ω5 0.81037 0.81130 0.81455 0.81325 0.81395 0.81698 0.81397 0.81471 0.81769
ω6 0.80337 0.80430 0.80754 0.80579 0.80650 0.80951 0.80637 0.80711 0.81009
ω7 0.79709 0.79803 0.80127 0.79906 0.79975 0.80277 0.79950 0.80023 0.80321
ω8 0.84858 0.85002 0.85337 0.85350 0.85426 0.85738 0.85483 0.85572 0.85879
ω9 0.82922 0.83031 0.83359 0.83322 0.83395 0.83701 0.83428 0.83508 0.83809
ω10 0.82058 0.82159 0.82485 0.82418 0.82485 0.82789 0.82505 0.82583 0.82882
ω11 0.80544 0.80636 0.80959 0.80806 0.80877 0.81179 0.80870 0.80945 0.81242

−q− (R1)

ω1 0.80437 0.79757 0.79867 0.78085 0.78145 0.78291 0.77382 0.77320 0.77470
ω2 0.82000 0.81305 0.81421 0.79472 0.79529 0.79684 0.78718 0.78651 0.78811
ω3 0.83640 0.82923 0.83045 0.80953 0.81010 0.81175 0.80154 0.80084 0.80254
ω4 0.84490 0.83760 0.83885 0.81733 0.81788 0.81959 0.80914 0.80840 0.81016
ω5 0.85362 0.84616 0.84744 0.82540 0.82594 0.82770 0.81703 0.81626 0.81807
ω6 0.87169 0.86387 0.86523 0.84236 0.84289 0.84477 0.83368 0.83285 0.83479
ω7 0.89070 0.88241 0.88385 0.86053 0.86104 0.86305 0.85163 0.85072 0.85280
ω8 0.78654 0.77991 0.78095 0.76512 0.76573 0.76711 0.75870 0.75812 0.75953
ω9 0.81670 0.80990 0.81105 0.79152 0.79208 0.79362 0.78994 0.78334 0.78492
ω10 0.83293 0.82592 0.82713 0.80610 0.80666 0.80828 0.79811 0.79742 0.79909
ω11 0.86782 0.86020 0.86155 0.83840 0.83893 0.84077 0.82969 0.82888 0.83079
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Table 6 - Outgoing fluxes for Case 1, three types of scattering according to equation (2) and Table 2 and
eleven formulas for ω (r) from Table 3 and black body radiation term (1− ω (r)) Ib (T ) = 1.0 − r2/H
(H from equation (43)).

Forward scattering Isotropic scattering Backward scattering

ω(r) REF1 REF2 PM REF1 REF2 PM REF1 REF2 PM
q+ (R2)

ω1 0.80437 0.79757 0.79867 0.78085 0.78145 0.78291 0.77382 0.77320 0.77470
ω2 0.82000 0.81305 0.81421 0.79472 0.79529 0.79684 0.78718 0.78651 0.78811
ω3 0.83640 0.82923 0.83045 0.80953 0.81010 0.81175 0.80154 0.80084 0.80254
ω4 0.84490 0.83760 0.83885 0.81733 0.81788 0.81959 0.80914 0.80840 0.81016
ω5 0.85362 0.84616 0.84744 0.82540 0.82594 0.82770 0.81703 0.81626 0.81807
ω6 0.87169 0.86387 0.86523 0.84236 0.84289 0.84477 0.83368 0.83285 0.83479
ω7 0.89070 0.88241 0.88385 0.86053 0.86104 0.86305 0.85163 0.85072 0.85280
ω8 0.78654 0.77991 0.78095 0.76512 0.76573 0.76711 0.75870 0.75812 0.75953
ω9 0.81670 0.80990 0.81105 0.79152 0.79208 0.79362 0.78994 0.78334 0.78492
ω10 0.83293 0.82592 0.82713 0.80610 0.80666 0.80828 0.79811 0.79742 0.79909
ω11 0.86782 0.86020 0.86155 0.83840 0.83893 0.84077 0.82969 0.82888 0.83079

−q− (R1)

ω1 0.54555 0.53428 0.53503 0.51416 0.51460 0.51557 0.50792 0.50803 0.50902
ω2 0.54553 0.54420 0.54498 0.52325 0.52369 0.52471 0.51676 0.51685 0.51790
ω3 0.55599 0.55455 0.55538 0.53296 0.53340 0.53448 0.52627 0.52634 0.52745
ω4 0.56142 0.55991 0.56076 0.53807 0.53850 0.53962 0.53129 0.53134 0.53249
ω5 0.56698 0.56538 0.56625 0.54335 0.54377 0.54493 0.53649 0.53653 0.53772
ω6 0.57850 0.57669 0.57762 0.55445 0.55487 0.55610 0.54748 0.54748 0.54876
ω7 0.59062 0.58854 0.58951 0.56634 0.56674 0.56806 0.55931 0.55927 0.56063
ω8 0.52429 0.52308 0.52379 0.50393 0.50438 0.50528 0.49799 0.49812 0.49904
ω9 0.54358 0.54231 0.54309 0.52126 0.52169 0.52270 0.51476 0.51486 0.51589
ω10 0.55393 0.55257 0.55339 0.53082 0.53125 0.53232 0.52410 0.52418 0.52528
ω11 0.57619 0.57449 0.57541 0.55198 0.55240 0.55361 0.54496 0.54497 0.54622

To simplify the comparison of results in Case 1, we also computed the relative distances (RD) for the
results in Tables 4, 5 and 6 using the equation (44)

RD =

∣∣∣∣value reference− value PMvalue reference

∣∣∣∣ , (44)

and listed the largest values for each combination of (1− ω (r)) Ib (T ) and scattering type in Table 7 for
both references and for which ω (r) and partial flux it happened. We displayed the values of relative distances
in percentage, rounded up to the third decimal place.
In other words, we show in Table 7 the largest values of the relative distance we may find com-

pared to each reference column in Tables 4, 5 and 6. For example, the first line in Table 7 indi-
cates that the relative distance from the presented methodology to the reference Abulwafa (1993) for
(1− ω (r)) Ib (T ) = 0.0 and forward scattering is no larger than 0.975%, that we find for the outgoing flux
in R1 for ω (r) = ω6 (r), from Table 3. We omitted the other relative distances we computed due to the lack
of space.
We showed in Table 7 that the results show fairly good agreement to the references. The maximum relative

distance among all subcases is about 4.2%, and the vast majority is below 1.0%. 13 out of 18 subcases
present the maximum relative distance when ω (r) = ω7 (r) for the outgoing flux at R2, thus establishing a
mode. Even this mode had all relative distances below 1%.
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Table 7 - Largest values for the relative distance (RD) for combinations of (1− ω (r)) Ib (T ) and different
scattering types among both outgoing partial fluxes and formulas for ω (r) from Table 3.

(1− ω(r))Ib(T ) Scattering Reference ω(r) Partial flux RD (%)

0.0

Forward
Abulwafa (1993) ω6(r) −q−(R1) 0.975
Ladeia et al. (2020) ω7(r) q+(R2) 0.819

Isotropic
Abulwafa (1993) ω1(r) −q−(R1) 4.199
Ladeia et al. (2020) ω7(r) q+(R2) 0.677

Backward
Abulwafa (1993) ω7(r) q+(R2) 0.859
Ladeia et al. (2020) ω7(r) q+(R2) 0.647

1.0

Forward
Abulwafa (1993) ω6(r) −q−(R1) 0.769
Ladeia et al. (2020) ω7(r) q+(R2) 0.406

Isotropic
Abulwafa (1993) ω7(r) q+(R2) 0.464
Ladeia et al. (2020) ω7(r) q+(R2) 0.378

Backward
Abulwafa (1993) ω8(r) −q−(R1) 0.635
Ladeia et al. (2020) ω7(r) q+(R2) 0.372

1.0− r2

H∗

Forward
Abulwafa (1993) ω12(r) q+(R2) 1.928
Ladeia et al. (2020) ω7(r) q+(R2) 0.526

Isotropic
Abulwafa (1993) ω7(r) q+(R2) 0.625
Ladeia et al. (2020) ω7(r) q+(R2) 0.481

Backward
Abulwafa (1993) ω7(r) q+(R2) 0.597
Ladeia et al. (2020) ω7(r) q+(R2) 0.471

∗H from equation (43).

Case 2

In the Case 2, we consider three subcases of homogeneous hollow spheres (constant values forω). All subcases
consider R1 = 1, R2 = 2, ϵ1 = 1, ρ1 = 0, p (µ, µ′) = 1, Ib (T ) = 0, Ib1 (T ) = 1 and Ib2 (T ) = 1.
The remaining subcases are presented in Table 8.

Table 8 - Remaining geometric and physical parameters, together with the outgoing fluxes for Case 2.

Subcase ϵ2 ρ2 ω

1 1 0 0.5
2 0.5 0.5 0.5
3 1 0 0.999

These are usual sets of parameters in radiative transfer problems coupled with heat conduction. We present
the outgoing fluxes as results for these subcases in Table 9.

Table 9 - Outgoing fluxes for Case 2.

Subcase q+(R2) −q−(R1)

1 0.217686 0.253582
2 0.162801 0.179367
3 0.502417 0.501692

This Case 2 has only 3 subcases with isotropic scattering, no external source term and constant values
for ω, thus being far simpler than Case 1, however it represents many usual parameters for radiation transfer
cases coupled with heat conduction, where the black body radiations are modeled as proportional to the
temperature to the fourth power.
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As the focus of this paper is to present a consistent methodology for linear cases, we adapted those
problems removing the nonlinear part, so there are no references to compare the results with. In this context
the present approach is a first step in this direction.
We were unable to compare our results with another methodology due to the lack of publications with

these set of parameters.
Case 1 is about testing the current methodology to some cases with anysotropy and heterogeneity and

compare the results with the literature. Case 2 is about showing the preparation to the application of the
decomposition method to a nonlinear case in a future work. The results demonstrate that the proposed
methodology is robust and consistently applicable across all cases anlyzed in this study.

Conclusions
The radiative transfer problems in spherical geometry are usually complex and difficult to solve in general
cases. In this work we solved the linear problem for a hollow sphere, including an anisotropic case using an
algorithm that consists of a combination of methods in the literature. The mentioned algorithm combines a
decomposition method, where the terms are computed using a diamond difference scheme, hence avoiding
dealing with complex and costly algebraic operations. This combination produced a robust and efficient
algorithm to solve the problems here specified.
The cases we chose to present applications of the methodology involve some usual parameters in transport

problems, like anisotropy, dependence of r in parameters and diffuse-reflective boundary conditions. It is
noteworthy that despite the phase function as in equation (2) showing that the anisotropy may be modeled as
a sum of orthogonal polynomials, this is not required by the presented methodology. In fact, our methodology
does not imply any restrictions to the construction of the phase function, single scattering albedo or the black
body radiation term, as shown in the previous sections.
The presented methodology has only one local approximation in the integral from the trapezoidal rule. We

showed that our methodology has a superior order of convergence compared to classical finite difference
method.
Ladeia et al. (2020) used a finite volumes method, which has a local order of convergence ofO

(
∆r2

)
like

the finite difference method, and Abulwafa (1993) used a Galerkin method, whose order of convergence we
were unable to determine due to the lack of dedicated information in the paper. So the presented methodology
converges locally faster than the methodology in Ladeia et al. (2020).
This was possible because there were no approximations in the computations of Bi

m and Ψi
m. It is also

possible to increase the order of convergence to O
(
∆r4

)
or higher by using higher order quadrature rules

like Simpson or other Newton-Cotes formulas. However the schemes would require more algebraic work.
The order of convergence for the recursive system, the discretization of the angular variable, and the whole

composite trapezoidal rule (over R1 ≤ r ≤ R2) are basically the same as in the references.
We also presented studies on the method’s consistency and showed that upon the construction of the

recursive system, the method is automatically consistent, at least for the linear case. The convergence and
stability analysis are left for future work, in which we also aim to improve the decomposition to consider
insertion of non-linearity temperature coupling with conduction effects.
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