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ABSTRACT
Soil fertility evaluation is fundamental for sustainable agricultural practices, often relying on conventionallaboratory methods. These methods, while accurate, are labor-intensive, time-consuming, and requirechemical reagents. Spectroscopic sensors, such as energy-dispersive X-ray fluorescence (EDXRF), offera rapid and non-destructive alternative but require calibration of machine learning models for accurateprediction of fertility attributes. In this context, this study compares the performance of four machine learningalgorithms in predicting soil pH, organic carbon (SOC), sum of exchangeable bases (BS), and cation exchangecapacity (CEC) using EDXRF data from two soil datasets. These algorithms are: multiple linear regression(MLR), partial least square regression (PLS), support vector machine regression (SVM), and random forestregression (RF). Results indicate that PLS models outperformed others (the hierarchy of accuracy was PLS >MLR > SVM > RF), particularly for BS and CEC, with RPD (Ratio of Performance to Deviation) valuesabove 2.0, making them suitable for quantitative analysis. In contrast, pH and SOC predictions showed loweraccuracy. Overall, we emphasize the benefits of integrating PLS with EDXRF, capable of mitigating the useof traditional soil analysis.
keywords soil fertility attributes, machine learning, PLS, EDXRF
RESUMO
A avaliação da fertilidade do solo é fundamental para práticas agrícolas sustentáveis, muitas vezes contandocom métodos laboratoriais convencionais. Esses métodos, embora precisos, são trabalhosos, demorados erequerem reagentes químicos. Sensores espectroscópicos, como fluorescência de raios X por dispersão deenergia (EDXRF), oferecem uma alternativa rápida e não destrutiva, mas requerem calibração através demodelos de aprendizado de máquina para predição precisa dos atributos de fertilidade. Nesse contexto, esteestudo compara o desempenho de quatro algoritmos de aprendizado de máquina na predição do pH, carbonoorgânico do solo (SOC), soma de bases trocáveis (BS) e capacidade de troca catiônica (CEC) utilizandodados de EDXRF de dois tipos de solo. Esses algoritmos são: regressão linear múltipla (MLR), regressãolinear por mínimos quadrados parciais (PLS), regressão por máquina de vetores de suporte (SVM) e regressãopor floresta aleatória (RF). Os resultados indicaram que os modelos PLS superaram outros (a hierarquiade precisão foi PLS > MLR > SVM > RF), particularmente para BS e CEC, com valores de RPD (razãoentre desempenho e desvio) acima de 2,0, tornando-os adequados para análise quantitativa. Em contraste, aspredições de pH e SOC mostraram menor precisão. No geral, enfatizamos os benefícios da integração dePLS com EDXRF, capaz de mitigar o uso da análise tradicional de solo.
palavras-chave atributos de fertilidade, aprendizagem de máquina, PLS, EDXRF

1Applied Nuclear Physics Laboratory, UEL, Londrina, PR, Brazil; {j.viniciusribeiro15, frsantos, jose.vitor.oliveira,—–. mariana.spinardi, igor.marques.nogueira, fmelquiades}@uel.br2Soil Department, IDR-Paraná, Londrina, PR, Brazil; {jfoliveira79, graziela_barbosa}@idr.pr.gov.br3Soil Science and Plant Nutrition Laboratory, UNICENTRO, Guarapuava, PR, Brazil; mmuller@unicentro.br,——boreckirenata12@outlook.com.br, cpott@unicentro.br
Semin., Ciênc. Exatas Tecnol. 2024, v.45: e51475 1

https://www.doi.org/10.5433/1679-0375.2024.v45.51475
https://orcid.org/0000-0002-2744-4467
https://orcid.org/0000-0002-7968-2766
https://orcid.org/0009-0004-0357-041X
https://orcid.org/0009-0009-5811-9913
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0003-2116-4736
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0002-4630-2659
https://orcid.org/0000-0003-1154-0339


Ribeiro, J. V., dos Santos, F. R., Alves, J. V. de O., Fossaluza, M. S., Nogueira, I. M.,. . . , Melquiades, F. L.

Introduction
Soil has always been fundamental for human subsistence. Its evaluation through fertility attributes is
commonly applied, especially for agricultural use purposes (Demattê et al., 2019). Soil testing enables the
identification of shortage and/or excess of nutrients, leading to the definition of fertilizer rates (Pramod Pawase
et al., 2023). In precision agriculture systems, soil data may be georeferenced, and the application of these
inputs may be variable to perform site-specific management (Oshunsanya et al., 2017).
The soil fertility attributes are traditionally determined by conventional laboratory methods, with specific

protocols for each attribute, requiring up to 200 g of soil from each sampling point, different instrumentation,
and different chemical reagents including acids and toxic compounds. Considering the worldwide demand,
Demattê et al. (2019) estimate that more than 600 million soil samples are analyzed by conventional methods
each year. For instance, regarding the procedures to determine soil organic matter (OM), the wet combustion
method is the most applied. It uses 0.196 g of dichromate (Cr2O2−

7 ), 1.20 g of ferrous ammonium sulfatehexahydrate (Fe(NH4)2(SO4)26H2O), and 5 mL sulfuric acid (H2SO4) per sample. From the worldwidedemand perspective, approximately 840 thousand kg of ferrous ammonium dichromate and sulfate and 3
million L of sulfuric acid might be employed annually. If a cost of US$ 5.00 per sample is estimated, an
annual expense of US$ 2.5 million is generated just to assess OM content. Furthermore, each analysis takes 3
to 15 days for providing results (Demattê et al., 2019). Therefore, the conventional procedures are laborious,
expensive, time-consuming, and dependent on the analyst’s experience.
One alternative to overtake these drawbacks is the application of spectroscopic techniques in part of the

sampling set, decreasing the number of samples analyzed by conventional methods. Several studies have
been conducted with Vis-NIR (visible-near infrared), and EDXRF (energy dispersive X-ray fluorescence)
spectrometers, which are named in precision agriculture as proximal soil sensors (PSS) (de Santana et al.,
2018; dos Santos, de Oliveira, Barbosa, & Melquiades, 2021; dos Santos et al., 2023; Ribeiro et al., 2024;
Tavares et al., 2021). These methods are based on electromagnetic radiation and have the advantages of
not requiring chemical preparation as well as being fast and may be used with portable instrumentation.
On the other hand, the spectrometer requires a calibration step that comprises machine learning modeling
considering the measured data and the corresponding fertility attributes obtained from conventional methods.
In this practical perspective, the general idea is to apply the traditional methods in a minor part of the samples
and use the calibration model to generalize the spectroscopic data and predict the soil properties from the
majority of the samples.
The use of energy dispersive X-ray fluorescence (EDXRF) technique has gained attention in the soil

science community due to its potential to provide accurate results. Although the conventional use of EDXRF
is for the direct determination of total elements (nutrients) in soil (Terra et al., 2014), its spectrum carries
rich information about soil characteristics in addition to the content of elements (Van Grieken & Markowicz,
2001). For instance, the background level as well as the intensity of the Rayleigh and Compton scattering
bring out information about the sample’s major composition, moisture, and light elements content (H, C, N, O)
(Melquiades & dos Santos, 2015; Morona et al., 2017; Ribeiro et al., 2024; Sharma et al., 2014). Therefore,
it is possible to evaluate soil parameters that are not explicitly related to the characteristic X-ray peaks. These
implicit parameters might be extracted using machine learning tools in supervised learning, considering the
results of the conventional methods. For that, several details must be considered, mainly the choice of the
regression methods, which directly impact the performance of the models.
From this perspective, the objective of the study was to compare the performance of four machine learning

(ML) tools in predicting four key fertility attributes of two different soil types using EDXRF data. Specifically,
pH, soil organic carbon (SOC), sum of exchangeable bases (BS), and cation exchange capacity (CEC) were
evaluated. The compared ML algorithms were: multiple linear regression (MLR), partial least square
regression (PLS), support vector machine regression (SVM), and random forest regression (RF).
Studies addressing the use of EDXRF and machine learning for modeling fertility attributes have been

developed in the last decade, however, there is no significant consensus on the best algorithms. Therefore,
with this broad comparison between four of the most used regression algorithms, as well as the main fertility
indicators, this study aims to generate important insights about the best ML strategy choice, model specificity
according to different soil attributes and how predictive performance changes with respect to two distinct
soil classes.
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Machine learning theory
Multiple linear regression is one of the simplest algorithms for quantitatively relating a set of two or more
explanatory variables to a target parameter. It is assumed that the i-th independent variables (xip, in which pdenotes the total number of variables) satisfy a linear relationship with the dependent variable (ŷi), given byequation (1)

ŷi = β0 + xi1β1 + xi2β2 + · · ·+ xipβp + ϵi, (1)
in which i = 1, 2, . . . , n, n is the number of samples evaluated, ϵi is the i-th residual (model’s error term),
ŷi is the i-th predicted value, and β = βj is the weight vector, j = 1, 2, . . . , p (Jobson, 1991). As the number
of independent variables increases, the MLR model might experience issues related to the minimum number
of samples needed to calculate equation (1) as well as multicollinearity (Geladi & Kowalski, 1986).
Employing dimension reduction, the PLS model handles any number of explanatory variables and multi-

collinearity (Garthwaite, 1994; Mateos-Aparicio, 2011). The algorithm independently decomposes theX
matrix of independent data and the y vector of targets into a lower-dimension space of principal components
(directions which encompass the maximum variances), and then projects these components in Latent Variables
(LV) by maximizing the covariance between them (Geladi & Kowalski, 1986). PLS has been widely used
for the development of regression models due to its simplicity and computational cost compared to other
machine learning algorithms.
Support vector machine regression is an ML tool grounded on an optimization problem in which it is

sought to learn a regression function that generalizes theX independent variables to output predicted values
of the target, penalizing only those deviations that exceed a ϵ margin (Zhang & O’Donnell, 2020). This
problem is solved through Lagrange multipliers (α) which lead to equation (2):

ŷi =

m∑
j=1

(
αj − α∗

j

)
K(xjp, xip) + bi, (2)

in which b is the bias and K(·) is the kernel function that maps the independent variables into a high-
dimensional feature space (Filgueiras et al., 2015; Zhang & O’Donnell, 2020). There are several different
kernel functions, such as linear, polynomial, radial basis function, and sigmoid. Choosing an appropriate
K(·) function depends on the nature of the input data.
Random forest regression is a ML method that divides theX input data into several independent regression

trees to predict the y parameter of interest. Each tree in the “forest” is constructed from different subsets
of the training data (randomly selected) and its predictions are aggregated to produce the final response,
which is the global average. The particular parcel of the data in each tree is split into branches based on
minimizing some accuracy metric (e.g. sum of squared deviations about the mean) and performs predictions
at the leaves by averaging sample values (Biau & Scornet, 2016; de Santana et al., 2018). Mathematically,
the i-th prediction of a RF are expressed as in equation (3):

ŷi =
1

T

T∑
t=1

ft(xi), (3)
in which T is the number of trees as well as ft(·) is the prediction of the t-th tree (Biau & Scornet, 2016).
Material and methods
Sampling

Agricultural soils from two farms in the Paraná State in Brazil were considered individually. In Guarapuava
municipality, Southern Paraná State, we collected soil samples classified as Xanthic Hapludox (HPx), with a
clay texture. The area is used for soybean (Glycine max) and corn (Zea mays) plantation in the summer, and
wheat (Tricticum aestivum), barley (Hordeum vulgare), and black oats (Avena strigosa) in rotation in the
winter season. From the area, 372 samples were obtained from 93 sampling points at four depths: 0-10 cm,
10-20 cm, 20-30 cm, and 30-40 cm.
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All the soil samples were submitted to conventional analysis for soil pH, BS (Base Saturation), and CEC
(Cation Exchangeable Capacity) quantification, following the reference protocols (da Silva, 2009) at the Soil
Science and Plant Nutrition Laboratory from the Agronomy Department at the Universidade Estadual do
Centro-Oeste (UNICENTRO).
In Toledo municipality, Western Paraná State, the soil is classified as Rhodic Ferralsol (FRr) derived from

basalt. The area is used for soybean and corn plantations in summer, in a crop succession system. A set of
212 samples from 53 sampling points at the same four depths of Guarapuava (0-10 cm, 10-20 cm, 20-30 cm,
and 30-40 cm) was collected. The determination of pH, BS, CEC, and SOC (Soil Organic Carbon) were
performed by the conventional methods at the Soil Laboratory from Instituto de Desenvolvimento Rural do
Paraná, according to the same reference protocols (da Silva, 2009).
All samples were collected manually using augers. Figure 1 shows the collection points in each area.

Figure 1 - Sampling point maps of Toledo (FRr samples) and Guarapuava (HPx samples) study areas

Instrumentation

Approximately 10 g of soil in packed powder form (pressed manually) were accommodated in XRF cups
covered with Mylar film for XRF scanning in the EDXRF spectrometer. The amount of soil sample guarantees
an infinite thickness sample for the X-ray energy range considered (Van Grieken & Markowicz, 2001).
The equipment employed was a benchtop Shimadzu EDX 720, with a Si(Li) detector and a Rh target

X-ray tube. The measurements were performed in two ranges, one at 15 kV and 454 µA to reach the light
elements from Na to Sc (called 15kV condition) and another with 50 kV and 38 µA to reach elements from
Ti to U. All measurements were made in triplicate (then the average values were determined), ambient air
and for 100 s in each range. Using the equipment’s internal software, the peak’s net area of the following
elements were determined: Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Sr and Zr.
Statistical and machine learning analysis

Descriptive statistics were applied in the fertility attributes data by conventional methods. Additionally,
Pearson correlation coefficients between conventional method values and net peak areas from the elements
determined by EDXRF (intensity data) were calculated.
For modeling, the two soil datasets were split into calibration and prediction (or validation) sets

using the Kennard-Stone (KS) sampling selection algorithm (Kennard & Stone, 1969). It has been widely
used in machine learning modeling as an efficient strategy for representatively splitting original data into
reduced sets (dos Santos et al., 2023; Nawar & Mouazen, 2018; Nawar et al., 2022; Ribeiro et al., 2024;
Tavares et al., 2025).
4 Semin., Ciênc. Exatas Tecnol. 2024, v.45: e51475
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The algorithm can be summarized in three steps. In the first step, the Euclidean distance, equation (4),
among all samples is computed,

D2
ij =

N∑
n=1

(xin − xjn)
2 (4)

where n = 1, 2, . . . , N denotes the variables number (limited by N ) while i (j) denotes the i-th (j-th)
sample (i ̸= j). In the second step, the farthest samples are used to define a selection boundary. In the
third step, the second farthest samples (limited by the boundary) are included in the subset. Steps two and
three are iteratively repeated until the desired number of samples in the subset is reached. This process
favors an adequate coverage of the original data variability by the subset, contributing to the robustness and
generalization of the models.
The HPx samples were split in approximately 2/3 for calibration (248 samples) while the remaining

samples were used for prediction (124 samples). Similarly, approximately 1/3 of the FRr samples were
divided for prediction (72 samples) and the rest (140 samples) were used to calibrate the models. The splitting
processes were performed in the matrix encompassing the fertility attributes and independently in the two
datasets.
The MLR was performed considering the intensity data. Several strategies were tested in order to optimize

the variables which most contribute for each attribute of interest. They were: net areas of all detected elements
(Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Sr, Zr) plus the Compton and Rayleigh scatterings; net areas of
only detected elements (Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Sr, Zr); net areas of the detected elements
(Al, Si, P, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Sr, Zr) normalized by the Compton scattering; and net areas of the
elements considered significant (95 % confidence level) with a t-test individually applied in soil each attribute
model. The modeling with significant variables achieved the highest performance for all soil properties
simultaneously, thus, it was used. Full details can be found in the Appendix.
PLS, SVM and RF modeling was performed with the spectra obtained at 15 kV condition. For eliminating

noise, the range used was 0.5-10.0 keV, comprising 1260 channels. Poisson scaling followed by mean
centering were the preprocessing applied, as recommended by dos Santos (dos Santos, de Oliveira, Bona,
Barbosa, & Melquiades, 2021). While a 10-fold cross-validation aiming to minimize the RMSE and optimize
the number of latent variables was used in PLS, a random grid search was built for defining all hyperparameters
of SVM (with linear kernels) and RF. Also minimizing the RMSE with a 10-fold cross-validation, the grid
parameter combination was randomly varied 300 times. Full details can be found in the supplementary
materials.
The performance of the models was evaluated and indirectly compared by root mean square errors (RMSE),

squared correlation coefficients (R2) and performance-to-deviation ratio (RPD). Viscarra Rossel et al. (2006)
reported that RPD might be used for classifying models as: excellent models (RPD > 2.5), very good
models (2.5 > RPD > 2.0), good model (2.0 > RPD > 1.8), fair (1.8 > RPD > 1.4), and very poor model
(RPD < 1.4). On the other hand, for directly comparing the model’s performances, the relative improvement
in percentage (RI %) coefficients were computed according to equation (5),

RI% =
100× (RMSEP1 − RMSEP2)RMSEP1 (5)

in which RMSEP1 denotes the RMSE of prediction of the model taken as reference and RMSEP2 is theRMSEP of the model to be compared (Ribeiro et al., 2024).
All pre-processing and computational analyses were performed using R Statistical Software (v4.3.3) and

Python (v3.11.4). The prospectr R package, version 0.2.7 (Stevens & Ramirez-Lopez, 2024), was used to
split the samples with Kennard-Stone algorithm. The stats R package, version 4.3.3 (R Core Team, 2024),
was used to perform MLR. The datools R package, version 0.14.1, (Kucheryavskiy, 2020) was used to
perform PLS as well as the scikit-learn Python library, version 1.4.2, (Pedregosa et al., 2011), was used to
perform SVM and RF.
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Results
Conventional method results

Box plots of Figure 2 were built to assess the distribution of conventional results and gain perspective on
modeling performances. Full descriptive statistics were presented in the supplementary materials.
Figure 2 - Boxplots of conventional results for both soil datasets. HPx (n = 372), FRr (n = 212), where:(a) SOC g.dm−3, (b) pH, (c) BS cmolc.dm−3, and (d) CEC cmolc.dm−3.

(a) (b) (c) (d)

According Figure 2(a) the SOC levels of FRr samples (17.1 g.dm−3) are considered high compared to the
reference for Paraná soils (Pavinato et al., 2017). Furthermore, the datasets presented mean pH values lower
than 5.1, Figure 2(b), which is considered low (Pavinato et al., 2017), revealing the acidic character of these
soils. Figure 2(c) and 2(d) show that both CEC and BS mean values for HPx data (16.5 and 9.7 cmolc.dm−3,
respectively) are greater than FRr ones (10.7 and 5.5 cmolc.dm−3, respectively). On the other hand, most of
CEC HPx results are considered high compared to the reference for Paraná soils while CEC FRr values are
medium (Pavinato et al., 2017). Since BS indicates the amount of basic nutrients available in the soil and
CEC measures its capacity to retain and supply nutrients to plants, these results indicate that HPx soils have
greater nutrient availability for plants than FRr soils, and are, therefore, more fertile (Ronquim, 2010).

EDXRF results

The mean EDXRF spectra at 15 kV condition are shown in Figure 3. The detected elements were: Al, Si, P,
S, K, Ca, Ti, Mn, Fe, and Cu, in which Fe, Ti, and Si were found in higher levels. This is attributed to soil
profile, rich in iron and aluminum oxides, and high mineral fraction, since the basis of the structure of most
clay minerals is Si (Mauad et al., 2003; Prezotti & Guarçoni, 2013). In lower orders, the contents of K, Ca,
and Mn were also quantified. In the analyzed soil, these may be related to several sources, such as the clay
fraction mineralogy, texture, organic matter, and mainly fertilizers.
Figure 3 -Mean EDXRF spectra of both soil datasets. Experimental conditions: 15 kV, 454 µA and 100 sper measurement was used. HPx (n = 372), FRr (n = 212).
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Correlograms

Figure 4 shows the Pearson correlation coefficients between fertility attributes (reference method results)
and net area elemental intensities (EDXRF results).
Figure 4 - Pearson correlograms relating fertility attributes (conventional results) and EDXRF intensity data:(a) FRr (n = 212), and (b) HPx (n = 372).

(a) (b)

In the FRr correlogram of Figure 4(a), BS presented the highest correlation coefficient with total Ca
(r = 0.82) and total K (0.52), the exact elements used in BS calculation, as well as P (r = 0.49), Mn (0.49)
and Zn (0.41) had median correlation values. For CEC the P (r = 0.61), K (0.58) and Ca (0.66) had the
highest correlation coefficients. Compared with other soil attributes, pH had the lowest correlation with all
EDXRF variables simultaneously, presenting only high correlation with Ca (r = 0.66). On the other hand, P
and K (r > 0.6) were the main element correlated with SOC.
Similarly, in the HPx correlogram of Figure 4(b), BS had high correlation with Si, P, S, Ca and Zn

(r > 0.50) indicating that cations from these elements may be available resulting in high BS values (de
Ciência do Solo. Núcleo Regional Sul, 2004). In HPx soil the pH has negative correlation with P, S, and K
while CEC presents positive correlations with Si, P, S, K and Ca.
Furthermore, accentuated differences are noted between the correlation plots of Figure 4. The mutual

correlations among all variables of the HPx samples are more intense compared to the FRr, which may be
attributed to the particular characteristics of each soil type.
Modelling performance

Table 1 shows the RMSE, and R2 results across the different machine learning regression methods as well as
the soil dataset. Through these results it was possible to directly compare the performance of the models.
It is noted in Table 1 that pH and SOC models presented lower performance results compared with BS and

CEC, with RMSEP (R2 of prediction) ranging from 0.19-0.44 cmolc.dm−3 (0.01-0.45) and ranging from
3.65-4.10 g.dm−3 (0.13-0.34), respectively. Conversely, CEC and BS models presented successful results
(R² of prediction > 0.75) (Fontenelli et al., 2021), especially with PLS, and MLR algorithms. On the one
hand, BS and CEC are directly related to the bioavailable Ca2+ and K+ contents, which in turn are related to
the characteristic X-ray lines of Ca and K in the EXRF spectrum (Figure 4). On the other hand, there are no
EDXRF variables directly related to pH and SOC, and thus, machine learning algorithms seek correlations
with other variables such as S and P (Figure 4) to quantify these soil attributes, and this may be related to the
low performance in their prediction. In pH case, this low performance might also be associated with the soil
samples presenting low pH variations throughout entire datasets (Figure 2 showed that both soil datasets
presented a low interquartile range, being 0.38 for HPx and 0.8 for FRr samples), which is problematic for
ML modeling as it may limit the model’s ability to learn broader patterns, leading to overfitting and poor
generalizations. Other studies have also reported low pH modeling performances with EDXRF data from
soil samples (dos Santos et al., 2020; Ribeiro et al., 2024).
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Table 1 - Performance metrics for the fertility attribute models built with the four regression methods applied.
Xanthic Hapludox soil (HPx) Rhodic Ferralsol soil (FRr)

Attribute Model RMSEC RMSEP R2 cal R2 pred RMSEC RMSEP R2 cal R2 pred

pH
MLR 0.26 0.20 0.37 0.24 0.33 0.37 0.68 042
PLS 0.15 0.19 0.77 0.33 0.24 0.33 0.86 0.40
SVM 0.24 0.21 0.45 0.13 0.39 0.31 0.65 0.45
RF 0.09 0.34 0.91 0.12 0.48 0.44 0.47 0.01

SOC
MLR - - - - 3.72 3.72 0.66 0.34
PLS - - - - 2.90 3.65 0.79 0.32
SVM - - - - 0.96 3.69 0.97 0.30
RF - - - - 1.87 4.10 0.91 0.13

BS
MLR 2.67 2.58 0.68 0.59 1.33 0.99 0.79 0.73
PLS 1.78 2.00 0.85 0.75 0.80 0.87 0.92 0.78
SVM 1.17 2.50 0.93 0.60 1.26 1.35 0.80 0.48
RF 1.17 3.94 0.93 0.03 0.70 1.83 0.93 0.05

CEC
MLR 2.69 2.32 0.77 0.72 1.36 1.17 0.60 0.45
PLS 1.45 1.87 0.93 0.82 1.03 1.44 0.76 0.45
SVM 1.42 2.51 0.93 0.67 1.12 1.40 0.72 0.12
RF 1.29 4.41 0.94 0.01 0.98 1.51 0.79 0.01

Units: SOC (g.dm−3), BS and CEC (cmolc.dm−3); RMSEC (RMSE of calibration), RMSEP (RMSE of prediction),R2 cal (R2 of calibration), and R2 pred (R2 of prediction)

To better visualize the differences in accuracy, Figure 5 presents the different RMSEP and RPD values
among all machine learning models.
Figure 5 - Prediction performance parameters for all machine learning models built. MLR: multiple linearregression, PLS: partial least square regression, RF: random forest regression, SVM: support vector machineregression. (a) and (b) HPx, (c) and (d) FRr. Units: SOC (g.dm−3), BS and CEC (cmolc.dm−3).

(a) (b)

(c) (d)

8 Semin., Ciênc. Exatas Tecnol. 2024, v.45: e51475



EDXRF and Machine Learning for Predicting Soil Fertility Attributes

It is showed in Figure 5 that PLS achieved both the highest RPD and lowest RMSEP values in most cases
compared to the other models, being the best calibration strategy. Apart from PLS models, MLR and SVM
performed similarly (except BS models with FRr samples) as well as RF had the worst prediction results.
For HPx samples, Figures 5(a) and 5(b), BS and CEC PLS models presented RPD of 2.08 and 2.53, re-
spectively, considered as very good (RPD > 2.0), i.e., suitables for quantitative analysis (Viscarra Rossel
et al., 2006). Among FRr samples, Figures 5(c) and 5(d), only BS models reached high RPD, with values of
2.84 (PLS) and 1.93 (MLR), considered as excellent and good, respectively (Viscarra Rossel et al., 2006).
The remaining models presented RPD lower than 1.8 for both HPx and FRr samples.
On the other hand, RI% values, Table 2, quantitatively established PLS as the best modeling strategy, as it

did not show improvement in most comparisons with the other ML algorithms. The only exceptions were pH
and CEC SVM models and CEC MLR model, which were built with FRr samples. Therefore, even though
these models showed improvements compared to PLS (RI% of 6.06, 2.78, and 18.75 %, respectively), they
remained very poor (RPD < 1.4).
Table 2 - Relative Improvement in percentage (RI%) comparing all machine learning models. PLS modelswere taken as reference.

RI% pH SOC BS CEC
Comparison Xanthic Hapludox soil (HPx)
PLS x SVM -10.53 - -25.00 -34.22
PLS x RF -78.95 - -97.00 -135.83
PLS x MLR -5.26 - -29.00 -24.06

Rhodic Ferralsol soil (FRr)
PLS x SVM 6.06 -1.10 -55.17 2.78
PLS x RF -33.33 -12.33 -110.34 -4.86
PLS x MLR -12.12 -1.92 -13.79 18.75

This hierarchy of accuracy (PLS>MLR>SVM>RF) might be related to the ability of algorithms to fit the
EDXRF while maintaining a balance between underfitting and overfitting. Several studies have reported
good performances of PLS for predicting fertility attributes (de Santana et al., 2021; dos Santos et al., 2020;
Eitelwein et al., 2022; Ribeiro et al., 2024).
Conversely, the complexity of SVM and RF is significantly higher than that of PLS, presenting several

hyperparameters to tune. Thus, their margin for adequate adjustment of calibration conditions that are
generalizable for reliable validation is smaller. For instance, although a randomly grid search was used to
seek the best parameters, the RF models presented a significant tendency to overfitting in most cases, see
Table 1.
Furthermore, spectral data encompass the complex matrix existing in a soil sample (e.g., small differences

in organic and mineral materials) better than intensity data (Ribeiro et al., 2024), which may explain the
superiority of PLS compared to MLR models.
In summary, this study demonstrated the effectiveness of combining PLS with EDXRF to assess key

soil fertility attributes. This alternative method allows for reducing the number of samples submitted to
conventional soil analyses, only for model calibration. Once calibrated, future analyses in the same area can
be conducted using EDXRF spectra, prepared similarly to the initial calibration step.
In our study, 2/3 of the sample sets were chosen to calibrate the models, which would reduce con-

ventional analyses by around 1/3. However, further studies addressing the minimum number of sam-
ples to calibrate ML models are needed. Even smaller sample sets may be feasible to generate accurate
predictions.
This approach may speed up the analysis process and provide results at timely intervals for rational soil

management decisions. Furthermore, it enables the analysis of a larger number of samples at a lower cost,
increasing efficiency and scalability in agricultural practices. This may directly impact the improvement of
soil health monitoring methods.
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Conclusions
The study explored four of the most used machine learning tools to the indirect prediction of pH, SOC, BS
and CEC from EDXRF data. The different regression models performance revealed that the CEC and BS
models, especially those built with the PLS algorithm, presented the best performance, with RPDs higher
than 2.0, classifying them as suitable for quantitative analyses. In contrast, the pH and SOC models showed
lower performances.
Among the algorithms evaluated, PLS stood out as the best calibration strategy, outperforming MLR,

SVM and RF in terms of R2, RMSEP and RPD in most cases. The PLS also proved to be superior regarding
the two soil classes evaluated. This superiority might be attributed to its ability to balance the adjustment
between underfitting and overfitting, especially when dealing with the complexity of EDXRF spectral data.
This study highlights the potential of combining PLS with EDXRF to reduce the need for conventional

soil analyses, being able to speed up the analysis, deliver timely results for soil management, and increase
the number of samples analyzed at a lower cost.
Appendix
This Appendix provides detailed supplementary information supporting the modeling analyses and descriptive
statistics discussed in the main text. Tables 3 through 9 offer complete data on the modeling methods,
parameter ranges, and fertility attribute statistics, enhancing the modeling performance insights shown in
Figure 2.
Table 3 - Full details of MLR modeling.

Samples Atributte
Significant explained Total sum of

variables (intensity data) explained variables
FRr pH P, S, Ca, Ti, Fe, Cu 6
FRr SOC Si, P, S, K, Fe, Cu 6
FRr BS Al, Si, K, Ca, Zr 5
FRr CEC Si, P, K, Ca, Ti, Zn, Zr 7
HPx pH P, S, Ca, Sr, Rh 5
HPx BS P, S, Si, Fe, Zr 5
HPx CEC Si, P, S, Mn, Fe, Zr 6

Table 4 - Full details of PLS modeling.
Samples Atributte LV R2 CV RMSECV
FRr pH 6 0.69 0.36
FRr SOC 6 0.59 4.06
FRr BS 5 0.64 1.26
FRr CEC 5 0.72 9.57
HPx pH 6 0.22 0.19
HPx BS 5 2.22 1.87
HPx CEC 6 2.28 2.00

Units: SOC (g.dm−3), BS and CEC (cmolc.dm−3);CV: Cross-Validation
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Table 5 - Range of parameters used in the random grid search and cross-validation (CV) metrics for SVMmodeling.

Parameter Range
FRx HPx

Best Default Best Default
CEC BS SOC pH CEC BS pH

C [0.1, 10, 60, 70, 80, 10 10 120 1 80 100 190, 100, 110, 120]
ϵ [0.7, 0.8, 0.9, 1, 1.1, 1.5, 2] 1.1 0.7 0.9 0.1 0.7 1 0.1
tol [0.0007, 0.0009, 0.001 0.0012 0.0007 0.001 0.003 0.0014 0.0013 0.0030.0012, 0.0013, 0.0014]

R2 CV 10-fold 0.53 0.71 0.61 0.52 0.70 0.59 0.19
RMSE CV 10-fold 1.47 1.55 3.97 0.46 3.06 3.04 0.29

Units: SOC (g.dm−3), BS and CEC (cmolc.dm−3); CV: Cross-Validation

Table 6 - Range of parameters used in the random grid search and cross-validation (CV) metrics for RFmodeling.

Parameter Range
FRx HPx

Best Default Best Default
CEC BS SOC pH CEC BS pH

n_estimators [230, 250, 265, 270] 250 265 265 100 230 250 100
max_features [1, 50, 100, 200] 50 100 100 1 100 100 1
max_depth (None, 30, 35] 35 None 35 None 35 35 None

min_impurity_decrease [0.115, 0.125, 0.135] 0.115 0.115 0.125 0 0.115 0.115 0
min_samples_split [5, 10, 20, 30] 20 5 5 2 5 10 2

R2 CV 10-fold 0.58 0.86 0.51 0.37 0.82 0.82 0.33
RMSE CV 10-fold 1.39 1.08 4.44 0.53 2.39 2.01 0.26

Units: SOC (g.dm−3), BS and CEC (cmolc.dm−3); CV: Cross-Validation

Table 7 - Descriptive statistics of fertility attributes by reference methods. SOC (g.dm−3), BS and CEC(cmolc.dm−3).
Parameter

FRr HPx FRr HPx FRr HPx FRr
pH BS CEC SOC

Mean 5.0 4.8 5.5 9.7 10.7 16.5 17.1
Median 5.0 4.9 5.2 9.0 10.5 15.5 17.3

Standard Deviation 0.6 0.3 2.6 4.6 2.0 5.3 5.8
Kurtosis 0.9 0.0 0.0 -0.9 -0.3 -1.0 -0.2
Skewness 0.8 -0.5 0.7 0.4 0.3 0.4 0.2
Maximum 4.0 3.9 1.0 2.4 6.6 6.0 3.8
Minimum 7.1 5.6 14.2 23.4 16.2 29.5 34.0
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Table 8 - Descriptive statistics of EDXRF intensities (cps/µA) for Guarapuava samples.
Element Mean±SD CV Max Min Kurt Skew

Al 0.055±0.005 9% 0.068 0.042 -0.223 -0.432
Si 0.24±0.03 10% 0.32 0.18 -0.32 -0.19
P 0.015±0.005 33% 0.038 0.007 1.677 1.078
S 0.027±0.006 22% 0.062 0.012 8.641 1.769
K 0.082±0.014 17% 0.129 0.051 0.303 0.596
Ca 0.3±0.2 88% 3.1 0.1 84.9 8.0
Ti 22.8±1.8 8% 26.9 18.1 -0.3 -0.3
Mn 0.735±0.150 20% 1.904 0.382 10.428 1.707
Fe 385±22 6% 428 320 -0.2 -1
Cu 0.51±0.05 9% 0.65 0.38 -0.22 -0.07
Zn 0.46±0.08 17% 1.12 0.31 15.70 2.60
Sr 0.9±0.2 19% 1.3 0.5 -0.6 -0.1
Zr 16.0±0.6 4% 17.0 13.1 0.7 -0.5

Med = median, SD = Standard deviation, CV = coefficient of variation,Max = Maximum, Min = Minimum, Kurt = Kurtosis, Skew = Skewness.
Table 9 - Descriptive statistics of EDXRF intensities (cps/µA) for Toledo samples.

Element Mean±SD CV Max Min Kurt Skew

Al 0.081±0.008 10% 0.058 0.098 -0.041 -0.413
Si 0.35±0.04 11% 0.24 0.46 0.33 0.05
P 0.007±0.003 48% 0.001 0.018 -0.211 0.569
S 0.010±0.004 36% 0.000 0.021 0.422 0.105
K 0.09±0.02 25% 0.04 0.16 0.39 0.81
Ca 0.20±0.15 74% 0.04 1.56 33.39 4.25
Ti 24.8±2.7 11% 18.2 32.0 -0.1 -0.1
Mn 1.3±0.5 40% 0.6 3.3 1.0 1.2
Fe 549±22 4% 451 611 4 -1
Cu 1.23±0.14 11% 0.93 1.63 -0.21 0.45
Zn 0.42±0.06 14% 0.25 0.64 0.91 0.31
Sr 0.17±0.06 37% 0.03 0.34 -0.15 0.42
Zr 5.8±0.4 7% 4.4 6.8 0.6 -0.7

Med = median, SD = Standard deviation, CV = coefficient of variation,Max = Maximum, Min = Minimum, Kurt = Kurtosis, Skew = Skewness.
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