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ABSTRACT
Many studies have used extensions of ARMA models for the analysis of non-Gaussian time series. One of
them is the Generalized Autoregressive Moving Average, GARMA, enabling the modeling of count time
series with distributions such as Poisson. The GARMA class is being expanded to accommodate other
distributions, aiming to capture the typical characteristics of count data, including under or overdispersion
and excess zeros. This study aims to propose an approach based on the GARMA class in order to analyze
count time series with excess zeros, assuming a time-varying zero-adjusted Poisson distribution. This
approach allows for capturing serial correlation, forecasting the future values, and estimating the future
probability of zeros. For inference, a Bayesian analysis was adopted using the Hamiltonian Monte Carlo
(HMC) algorithm for sampling from the joint posterior distribution. We conducted a simulation study and
presented an application to influenza mortality reported in Brazil. Our findings demonstrated the usefulness
of the model in estimating the probability of non-occurrence and the number of counts in future periods.

keywords bayesian inference, count data, excess zeros, garma(p, q), influenza

RESUMO
Diversos estudos têm utilizado as extensões dos modelos ARMA para a análise de séries temporais não
Gaussianas. Uma delas corresponde a Generalized Autoregressive Moving Average, GARMA, possibilitando
a modelagem de séries de contagem a partir de distribuições como a Poisson. Na literatura, a classe GARMA
está sendo ampliada para outras distribuições, com o intuito de comportar as características típicas de
contagens, envolvendo sub ou superdispersão e excesso de zeros. Este trabalho tem como objetivo propor
uma abordagem baseada na classe GARMA para a análise de séries de contagem com excesso de zeros,
assumindo distribuição Poisson zero-ajustada com parâmetros variando no tempo, de modo a comportar a
correlação serial e permitir realizar previsões de contagens e da probabilidade de zeros. Para a inferência,
adotou-se a análise Bayesiana com o uso do algoritmo Monte Carlo Hamiltoniano para a amostragem da
posteriori conjunta. Ao longo do estudo, foi realizado um estudo de simulação e uma aplicação em dados de
mortalidade em decorrência da influenza. Os resultados da aplicação indicaram a utilidade do modelo ao se
estimar a probabilidade de não ocorrência e o número de óbitos em períodos futuros.
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Introduction
Time series analysis and forecasting are active topics in the statistical science and fields such as engineering
(Khandelwal et al., 2015). In applied studies, time series models are commonly based on the Autoregressive
Moving Average (ARMA) class, proposed in Box and Jenkins (1976), and their respective extensions like
the Seasonal Autoregressive Integrated Moving Average (SARIMA) being considered more appropriate to
fit Gaussian time series, and enable the realization of predictions in a satisfactory way, which is a task of
great importance (Khandelwal et al., 2015; Silva, 2020).
Concerning to count or discrete time series, Davis et al. (2021) discuss that Gaussian models may have

reduced performance when describing the behavior of the process. This can be a consequence of the stylized
characteristics of these types of data, as they can exhibit under or overdispersion, that is, the variance can be
lower or higher than the mean (Barreto-Souza, 2017; Sales et al., 2022); excess zeros (Davis et al., 2021;
Ghahramani & White, 2020); low counts (Maiti et al., 2018); and the presence of extreme values (Payne
et al., 2017), that can lead to the issue of overdispersion (Barreto-Souza, 2017; Payne et al., 2017); and, often,
non-negative autocorrelations (Davis et al., 2021).
In the literature, count time series were commonly analyzed using the traditional class of generalized linear

models (Davis et al., 2021), a theory that brought contributions to the development of methodologies that
incorporated the temporal dependence structure. An example are the Generalized Autoregressive Moving
Average (GARMA) models, introduced by Benjamin et al. (2003), which introduced a dependence structure
with the ARMA form in the linear predictor for distributions that belong to the exponential family, such as
Poisson and negative Binomial.
The GARMA class has been widely used and expanded in many studies, including perspectives through

the Bayesian inference (Andrade et al., 2015); extensions for time series that exhibit seasonal behavior
(Briet et al., 2013); and flexibility for distributions such as the Conway-Maxwell-Poisson (CMP) and the
Bernoulli-geometric (BerG), which are used to accommodate situations of data dispersion (Davis et al., 2021;
Ehlers, 2019; Melo & Alencar, 2020; Sales et al., 2022).
Regarding the count time series with many zeros, traditional distributions such Poisson, Binomial, and

negative Binomial may not adequately accommodate such situations (Davis et al., 2021). High proportions
of zeros cannot be disregarded during modeling, as they can affect the inference and lead to spurious
relationships (Alqawba et al., 2019). Considering this aspect, researchers have focused on exploring zero-
inflated distributions such as zero-inflated Poisson (ZIP) and zero-inflated negative Binomial (ZINB), as well
as their zero-adjusted versions such as zero-adjusted Poisson (ZAP) (Alqawba et al., 2019; Ghahramani &
White, 2020; Sales et al., 2022; Sathish et al., 2021; Tawiah et al., 2021).
More specifically, there is a conceptual and parameter interpretation difference between using zero-inflated

and zero-adjusted distributions (Feng, 2021). In zero-inflated, we considered that zeros originate from two
processes: the first process encompasses situations with structural zeros, while the second comprises random
zeros. Zero-adjusted distributions treat events resulting in zero as originating from a structural source, without
making any distinctions, i.e., the zeros are not differentiated (Zuur et al., 2009). For more details on these
distributions, see Feng (2021).
ZAP is a count distribution that can be seen as a mixture of two components, one component is associated

with the probability mass at zero and the other component is related to positive values which follow a
truncated Poisson distribution at zero (Feng, 2021). Several applications using the ZAP distribution can
be found in the literature, such as Aragaw et al. (2022), Feng (2021), Hashim et al. (2021), and Sales et al.
(2022), along with extensions for modeling multivariate count data (Tian et al., 2018).
This study aims to propose an approach based on the GARMA class for modeling count time series that

exhibit excess zeros, assuming that the response follows a ZAP distribution with time-varying parameters to
account the serial correlation. To the inferential process, a Bayesian analysis similar to that used by Andrade
et al. (2015) was adopted. However, in our study, we considered the Monte Carlo Hamiltonian (HMC)
algorithm, proposed by Duane et al. (1987), for sampling from the joint posterior distribution.
This paper is organized as follows: in Model Definition, we present the model, while Bayesian Analysis is

described in the subsequent section. A Simulation Study is presented thereafter, followed by an Analysis of
the Influenza Mortality Series. Finally, we conclude with some remarks in the Conclusion section.
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Model definition
Let Y be a time series equally spaced and indexed in the time t, for t = {1, . . . , n}, and Ft−1 =
{y1, y2, . . . , yt−1, µ1, µ2, . . . , µt−1,xxx1,xxx2, . . . ,xxxt−1} be the set of previous information until the instant
t − 1, where xxxt = (xxxt1, . . . ,xxxtr)

⊤ is a vector containing r explanatory variables associated with the
coefficients vector βββ = (β1, β2, . . . , βr)

⊤.
DefineΦΦΦp(B) = (1−ϕ1B

1− . . .−ϕpB
p) andΘΘΘq(B) = (1− θ1B

1− . . .− θqB
q) as the autoregressive

and moving average polynomials of order p and q, respectively. Similarly, setΦΦΦP (B
s) = (1− Φ1B

s1 −
. . .− ΦPB

sP ) andΘΘΘQ(B
s) = (1−Θ1B

s1 − . . .−ΘQB
sQ) as the seasonal autoregressive and seasonal

moving average polynomials of orders P and Q, respectively, being B the lag operator and s the period size.
Supposing that yt | Ft−1 follows a zero-adjusted Poisson, ZAP(µt, νt), the conditional density can be

expressed as presented in equation (1)

p(yt | Ft−1) = νtI(yt=0) +

[
1− νt

1− e−µt

] [
e−µtµyt

t

yt!

]
I(yt>0), yt ∈ N, (1)

defined in Ω = {µt, νt | µt > 0, 0 < νt < 1}, where I(·) is the indicator function, νt is the exact
probability of the series being zero at the time t and µt is the conditional average in the situation where
yt > 0 (Rigby et al., 2019). Given the conditioning of yt to Ft−1, the conditional mean is given by
(1−νt)µt

1−e−µt
, which can be viewed as a weighting of µt by 1−νt

1−e−µt
, which is the ratio of the complementary exact

probability that yt = 0 and the probability that yt > 0 derived from a Poisson distribution with mean µt

(Rigby et al., 2019).
Considering the logarithm link function, the linear predictor based on the GARMA(p, q) class can be

expressed as shown in equation (2):

log(µt) = ΦΦΦp(B)ΦΦΦP (B
s)
[
xxx⊤
t βββ − log(yt)

]
−ΘΘΘq(B)ΘΘΘQ(B

s) [log(yt)− log(µt)] + log

(
y2t
µt

)
, (2)

which can be generalized by incorporating the integration operator, resulting in the SARIMA(p, d, q)(P, D, Q)s
process (Briet et al., 2013). Note that it may be necessary to replace yt−j by y∗t−j =max(yt−j ; 0.10), ensuring
the existence of the link function at zero.
Furthermore, consider the existence of a relationship between νt and the lags of the time series according to

logit(νt) = ω0+
∑J

j=1 ωjyt−j , whereωωω = (ω0, . . . , ωJ)
⊤ is the coefficients vector. This specification allows

the parameter associated with the probability of zero counts, νt, to vary over time and enables the forecasting
of this probability at the time t + h, for example. We can also include additional explanatory variables
within the ν structure, as employed by Bertoli et al. (2021) when modeling count data. The assumption that
both νt and µt vary over time can be seen as an extension of one of the models used by Sales et al. (2022),
who considered that the parameter ν of the ZAP distribution is fixed over time when modeling the monthly
number of phone calls series.
Denoting θθθ = (βββ⊤,ΦΦΦ⊤,ΘΘΘ⊤, ωωω⊤)⊤ as the set of all model parameters, so the approximated likelihood func-

tion is given by L(θθθ | Y ) ≈
∏n

t=m+1 p(yt | Ft−1), beingm = max(p, q, sP, sQ, J) the first observations
of the time series. Note that, at each step, the mean µt and the probability νt can be determined from their
respective components that are present in θθθ.

Bayesian analysis
In terms of modeling, the estimation of θθθ in GARMA(p, q) models can be obtained by maximizing the
approximate likelihood function using a numerical method. For this procedure, the garmaFit function from
the gamlss.util package (Mikis Stasinopoulos and Bob Rigby and Paul Eilers, 2016) allows the analysis to be
done, but without the inclusion of seasonal orders. Also, the Bayesian approach can be adopted, which has
shown good performance in terms of point estimation and interval estimation in the study by Andrade et al.
(2015).
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According to the Bayes theorem, the posterior distribution (πππ(θθθ | Y )) is proportional to L(θθθ | Y ) π0(θθθ),
where L(θθθ | Y ) is the approximated likelihood function and π0(θθθ) is the joint prior of θθθ. For our analysis,
non-informative and independent priors were considered for all components of θθθ.
For the parameters associated with the explanatory variables, we considered that each component of βββ is

normally distributed, it is:

p(βj) ∝ exp

[
−1

2

(
βj − µj

τj

)2
]
, βj ∈ (−∞,∞), j = {1, . . . , r},

being µj = 0 and τj = 10 the hyperparameters associated with the prior distribution of each βj , ensuring
proper and less informative distributions. The same prior structure adopted for βββ was used forΦΦΦ,ΘΘΘ, and ωωω,
i.e., normal priors with mean zero and a high variability.
The inference was performed through sampling from the joint posterior distribution using the Hamiltonian

Monte Carlo (HMC) algorithm, available in RStan (Stan Development Team, 2022). The HMC utilizes
Hamiltonian dynamics for sampling, addressing the local random walk behavior observed in other algorithms
(Gelman et al., 2014) and using the gradient information to contribute to the posterior description (Conceição
et al., 2021). Burda and Maheu (2013) and McElreath (2020) highlight that HMC produces efficient samples
and performs well in high-dimensional settings with low correlation between samples.
The strategy adopted by the HMC is to increase the posterior by introducing p ∼ Nd(0,M) auxiliary

parameters in which θθθ ∈ Rd, ppp ∈ Rd, and θθθ ⊥ ppp, beingMMM frequently a diagonal matrix (Gelman et al., 2014).
This augmentation occurs to enable the algorithm to explore the parameter space more efficiently (Conceição
et al., 2021; Gelman et al., 2014). Therefore, the augmented posterior is the product of the marginals of θθθ
and ppp, resulting in p(θθθ,ppp | Y ) = p(ppp)π(θθθ | Y ) where our interest lies solely in θθθ (Gelman et al., 2014).
With the description of p(θθθ,ppp | Y ), we construct the Hamiltonian function given by

H(θθθ,ppp) = − log(p(θθθ, ppp | Y )) = − log (π(θθθ | Y )) +
1

2
log

(
(2π)d |MMM |

)
+

1

2
p⊤p⊤p⊤M−1M−1M−1ppp,

which partial derivatives ∂θθθ
∂t = ∂H(θθθ,ppp)

∂ppp and ∂ppp
∂t = −∂H(θθθ,ppp)

∂θθθ , called Hamiltonian equations, are responsible

for mapping the state of the process from time t to t+ z and are solved using the Störmer-Verlet (leapfrog)
withL steps, in order to propose the new state of the chain (Conceição et al., 2021; Neal, 2011). The candidate
state is evaluated using the Metropolis acceptance/rejection rule (Gelman et al., 2014; Neal, 2011). And, in a
similar way to other Markov chain Monte Carlo methods, this procedure is repeated until its convergence to
the stationary distribution (Gelman et al., 2014).
The convergence to the stationary distribution can be assessed through various procedures. One of the

methods available in the RStan package (Stan Development Team, 2022) is the R̂-split, proposed by (Gelman
et al., 2014), which can be seen as an extension of the Potential scale reduction factor (R̂). This procedure
requires constructing multiple chains that are started arbitrarily in order to make a decision about convergence.
According to the diagnostic, the process can be considered convergent for values where R̂-split < 1.05 (Stan
Development Team, 2022).
However, sampling from certain posterior distributions can be a challenge for any algorithm (McElreath,

2020). In the case of HMC, theMMM matrix and the number of steps L can be calibrated during the warm-
up period, which can lead to improved performance (Conceição et al., 2021; Hoffman & Gelman, 2014).
According to Gelman et al. (2014), one way to calibrateMMM is to adapt it using the inverse of the posterior
covariance matrix. Furthermore, an extension to HMC, which uses a recursive form to adapt L at each
iteration, was proposed by Hoffman and Gelman (2014) and is known as No-U-Turn Sampler (NUTS), which
details are available in Hoffman and Gelman (2014) and Stan Development Team (2022).

Forecasting

To make forecasts of Y over a horizon h it is necessary to construct the predictive distribution, that is, the
distribution of yt+h conditioning to all parameters and previous information of the process (Broemeling, 2019;
Sáfadi & Morettin, 2003). Combining the joint posterior π(θθθ | Y ) with the density of the new observation,
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p(yt+h | θθθ, Ft+h−1), the predictive density is given by:

p(yt+h | Ft+h−1) =

∫
θθθ∈Ω

p(yt+h | θθθ,Ft+h−1)π(θθθ | Y )dθθθ,

which does not have a closed form. In order to solve it, we can produce a Monte Carlo approximation of the
predictive, drawing N samples from θθθi, i = {1, . . . , N }, as follows:

p(yt+h | Ft+h−1) ≈
1

N

N∑
i=1

p(yt+h | θθθi,Ft+h−1),

so, the expected value of yt+h is:

E(yt+h) =

∫
yt+h∈Ω

yt+hp(yt+h | Ft+h−1)dyt+h. (3)

For the ZAP(µt, νt) model, the approximation of the equation (3) was obtained from the conditional
expectation, E(yt | Ft−1), it is:

ŷt+h ≈ 1

N

N∑
i=1

(1− θθθi4)µt+h(θθθ
i
1, θθθ

i
2, θθθ

i
3,Ft+h−1)

1− e−µt+h(θθθi
1,θθθ

i
2,θθθ

i
3,Ft+h−1)

,

being θθθ = (βββ⊤,ΦΦΦ⊤,ΘΘΘ⊤,ωωω⊤)⊤. This result is the mean of p(yt+h | Ft+h−1), updated for each θθθi.
Furthermore, the future probability of non-occurrence of zero counts, ν̂t+h, can be approximated in a

similar manner to that used for E(yt+h), that is:

ν̂t+h ≈
N∑
i=1

exp
(
ωi
0 +

∑J
j=0 ω

i
jyt−j

)
1 + exp

(
ωi
0 +

∑J
j=0 ω

i
jyt−j

) ,
where ν̂t+h ∈ (0, 1) and represents the posterior mean probability that the series takes a zero value at time t+h.

A simulation study
In the simulation study we considered the models and settings presented in Table 1.

Table 1 - Parameter settings for the ZAP (µt, νt) model used in the simulation study.

Scenario n ω0 ω1 ϕ1 ϕ2 Φ1

I {150; 200} -2.00 0.60 0.50 -0.30 -
II {150; 200} -2.00 -1.00 0.80 -0.40 -
III {150; 200} -2.00 0.60 0.50 - 0.50
IV {150; 200} -1.00 -0.50 -0.80 - 0.20

In Table 1, the scenarios I and II comprise models with a second-order autoregressive dependence structure,
while configurations III and IV assume that the mean dependence structure is given by a first-order seasonal
autoregressive process. We selected ϕ1, ϕ2, and Φ1 values in order to maintain the stationarity conditions of
the processes in the mean, i.e., where the roots of the characteristic polynomial lie outside the unit circle. We
also supposed that νt depends on the immediately preceding time point of the series, according to logit(νt) =
ω0+ω1yt−1. The ω0 and ω1 parameters were fixed to allow variations in the proportion of zeros. For example,
if yt−1 = 0 on the first scenario, then the probability of the count being zero at time t is approximately
11.92 %.
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We conducted the simulation in the R program (R Core Team, 2022) using the gamlss.dist pack-
age (Stasinopoulos & Rigby, 2020) to simulate the pseudo-random series and the RStan package (Stan
Development Team, 2022) for sampling from the joint posterior distribution via HMC algorithm. Each
model was replicated ω = 1× 103 times, and for the sampling, 1× 104 final samples were specified, with a
warm-up period of 4× 103, thinning equal to one, and two chains. We adopted L = 10 steps and the matrix
M was adapted during the warm-up period, which are standard parameters in RStan. The convergence was as-
sessed in each replication using the R̂-split diagnostic, and we considered as convergent the process where
R̂-split < 1.05.
The posterior mean, mode, and standard deviation estimates of the parameters for each replicated model

were stored, as well as the corrected error (CE) and corrected bias (CB) statistics. These statistics allow the
evaluation of the inferential performance and they were also used by Andrade et al. (2015), estimated by

CE2 = 1
wτ2

∑w
i=1(θ̂

i − θ)2 and CB = 1
w

∑w
i=1

∣∣∣ θ−θ̂i

θ

∣∣∣, being τ the standard deviation of θ among the ω
replicates. In this way, we expect that the CE estimates tend to one and the CB estimates approach zero.
The results of the first and second scenarios are presented in Table 2. We observed a reduction of the

CB statistic and the posterior standard deviation as the sample size increased from 150 to 200 observations.
Analogously, the CE values tended to one when the sample size increased, indicating a better approximation
of the estimated values.

Table 2 - Simulation results of the first and second scenarios, considering the ZAP(µt, νt) model with an
AR(2) dependence structure in µt and w = 1× 103 replications of each model.

Scenario n θθθ Real Mean Mode SD CB CE R̂-split

I

150

ω0 -2.000 -2.082 -2.055 0.351 0.143 1.026 1.000
ω1 0.600 0.644 0.634 0.184 0.265 1.024 1.000
ϕ1 0.500 0.511 0.507 0.129 0.190 1.004 1.001
ϕ2 -0.300 -0.290 -0.295 0.065 0.176 1.011 1.001

200

ω0 -2.000 -2.042 -2.023 0.299 0.121 1.009 1.001
ω1 0.600 0.620 0.612 0.156 0.219 1.007 1.001
ϕ1 0.500 0.508 0.504 0.111 0.171 1.002 1.001
ϕ2 -0.300 -0.291 -0.295 0.056 0.150 1.011 1.001

II

150

ω0 -2.000 -2.070 -1.992 1.102 0.339 1.002 1.001
ω1 -1.000 -1.448 -1.242 0.884 0.731 1.075 1.001
ϕ1 0.800 0.767 0.774 0.110 0.111 1.045 1.001
ϕ2 -0.400 -0.389 -0.396 0.112 0.213 1.004 1.001

200

ω0 -2.000 -2.016 -1.961 0.887 0.291 1.000 1.001
ω1 -1.000 -1.308 -1.167 0.710 0.552 1.077 1.001
ϕ1 0.800 0.777 0.782 0.094 0.096 1.029 1.001
ϕ2 -0.400 -0.394 -0.400 0.096 0.199 1.001 1.001

Still regarding the results displayed in Table 2, the posterior modes estimates showed a better performance
compared to the posterior mean in most of the evaluated scenarios. For example, Figures 1(a)-1(d) illustrate
the behavior of the posterior means and modes for a specific case in the first scenario. The only situation
where the posterior mean presented a better performance than the mode was when evaluating the parameter
ω0 in the second scenario with n equal 200, which is highlighted in Table 2.
When evaluating the simulation results of the third and fourth settings, which correspond to models

with seasonal patterns, we verified in Table 3 that the results of the CB were consistent with the results of
configurations I and II, showing a decrease as the sample size increased.
The values of the CE approached to one, but showed an increase in two situations associated with the

parameter ϕ1, which are highlighted in Table 3.
It can be observed from Table 3 that there was no significant superiority of the performance of the posterior

mode estimates compared to the posterior mean estimates in scenarios III and IV. In Figures 2(a)-2(d), we
illustrate the behavior of the posterior means and modes for cases of the fourth scenario. Regarding the
posterior standard deviations, our results indicated a reduction in the magnitude of the deviations as the
sample size increased, which also occurred in scenarios I and II.
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Figure 1 - Behavior of posterior means and modes for the parameters of the first scenario, where ω0 = -2.00,
ω1 = 0.60, ϕ1 = 0.50, ϕ2 = -0.30, and n = 150. The dashed vertical line, in gray, represents the real value.

(a) (b)

(c) (d)

Table 3 - Simulation results of the third and fourth scenarios, considering the ZAP(µt, νt) model with an
SAR(2) dependence structure in µt and w = 1× 103 replications of each model.

Scenario n θθθ Real Mean Mode SD CB CE R̂-split

III

150

ω0 -2.000 -2.115 -2.085 0.365 0.153 1.044 1.001
ω1 0.600 0.654 0.641 0.192 0.277 1.034 1.001
ϕ1 0.500 0.495 0.485 0.116 0.176 1.000 1.000
Φ1 0.500 0.486 0.478 0.108 0.165 1.009 1.000

200

ω0 -2.000 -2.063 -2.043 0.306 0.129 1.018 1.001
ω1 0.600 0.632 0.622 0.162 0.230 1.016 1.001
ϕ1 0.500 0.493 0.485 0.100 0.151 1.002 1.000
Φ1 0.500 0.489 0.483 0.093 0.141 1.007 1.000

IV

150

ω0 -1.000 -0.949 -0.948 0.360 0.275 1.010 1.000
ω1 -0.500 -0.612 -0.558 0.267 0.422 1.092 1.000
ϕ1 -0.800 -0.794 -0.795 0.045 0.045 1.009 1.000
Φ1 0.200 0.201 0.196 0.074 0.282 1.000 1.000

200

ω0 -1.000 -0.988 -0.988 0.311 0.241 1.000 1.000
ω1 -0.500 -0.578 -0.536 0.228 0.348 1.060 1.000
ϕ1 -0.800 -0.794 -0.795 0.038 0.039 1.013 1.000
Φ1 0.200 0.201 0.198 0.063 0.250 1.000 1.000

Overall, the computationally results indicated good properties of inference in terms of the reduction of CB
values as the sample size increased. However, we noted some alternation between the performance of the
posterior mean and mode, especially in configurations III and IV.
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Figure 2 - Behavior of posterior means and modes for the parameters of the fourth scenario, where ω0 = -1.00,
ω1 = -0.50, ϕ1 = -0.80, Φ1 = 0.20, and n = 200. The dashed vertical line, in gray, represents the real value.

(a) (b)

(c) (d)

Analysis of the influenza mortality series tuque p/
We considered data on the number of deaths, hospitalizations, and average length of hospital stay for
individuals aged ≥ 70 years due to influenza in the city of São Paulo, Brazil. Our data were provided by
the Departamento de Informática do Sistema Único de Saúde and cover the period from January 2008 to
September 2022 (Ministério da Saúde, 2022).

In the studied period 97 deaths were reported, resulting in an average of 0.548 deaths per month due
to influenza. However, as we can see in Figure 3(a), counts equal to zero occurred in 75.10% of the months,
suggesting an excess zeros situation. When we removed the months without deaths, the monthly average was
approximately two deaths. Regarding the skewness and kurtosis measures, the results indicated an asymmetric
and leptokurtic behavior, as the estimated values were 4.650 and 25.124, respectively. Additionally, the sample
variance was estimated at 2.374, which is approximately 4.332 times greater than the mean.

Figure 3 - (a) Number of deaths of individuals aged ≥ 70 years due to influenza in the city of São Paulo,
Brazil; (b) Autocorrelation function of the series presented in (a).

(a) (b)

8 Semin., Ciênc. Exatas Tecnol. 2024, v.45: e49943



Time-Varying Zero-Adjusted Poisson Distribution for Modeling Count Time Series

The behavior of the autocorrelation function (ACF) of the time series of deaths, presented in Figure 3(b),
suggested a non-stationary time series. The null hypothesis of no trend was not rejected by the Cox-Stuart
test (p-value = 0.405) (Cox & Stuart, 1955). Analogously, the Canova and Hansen test (Canova & Hansen,
1995) did not suggest the presence of a seasonal component (p-value = 0.402).
The behavior of the explanatory variables used to model the number of deaths (yt) is shown in Figure 4.

In Figure 4(a), we presented the number of hospitalizations, which show an average of approximately 4
hospitalizations per month, and in Figure 4(b) we presented the monthly average length of hospital stay. The
mean of the hospitalization time was approximately 5 days, with a maximum of 35 days. According to our
data, these hospitalizations resulted in an average cost of R$ 1.111,57 and a total cost of R$ 772.540,90 to
the healthcare system.
For modeling the series yt, the first lag of the number of hospitalizations (xt1) and the average length

of hospital stay (xt2) were considered as explanatory variables, arranged in xxxt, along with a second-order
autoregressive structure. It is, we suppose that yt | Ft−1 ∼ ZAP (µt, νt), where:

log(µt) = (1− ϕ1B − ϕ2B
2)

[
xxx⊤
t−1βββ − log(yt)

]
+ log(yt), (4)

logit(νt) = ω0 + ω1yt−1.

Figure 4 - Behavior of the number of hospitalizations (a) and average length of hospital stay (b) of individuals
aged ≥ 70 years, due to influenza, in the city of São Paulo, Brazil.

(a) (b)

The posterior sampling was performed via HMC using 10,000 iterations, warm-up equal to 4,000, thin
equal to 2, and 3 chains. According to the results, the β2 parameter, associated with the average length
of hospital stay, was not statistically significant at a 95% credibility level, suggesting that higher average
hospitalization times were not associated with an increase in deaths. Therefore, this variable was excluded
from the model, and the updated results are presented in Table 4.

Table 4 - Parameter estimates for the ZAP(µt, νt) model, fitted to the time series of the number of deaths
due to influenza in the city of São Paulo, Brazil.

Model Parameter Mean SD
HPD (95%)

R̂-split
Ll Lu

ZAP(µt, νt)

β1 0.018 0.004 0.009 0.025 1.000
ϕ1 0.187 0.082 0.030 0.353 1.000
ϕ2 -0.266 0.072 -0.406 -0.119 1.000
ω0 1.376 0.203 0.990 1.782 1.000
ω1 -0.427 0.149 -0.751 -0.166 1.000

The β1 estimates indicated a positive association between the number of hospitalizations due to influenza
in the period t− 1 and the number of deaths in the month t, being statistically significant. In addition to the
parameter β1, the parameters associated with the dependence structure, it is, ϕ1 and ϕ2, were also statistically
significant at the same level of credibility.
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The ω0 and ω1 posterior estimates indicated that if there are no deaths in a given month t−1, the probability
of no deaths occurring in the month t is 0.798 and we can observe a reduction in this probability as the
number of deaths in t− 1 increases. For example, if there are 5 deaths in a given month t− 1, the estimated
probability of no deaths occurring in month t is 0.318.

The Figure 5(a) presents the probability of the number of deaths to be zero in a month t based on the
number of deaths reported in the month t − 1, estimated according the equation logit(νt) = ω̂0 + ω̂1yt−1.
The latent behavior of νt over time is shown in Figure 5(b); note that it is possible to observe periods of
reduced probability of zero deaths, such as in May 2020 and January 2022, where ν̂t was estimated in 0.078
and 0.023, respectively.

Figure 5 - Estimated effect of νt on the number of deaths in a specific month t− 1 (a) and latent effect of νt
over time.

(a) (b)

By evaluating the behavior of the normalized randomized quantile residuals (rt) developed by Dunn and
Smyth (1996), we can observe, through Figure 6, that they exhibited an stationary behavior, as also indicated by
the Box-Pierce test (Box & Pierce, 1970) evaluated up to lag 24 (p-value = 0.402). Furthermore, the null
hypothesis of normality of the residuals was not rejected according to the Kolmogorov-Smirnov test (p-
value = 0.776).

Figure 6 - Autocorrelations function (a) and and quantile-quantile plot (b) of the residuals from the model
fitted to the influenza data.

(a) (b)

With the verification of the stationary behavior of the residuals, we can make predictions of the number
of deaths due to influenza using the expected value of the predictive distribution, estimated through Monte
Carlo sampling, with parameters given by:

log(µt) = (1− ϕi
1B − ϕi

2B
2)[βi

1xt−1,1 − log(yt)] + log(yt)

= βi
1xt−1,1 − ϕi

1[β
i
1xt−2,1 − log(yt−1)]− ϕi

2[β
i
1xt−3,1 − log(yt−2)],

logit(νt) = ωi
0 + ωi

1yt−1, i = 1, . . . , 1000.
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The forecast for October 2022 showed that no deaths are expected, as the expected value of yoct ≈ 0. In
the same month, the estimated probability of no deaths occurring was 0.719, with a 95% credibility interval
ranging from 0.644 to 0.797. However, the expected value of the positive component, i.e., E(yoct | yoct > 0),
approaches 1. This indicates that if deaths occur in October 2022, the expected count is equal to one.

Conclusion
In this paper, a GARMA(p, q) approach was proposed for modeling time series with excess zeros assuming

a zero-adjusted Poisson distribution with time-varying parameters. This approach allows the evaluation and
forecasting of zero counts through the parameter νt. We adopted a Bayesian-inference perspective using the
HMC algorithm for sampling from the joint posterior, which can provide benefits in terms of exploring the
parameter space.
In order to evaluate the inferential performance, a simulation study was conducted considering variations in

the autoregressive orders and the proportion of zeros. The computational results indicated a good inferential
performance, with improvements in most cases as the sample size increased. Regarding the application of the
model to influenza data, we verified the applicability and usefulness of the model in enabling the prediction
and measurement of the probability of death occurrence.
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