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ABSTRACT
Multiple attack detection schemes based on supervised batch learning are presented in the literature as an alternative toimprove Internet of Things (IoT) security. These schemes require benign and malicious traffic samples for trainingand are unable to easily adapt to changes in the analyzed data. In this work, we study how we can use DenStream, anunsupervised stream mining algorithm, to detect attacks in IoT networks. This type of algorithm does not require labeledexamples and can learn incrementally, adapting to changes. We aim to investigate whether attacks can be detected bymonitoring the behavior of DenStream’s clusters. The results showed that DenStream could provide indicators of attackoccurrence in TCP, UDP, and ICMP traffic.
keywords stream mining, cyberattack detection, internet of things, cybersecurity
RESUMO
Como opção para melhorar a proteção da Internet das Coisas (Internet of Things - IoT), a literatura apresenta diversaspropostas de detecção de ataques baseadas em aprendizado de máquina em lote supervisionado. Essas propostasrequerem exemplos de tráfego benigno e malicioso para treinamento, além de encontrar dificuldade para se adaptara mudanças nos dados analisados. Neste trabalho, estudamos como podemos aplicar um algoritmo de mineração defluxos de dados contínuos não supervisionado denominado DenStream para detecção de ataques em IoT. Algoritmosdesse tipo não requerem amostras rotuladas e aprendem de maneira incremental, adaptando-se a mudanças. O objetivodo trabalho é investigar se, ao monitorar o comportamento dos clusters criados pelo DenStream, podemos identificar aocorrência de ataques. Os resultados mostraram que o DenStream pode prover indicadores para detecção de ataques emtráfego TCP, UDP e ICMP.
palavras-chave mineração de fluxos contínuos de dados, detecção de ciberataques, internet das coisas, cibersegu-rança
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Introduction
Applying Internet of Things (IoT) technologies within the
home context is becoming increasingly accessible and the
impact on daily life is undeniable. Through smart devices,
these applications allow, for example, task automation,
safety conditions improvement, and health monitoring.
Unfortunately, alongside the multiple benefits, these de-
vices also come associated with cybersecurity risks. The
end user of residential solutions usually does not under-
stand how these devices operate on a technical level and
what kind of sensitive information they could trnasmit.
Furthermore, given the low level of cybersecurity em-
bedded in some of these devices and the fact that home
automation solutions tend to be highly available, home
automation devices become an attractive target for some
types of attacks (Chow, 2017; Yang et al., 2018).
Security controls for computer networks are not new.

However, in the context of IoT, there are some consider-
ations mustbe made. IoT networks are made of devices
with low computational power. With limited computa-
tional power, traditional network security controls do not
work properly. In addition, these networks are populated
with devices from different vendors, with diverse protocols
and embedded security controls, if any. Finally, within the
household context, end users rarely posses any knowledge
to deal with configurations and analysis that could help
improve security (Anthi et al., 2019; Moustafa et al., 2019;
Pishva, 2017).
To tackle the plethora of threats effectively, implement-

ing Intrusion Detection Systems (IDS) emerges as a viable
security control option. Various proposed approaches for
attack detection documented in the literature rely on batch
machine learning algorithms. Typically falling under su-
pervised learning techniques’ umbrella, these algorithms
require labeled samples of normal and malicious traffic
for effective training results. However, expecting non-
expert users living in residential environments to possess
skills essential for supervising and retraining models when
patterns change or novel threats appear would be unfair.
Therefore, it becomes pivotal to explore methodologies
aimed at detecting attacks in continuous data flows sus-
ceptible to behavioral transformations (Anthi et al., 2019;
Moustafa et al., 2019; Pishva, 2017; Zarpelão et al., 2017;
Zheng et al., 2018).
An alternative to batch learning algorithms is stream

learning algorithms. The main difference is that these
algorithms use incremental learning to update their models
every time a new data point is processed, making themodel
more resilient to concept drift or novel threats. Stream
learning algorithms, as in batch learning algorithms, can
be either supervised or unsupervised. In the latter category,
stream clustering algorithms can be cited. These could be

a good alternative to detecting intrusion in IoT networks
because they do not require labeled samples and adapt to
concept drifts in real-time (Aggarwal et al., 2003; Gama,
2010).
DenStream to detect attacks in IoT network traffic.

DenStream utilizes incremental learning to create and
maintain its clustering model. For this reason, it may
provide quicker responses to changes in behavior, show-
ing enhanced adaptability as it continuously refines its
model. Additionally, the algorithm is not require to
store historic observations, which is important becausethis
study considers scenarios with restrictions regarding
storage.
Algorithms like DenStream are focused on grouping

observations according to their similarity, implying that
they do not indicate which ones would be benign and mali-
cious. Therefore, a challenge in using DenStream to detect
attacks is to identify which characteristics of the clusters
produced by it may indicate that an attack is taking place.
The main hypothesis of the work is that monitoring the
distance between micro-clusters can provide indicators
that attacks are occurring. To this end, an experiment
will be carried out in which, first, the network traffic of
each IoT device is organized into three flows: TCP, UDP,
and ICMP. Then, an instance of DenStream will be ap-
plied to each of these three types of flows, processing
the traffic packet by packet. A public dataset contain-
ing network traffic from domestic IoT devices will be
used.
This work is organized as follows: Related Work

presents other studies on attack detection in IoT and dis-
cusses them from the perspective of this study. Stream
clustering gives a brief description of this area and the
DenStream algorithm. InMaterial and methods, the pro-
posed experiment is presented in detail. Results details the
study’s outcome, while Conclusions wraps up the paper
with some final remarks.
Related work
With the growth of IoT, the concern about the security and
privacy of users and systems has been also building up.
In recent years, several studies have been developed and
many focused on the development of intrusion detection
techniques. As discussed earlier, in this study we propose
to use a stream clustering algorithm to group similar data
points and look for indicators that may point to an attack.
In this section, studies that have convergence with the
object of this work will be discussed.
Lohiya and Thakkar (2020) present an extensive study

on the prospects of IDS in IoT using machine learning
and deep learning. In their paper, the authors discuss the
advantages and disadvantages of different deployment
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strategies (centralized, distributed, and hybrid) of IDS for
IoT networks, detection strategies (anomaly-based and
signature-based), attack types in IoT networks, and attack
detection techniques in IoT (machine learning and deep
learning). Lohiya and Thakkar conclude their paper by
pointing out some concerns and suggesting some direc-
tions for future work that proposes to contribute to the
development of IDS for IoT.
In their study, Anthi et al. (2019) proposed an IDS for

home IoT devices. The architecture proposed by Anthi et
al. starts with pre-processing. In this step, the main fea-
tures are selected to perform the classification accurately.
After the pre-processing step, the packets go through three
other steps. In the first one, a supervised machine learn-
ing (ML) algorithm is used to identify the device that is
generating or receiving the traffic. In this step, each IoT
device is evaluated, and a profile of its behavior is created.
In the next step, another supervised ML algorithm decides
whether the traffic coming from the device is benign or
malicious. If the packet is classified as malicious in this
step, a third algorithm comes into play and tries to identify
the type of attack.
Also exploring DenStream, Scaranti et al. (2022) pro-

pose an IDS for a Software Defined Network (SDN) envi-
ronment. First, the traffic is organized into flows, identified
by source address, destination address, source ports, and
destination ports. Then, the flow features are passed to the
detector, which uses the DenStream clustering algorithm
in its kernel and, finally, the types of attacks are identified.
Applying stream clustering techniques in a similar sce-

nario, Nakagawa et al. (2021) propose the use of the CluS-
tream algorithm for clustering network traffic packets and
applying the Page-Hinkley test to detect abrupt changes
in the monitored value series. Unlike DenStream, CluS-
tream requires the specification of themaximum number of
micro-clusters that will be maintained in the maintenance
phase. In their work, Nakagawa et al. suggest monitoring
the distance between the centroids of the micro-clusters
to detect the incidence of attacks. Using the proposed
method, they obtained an average detection rate of 92%
with an average accuracy of 81%.
Yin et al. (2018) proposed a new clustering algorithm

for data streams to be applied to the intrusion detection
problem. The proposed algorithm is a variation of existing
algorithms in the literature, such as DenStream itself, and
focuses on clustering the observations according to their
density in the search space and on establishing weight for
the analyzed observations, which decreases With age. To
detect attacks, the authors divided the problem into two
phases. In the first case, network traffic is clustered to
define normal behavior profiles, i.e., this traffic must not
containmalicious packets. Then, the second phase consists

of clustering the traffic and comparing the result of this
process with what was found in the first phase. In the event
of a discrepancy, an attack detection alert is issued. The
normal behavior profiles are updated frequently so that the
system can adapt to changes in the data. The experiments
showed good results but used a rather outdated dataset,
KDDCup 1999.
The analysis of the related work shows that the use of

batch supervised learning is still quite present, as we can
see in the works of Anthi et al. (2019) and Lohiya and
Thakkar (2020). Studies that relied on stream data mining
are also found, but they have some differences concerning
this work. Scaranti et al. (2022) also used DenStream, but
analyzed IP flows, instead of traffic packets, in a different
environment: SDNs. Yin et al. (2018) focused their efforts
on building a new clustering algorithm, but did not clearly
define which type of network or traffic they were going to
address. Nakagawa et al. (2021) focused on IoT networks
but used a different clustering algorithm to the one applied
in this work.
Overall, most of the reviewed works proposed different

algorithms or focused on different scenarios. Batch learn-
ing algorithms have a low update frequency and require
large data volumes for training, which is not ideal in home
network environments. Also, the reviewed studies that
shared more similarities with this one in terms of algorithm
choices either did not include packet-to-packet analyses,
or were not applied in home IoT environments. In this
work, we explore a detection model based on the stream
clustering algorithm DenStream. This approach does not
require to store observations since the chosen algorithm
learns incrementally, and it is focused on packet-by-packet
analyses of home IoT network devices.
Stream clustering
In batch learning algorithms, training to induce a learning
model is carried out on a predefined set of data. In other
words, a portion of the data is separated, and the algorithm
is applied to it to create a model that represents that static
data set. The data can be reused several times in the learn-
ing process and usually generate highly accurate learning
models. To update the learning model, one cannot just
present the new observations to the algorithm; in batch
learning, the update is only valid when the entire batch has
been processed. In other words, for scenarios that require
a rapid response to changes, such as the one in this study, it
would not be interesting to work with this premise (Gama
& Rodrigues, 2007).
Scenarios such as big data, smart cities, healthcare, and

IoT network monitoring, as is the case in this work, need
faster responses to changes in behavior (Muthukrishnan,
2005).
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In stream mining applications, we cannot define a start
and end point for the data flow. If we look at the traffic
packets of a network device, the potential size of this
series of values is infinite. As long as the device is on, new
packets will be generated and this will only cease when
the equipment is turned off or interrupted.
The behavior of a data stream is unpredictable and tends

to change over time. Such problems, it is interesting to
use learning models that can be updated and modified in-
crementally. This work, for example, studies IoT network
traffic in a smart home environment. The behavior of net-
work devices installed in a home can change over time,
and it is unreasonable to expect an operator to update the
learning model to incorporate this new behavior (Gama &
Rodrigues, 2007; Muthukrishnan, 2005).
In clustering problems, the goal is to group the avail-

able data points into clusters according to the similarity
between them. For example, when monitoring a computer
network, we might assume each packet is a data point and
choose some fields from the headers to analyze, such as
packet size, source and destination port and TTL (time
to live). In this case, the clustering algorithm would seek
to assign to the same cluster packets that have similar
sizes, ports and TTL. Still taking into account the exam-
ple of a computer network, suppose that a new service
has been installed in it, and, therefore, there will be pack-
ets with port numbers and sizes that were not previously
observed. This indicates that the clusters that have been
defined so far do not match these new packets. It would be
necessary to run the clustering algorithm again so that the
clusters are created considering this new behavior. This
situation is frequent when data streams, such as network
traffic, are mined. To address the particularities of network
traffic, the clustering algorithm must meet the following
requirements:
• Do not assume the initial number of clusters.
• Discover clusters with arbitrary shape.
• Be capable of handling outliers.
• Create, remove and merge clusters in real time.
DenStream is a data stream clustering algorithm pro-

posed by Cao et al. (2006) that meets these requirements.
Some highlights of DenStream:
• DenStream stores statistical representations of clus-
ters, rather than storing the data points that form the
cluster. This decision allows storing data from infi-
nite data streams without requiring unlimited storage
space.

• The algorithm introduces a function that changes
the weight/relevance of each cluster in each itera-
tion. Clusters that receive new data gain weight

and the others lose. This function determines the
relevance of a cluster in the current time window
and, based on a tolerance value, DenStream deter-
mines whether the cluster will be removed from the
model. This makes room for new clusters to be cre-
ated while maintaining the shape and accuracy of the
model.

• Because of the adaptability of the model and the
ability to deal with outliers, the quality of DenStream
clustering is usually high.

• DenStream is a clustering algorithm that groups data
points based on their density in the search space.
As a result, it can able to identify arbitrarily shaped
clusters.

DenStream is divided into two phases: the online phase
and the offline phase. In addition, the algorithm provides
three types of micro-clusters: potential core-micro-cluster,
outlier micro-cluster and core micro-cluster.
The first step of the algorithm is to process an initial

number of data points determined through the parame-
ter ninit, which are accumulated in a batch and clustered.After processing this initial batch of observations, Den-
Stream starts the online phase using these clusters as a
starting point.
In the online phase, data points are processed one

by one, as they form a data stream. When a new data
point arrives, at first, DenStream checks if it belongs to
one of the potential core-micro-clusters. These repre-
sent the core behaviors of the data in the online phase.
In case the new data point is not within the bound-
aries to be assigned to an existing potential core-micro-
cluster, the algorithm tries to assign it to the closest outlier
micro-cluster.
Outlier micro-clusters are clusters with more sporadic

data points, which can either evolve into a potential core-
micro-cluster or be discarded according to the strategy
of removing clusters with low relevance, i.e., that do
not receive new data points in a given time interval. Fi-
nally, if the data point is not close to any cluster, the
algorithm creates an outlier micro-cluster for that data
point.
The offline phase occurs on user demand. In this step,

DenStream uses a variation of the DBScan clustering al-
gorithm that connects potential core-micro-clusters that
are nearby to generate a core micro-cluster. Actually, the
core micro-cluster is a collection of non-redundant poten-
tial core-micro-clusters, and this collection is supposed
to cover the entire area that the data points would be in if
it were possible to register all of them in data streaming
scenarios.
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Material and methods
The main objective of this work is to investigate the possi-
bility of using the stream clustering algorithm DenStream
to detect attacks on packets collected in IoT network traffic.
The vast majority of studies focused on attack detection
are based on batch learning algorithms, such as Random
Forest (Resende & Drummond, 2018) and Support Vector
Machine (Mohammadi et al., 2021). These algorithms
approach learning as a static process. They first accumu-
late a large volume of observations, then analyze them and
induce a learning model. Updating these models tend to be
costly, because they involve repeating the aforementioned
process (Ramírez-Gallego et al., 2017).
To analyze computer network traffic, more dynamic

solutions are required. Since the network behavior changes
over time, the algorithms involved must be able to learn
incrementally, as observations are collected. Additionally,
streams are potentially infinite and storing all these data for
long periods is difficult. Stream mining algorithms meet
these requirements better, as they can learn incrementally
and do not require observations to be stored to be revisited
during analyses.
The use of supervised learning in attack detection mod-

els is something to note. Supervised algorithms require
labeled data points for training, i.e., in the case of attack
detection, it is necessary to provide the algorithm with
examples of normal and malicious behavior. Given the
great diversity of attacks and the volume of data points that
we can have when analyzing network traffic, preparing
sets of properly labeled data for these applications is very
challenging. A possible alternative is the use of clustering
algorithms, which fall into the category of unsupervised
learning. In this case, the algorithm tries to create groups
by gathering data points that have a higher degree of simi-
larity between them, as is the case of the aforementioned
DenStream.
It is important to note that clustering algorithms only

organize data points into clusters, and do not assign la-
bels or classifications to them. Therefore, it is neces-
sary to create additional mechanisms to be able to iden-
tify which clusters correspond to normal or malicious
observations. In this work, we look for indicators in
the behavior of the online-generated micro-clusters that
show detectable variations when attacks occur. We will
mostly analyze one indicator: the distance between the
center of different types of micro-clusters produced by
DenStream.
Figure 1 illustrates the step-by-step of this experi-

ment, the details of which will be presented in the fol-
lowing sections. The whole experiment will be cen-
tered on the analysis of packets collected from network
traffic.

Hence, in the process proposed in Figure 1, each data
point represents a traffic packet. These packets are sepa-
rated according to the device they were transmitted from/to
and the protocol that is positioned just above IP in the
protocol stack: ICMP, TCP or UDP. The rationale behind
this separation is to organize the data points before they
are presented to the clustering algorithm.
If all packets collected in a network are presented indis-

criminately to the clustering algorithm, it will tend to create
an excessive amount of clusters to represent the multiple
devices and protocols. This makes it difficult to identify
clusters representing normal and malicious behaviors. By
separating the packets according to the device and protocol
beforehand, we can run different instances of the cluster-
ing algorithm for each of these subgroups. Therefore, we
allow the clustering performed for each subgroup to focus
only on behaviors and events that are more specific to each
device and protocol.
Preprocessing

The first step of preprocessing is to prepare the data streams
that will be clustered byDenStream instances. We consider
a scenario in which network traffic would be collected by
a device or software at the point of interconnection of the
local network with the Internet. These traffic packets are
then classified according to the local network device that
they have as their destination. The packets related to each
device are further organized into three different groups:
one for TCP packets, another for UDP packets and a third
for ICMP packets. With the packets separated by device
and protocol, we extract the header fields that can best
signal the occurrence of different attacks, according to
Nakagawa et al. (2021) and Anthi et al. (2019).
The selected fields are presented in Table 1. The

frame_len field, being a field present in any packet, and
the ip_flags, ip_flags_df, ip_flags_mf, ip_frag_offset and
ip_ttl fields, being part of the IP header, are selected
to compose all data points, regardless of whether the
packet is UDP, TCP, or ICMP. The fields tcp_dstport,
tcp_flags_syn, tcp_flags_ack, and tcp_flags_push are se-
lected to compose the data points that represent TCP pack-
ets, while the field udp_dstport is selected for the data
points that represent UDP packets. For ICMP packets,
the icmp_code field is selected. At the end of this step,
we have the dataset to be analyzed, which consists of
three data flows (TCP, UDP and ICMP) for each network
device.
After preparing the data stream for the experiment, we

conducted the data standardization. The dataset features
are in quite different orders of magnitude. The frame_len
field, for example, carries values greater than 1000,
while the fields representing flags carry binary values.
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Figure 1 - Diagram of the proposed experimental design.

Table 1 - Extracted features’ description.
Attribute Description
frame_len Packet length
ip_flags Packet fragmentation control flags
ip_flags_df Flag Don’t Fragment which tells the intermediary not to fragment the packets
ip_flags_mf Flag More Fragments which indicates if the fragment is the last in the composition
ip_frag_offset Indicates where in the original package the fragment should be inserted

ip_ttl Packet’s Time to Live
tcp_dstport TCP destination port
tcp_flags_syn Three-way handshake synchronization flag
tcp_flags_ack Three-way handshake acknowlegment flag
tcp_flags_push Flag indicating whether the packet should be buffered before being delivered to the application
udp_dstport UDP destination port
icmp_code ICMP packet type

This may end up influencing the calculation of the dis-
tance between data points and, consequently, the way they
are clustered. To standardize the data, we will use the
Standard Scaler method, which transforms them to have a
mean equal to zero and variance equal to 1. The implemen-
tation of the method employed in this work is provided by
the River library (River, 2022).
Finally, with the data stream ready, we can move on

to the step of choosing which ranges of values will be
tested for the DenStream hyperparameters. In Table 2,
a description of each hyperparameter function is pre-
sented. Changes in these hyperparameters cause major
changes in the way the algorithm groups the incoming data
stream.
Depending on the hyperparameter values, we have clus-

ters of different sizes and shapes, which also influences
the creation of new clusters and the merging of existing
clusters. In addition, the hyperparameters also determine
when older or less weighted clusters should be removed.

All these points influence the metric we want to observe:
distances between clusters. Therefore, it is important to
choose broad value ranges that allow us to explore the po-
tential of DenStream for the data we are analyzing. On the
other hand, excessively wide value ranges tend to make
it difficult to run the experiments, as we have a combi-
natorial explosion when considering all scenarios for all
hyperparameters. As a starting point to determine the
range of hyperparameter values, we used the values se-
lected by (Scaranti et al., 2022) and then expanded them
to create our ranges of values, which are presented in
Table 3.
Stream mining

With the data prepared, and the value ranges for the hy-
perparameters selected, the experiment moves to its main
point: execution of instances of the DenStream algorithm
so that it can be analyzed how the clusters behave during
the occurrence of attacks.
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Table 2 - DenStream’s hyperparameters description.
Hyperparameter Description

λ - Decaying factor
Limits the influence of historic data,higher λ values mean lower influence ofhistoric data on the clustering process

β - Outlier tolerance factor
Determines the boundary of outlier micro-clustersin relation to core micro-clusters,

β must assume (0, 1]

µ - Core weight threshold
Determines the boundary of outliermicro-clusters in relation to core micro-clusters,

β ∗ µ > 1

ε - Maximum radius of a micro-cluster Determines the maximum radiusof the micro-cluster neighborhood
InitN - nsamples_init Number of iterations used to determinethe kickoff for the online phase
v - Stream speed Stream speed or the amount of data per time unit,each package represents one data point

Table 3 - Value ranges for DenStream’s hyperparameters.
Hyperparameter Value Range
λ - Decaying factor [0.01, 0.05, 0.10, 0.25, 0.50, 0.75, 1.00]

β - Outlier tolerance factor [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1.00]
µ - Core weight threshold [10,100,1000,1500, 2000]

ϵ - Maximum radius of a micro-cluster [0.02, 0.05, 0.10, 0.25, 0.5, 0.75, 1.00, 5.00]
InitN - n_samples_init [1000]

v - Stream speed [1]

To study how the distance between clusters can be re-
lated to the occurrence of attacks, two metrics based on the
Euclidean distance were developed. For both metrics, we
first need to build a matrix that computes the Euclidean dis-
tance between existing micro-clusters in a given iteration.
More precisely, the clusters are analyzed pair-wise, and
for each pair the Euclidean distance between the centers of
these clusters is calculated. Suppose there are n clusters in
a given iteration. A matrix D with dimensions n× n will
then be formed. Each position i, j of the matrix will store
the Euclidean distance between the centers of clusters i
and j. From this matrix, we will extract two metrics: the
average distance and the maximum distance. Considering
these two metrics and the different types of micro-clusters,
the following series were evaluated:
• Maximum distance between potential core-micro-
clusters: this series contains the largest Euclidean
distance between the centers of the potential core-
micro-clusters generated for each iteration.

• Average distance between potential core-micro-
clusters: this series contains the average Euclidean

distance between the centers of the potential core-
micro-clusters generated for each iteration.

• Maximum distance between outlier micro-clusters:
this series contains the largest Euclidean distance
between the centers of the outlier micro-clusters gen-
erated for each iteration.

• Average distance betweenmicro-cluster outliers: this
series contains the average Euclidean distance be-
tween the centers of the outlier micro-cluster gener-
ated for each iteration.

• Maximum distance considering potential and outlier
micro-clusters: this series contains the largest Eu-
clidean distance between the centers of both micro-
cluster types generated for each iteration.

• Average distance considering potential and outlier
micro-clusters: this series contains the average Eu-
clidean distance between the centers of both micro-
cluster types generated for each iteration.

We computed and stored these series for each combina-
tion of DenStream hyperparameter values.
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Page-Hinkley test

Proposed by Alan Page and Lawrence Hinkley in 1954
(Page, 1954), the Page-Hinkley test is a statistical tech-
nique widely used in sequential analysis to detect sud-
den and unexpected changes in monitored data over time.
In other words, the Page-Hinkley test can be used to de-
tect anomalies in time series. It’s based on the concept of
“cumulative sum”, which is a way of tracking the behavior
of data over time and calculating the sum of deviations or
differences between observed and expected values. The
technique is particularly useful in situations where one
wants to quickly detect any significant changes in the data
under analysis.
The practical application of the Page-Hinkley test in-

volves calculating the cumulative sum of the deviations be-
tween the observed data and the expected values. This sum
is compared with a predefined threshold, and when this
threshold is exceeded, a change is detected and considered
statistically significant. The result is an alert indicating a
change in values in the series.
In the context of this study, we employ the Page-Hinkley

test to automatically detect changes in the series formed
by the metrics under analysis, aiming to assess whether
they serve as indicators of attacks. The idea is to compare
the changes detected by the Page Hinkley test with the
points where attacks were observed. Scenarios in which
most of the detected changes align with attacks suggest
that the metrics have the potential to be attack indicators.
To objectively analyze these scenarios, we collect the num-
ber of true and false Page Hinkley alerts in each case as
well as their delay to signal attacks. Subsequently, we
select scenarios with the most promising results for further
analysis.
Table 4 presents the hyperparameter values used in the

Page Hinkley test. The DenStream implementation em-
ployed in this work is provided by the River library (River,
2023), which uses Python programming language. Exper-
iments were performed in a computer with an Intel Core
i5-8600k processor and 16 GB of RAM DDR4 2400MHz.
In our study, the test was applied to all the series contain-

ing the metrics derived from Euclidean distances between
the centers of the micro-clusters. Over them, we run the
Page-Hinkley test with different values of threshold. For
each threshold, we compute the following metrics:
• Total of alerts: represents the number of times the
Page-Hinkley test indicated a change in the series.

• Total of true positives: the amount of times an alert
happened at a time an attack was active.

• Total of false positives: the amount of times an alert
happened at a time when there was no active attack.

• Delay: delay between the start of an attack and the
alert generated by Page-Hinkley.

Datasets

To perform the experiments, the dataset made publicly
available by Anthi et al. (2019) was used. To generate this
dataset, the researchers created a controlled environment
with home IoT devices connected to the Internet. Different
attacks were executed against these IoT devices, and the
packets of this network traffic were collected throughout
the experiment. The researchers then made available a
dataset that contained the TCP/IP protocol header fields
for each of the collected packets, except the IP addresses,
which were omitted. All packets are labeled according
to the attack performed at that time and the source or
destination device of the packet.
The devices used to create the dataset are listed in

Table 5. The following attacks were performed against
these devices:
• Man in the middle: attack where the attacker po-
sitions themselves between the transmitter and the
receiver and eavesdrops on sensitive information.
One way to create an attack like this would be for the
attacker to take advantage of some weakness of the
various and heterogeneous IoT devices in a home and
through it gain access to monitor the rest of the data
stream of the internal network, potentially capturing
private and/or sensitive information.

• Denial of Service (DoS): an attack where a device is
forced to be unable to perform a service. This type of
attack saturates a device with so many requests that
it denies new legitimate requests due to its inability
to respond to them.

• Scanning: in this attack, the attacker scans the net-
work to gather information about the potential target.
Using this technique, the attacker can check which
devices and services are being used by the observed
network and potentially exploit a vulnerability of the
active applications.

To carry out the experiment, we processed this dataset
so that we had the packets separated according to device
and protocol (TCP, UDP, or ICMP), and only the fields of
interest for our experiment were extracted.
Table 6 shows the details of each of the scenarios we set

up in the experiment, considering the different devices and
protocols. The “Size” column indicates the total number
of packets for the respective device and protocol. All
packets of each scenario are ordered by their timestamp to
form a series, and the columns “Start” and “End” of the
table show in which position of the series the attacks start
and end.
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Table 4 - Values for Page-Hinkley test’s hyperparameters.
Parameter name Description Values
min_instances The minimum number of instances before start detecting change [1000]

delta Controls sensibility threshold for the test [0.005]
threshold The change detection threshold (lambda) [20, 50, 100, 150, 200]
alpha The forgetting factor, used to weight the observed value and the mean [0.9999]

Table 5 - IoT devices in the used dataset.
IoT device Protocols

TP-Link NC200 (cam) WiFi
Hive Hub Ethernet & ZigBee

Lifx Smart Lamp WiFi & ZigBee
Samsung Smart Things Hub Ethernet & BLE

TP-Link SmartPlug WiFi

Table 6 - Dataset details regarding the number of packets,types of attack, and attack start and end points.
Device Protocol Size Attack type Start End

TPLink Cam
TCP 22376

Scanning 9611 18141DoS 18142 22322MITM 22323 22375

UDP 7626
Scanning 6161 6470DoS 6471 7552MITM 7553 7625

Hive
TCP 47905

Scanning 13128 33777DoS 33778 47298MITM 47299 47905
ICMP 2710 DoS 2363 2559MITM 2559 2710

LifX TCP 12513 DoS 2883 12338MITM 12339 12513
ICMP 13127 MITM 12857 13127

Smart Things TCP 42180
Scanning 14618 33567DoS 33568 41519MITM 41520 42180

TpLink Plug
TCP 14142 DoS 13909 14142
UDP 10898 DoS 1863 2465iot-toolkit 2466 10898

Results

To present the results obtained with the experiment’s ex-
ecution, we first show the combinations of DenStream
hyperparameter values that yielded the best results for
each scenario.
Next, we analyze in more detail the scenarios with the

best results to check how the series derived from the Eu-
clidean distances between micro-clusters behaved when
attacks took place.

Analysis of values for DenStream
hyperparameters

With all scenarios in hand, the first analysis verified if the
hyperparameter values that yielded the best results were
similar; this could indicate if it would be possible to find
hyperparameter values that could be used for different
devices and protocols in a network. To do so, we ranked
the hyperparameter value combinations in each scenario
according to the number of false positives, number of true
positives, and delay on true positive detection. We then
selected the three best hyperparameter value combinations
for each device and protocol pair.
All the best combinations found were related to series

consisting of the maximum distance between potential
core-microclusters.
Table 7 shows that the DenStream hyperparameter

values tend to be similar within each scenario, but no
values stand out when all the scenarios are considered
together. This suggests that the optimal DenStream hyper-
parameter values for each device and protocol are different,
and it is important to pay close attention to the hyperpa-
rameter values that are being selected in the DenStream
clustering phase.
Another result to note was that, except for TP-Link

Plug UDP scenario, for the top three ranked results on
each scenario, the parameter that fluctuated was ϵ. This is
the hyperparameter that defines the maximum radius of
the micro-cluster neighborhood, and as the results suggest,
varying its value up to a certain point did not affect the
clustering behavior for these series.
Analysis of series behavior

Considering only the series produced for the best hy-
perparameter value combinations, the Page-Hinkley test
detected the start of the malicious traffic for all the de-
vices, and the delay values were relatively low. The
lowest delay value was 17 iterations, each iteration be-
ing a single packet, found for the Hive ICMP scenario,
whereas the highest one was 282 iterations, found for
the Hive TCP scenario. This suggests that the maxi-
mum Euclidean distance between potential core-micro-
clusters could be used to detect the start of attacks on these
devices.
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Table 7 - Ranked results for the Maximum distance between potential core-micro-cluster series.
Dataset info DenStream hyperparameters Page-Hinkley parameters Page-Hinkley test metrics (Total)

Device Protocol Decay Beta Mu Epsilon Threshold Alerts True positive False positive Delay

TPLinkCam
TCP

0.25 0.4 10 0.02 200 1 1 0 49
0.25 0.4 10 0.05 200 1 1 0 49
0.25 0.4 10 0.1 200 1 1 0 49

UDP
0.01 0.1 1000 0.02 1 2 1 1 56
0.01 0.1 1000 0.05 1 2 1 1 56
0.01 0.1 1000 0.1 1 2 1 1 56

Hive
TCP

0.1 0.2 100 0.02 200 2 1 1 282
0.1 0.2 100 0.05 200 2 1 1 282
0.1 0.3 100 0.02 200 2 1 1 276

ICMP
0.01 0.01 1000 0.02 0.001 1 1 0 17
0.01 0.01 1000 0.02 0.5 1 1 0 17
0.01 0.01 1000 0.02 1 1 1 0 17

Lifx
TCP

0.1 0.3 100 0.25 50 1 1 0 57
0.1 0.3 100 0.5 50 1 1 0 57
0.1 0.3 100 0.75 50 1 1 0 57

ICMP
0.01 0.01 1000 1 0.001 1 1 0 135
0.01 0.01 1000 1 0.5 1 1 0 135
0.01 0.01 1000 1 1 1 1 0 135

SmartThings TCP
0.25 0.4 100 0.02 150 2 1 1 83
0.25 0.4 100 0.05 150 2 1 1 83
0.25 0.4 100 0.1 150 2 1 1 83

TPLinkPlug
TCP

0.25 0.1 100 0.02 5 1 1 0 34
0.25 0.1 100 0.05 5 1 1 0 34
0.25 0.1 100 0.1 5 1 1 0 34

UDP
0.01 0.2 100 0.02 0.5 1 1 0 139
0.01 0.2 100 0.02 1 1 1 0 139
0.01 0.2 100 0.02 5 1 1 0 139

Figures 2 and 3 illustrate these situations. The red verti-
cal line indicates the iteration at which malicious packets
were introduced and the blue markers indicate the itera-
tion where the Page-Hinkley test detected a change in the
series.
Figure 2 shows the scenario for the Lifx device and TCP

protocol, where a denial of service attack was initiated
at iteration 2883 and lasted until iteration 12338, being
immediately succeeded by a man-in-the-middle attack that
extended until the scenario was over. In the graph, it is
noted that, during the period before the first attack, the
observed series remained stable. When the first attack
begins, the series shows a sudden and strong drop, which is
detected by the Page Hinkley test. The transition between
different attacks is not signaled by the series.
Figure 3 shows the scenario for the TP-Link Cam device

and TCP protocol, where a scanning attack was initiated
at iteration 9611 and lasted until iteration 18141, being
immediately succeeded by a denial of service attack that
extended until iteration 22322, and immediately succeeded
by a man-in-the-middle attack that lasted until the scenario
was closed. In the graph, it is noted that, during the period
before the first attack, the observed series remained stable.

Similar to the previous example, the series shows a drop
when the first attack starts, which is quickly detected by
the Page Hinkley test.
To further illustrate the results, Figure 4 and Figure 5

shows results with UDP and ICMP protocols.
Figure 4 shows the scenario for the TP-Link Plug device

and UDP protocol, where a denial of service attack was
initiated at iteration 1863 and lasted until iteration 2465,
being immediately succeeded by an IoT-toolkit attack that
lasted until the scenario was closed at iteration 10898. In
the graph, we observe that in this scenario, before the in-
troduction of the first attack, the series values fluctuated
more than in other cases, but Page-Hinkley test was still
able to produce an alert with a delay of 139 iterations. Ad-
ditionally, the series clearly demonstrates a change in its
behavior when the attack begins, meaning that the maxi-
mum distance between the potential core-micro-clusters
served as a reliable indicator of the attack occurrence.
Figure 5 shows the scenario for the Hive device and

ICMP protocol, where a denial of service attack was initi-
ated at iteration 2363 and lasted until iteration 2559, be-
ing immediately succeeded by a man-in-the-middle attack
that lasted until the scenario was closed at iteration 2710.
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Figure 2 -Maximum distances between potential core-micro-clusters for the Lifx device and TCP protocol. Parameters:
λ - 0.1 / β - 0.3 / µ - 100 / ϵ - 0.25 / v - 1.

Figure 3 -Maximum distances between potential core-micro-clusters for the Tp-Link Cam device and TCP protocol.Parameters: λ - 0.25 / β - 0.4 / µ - 10 / ϵ - 0.1 / v - 1.

Figure 4 -Maximum distances between potential core-micro-clusters for the Tp-Link Plug device and UDP protocol.Parameters: λ - 0.01 / β - 0.2 / µ - 100 / ϵ - 0.02 / v - 1.

Figure 5 -Maximum distances between potential core-micro-clusters for the Hive device and ICMP protocol. Parameters:
λ - 0.01 / β - 0.01 / µ - 1000 / ϵ - 0.02 / v - 1.
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The observed series remains stable until the first attack
was initiated, then the series remains flat, and a new peak
occurred immediately after the second attack is introduced.
Therefore, in this scenario, the series shows a change for
a transition between two different attacks, which did not
happen in the other analyzed scenarios. However, the
Page-Hinkley test was not able to produce an alert for this
change in the series. This might be attributed to the param-
eter values that are not sensitive enough to detect changes
of that magnitude. The observed shift in the series, indica-
tive of a change in attack type, is not as pronounced as
those typically observed during the transition from normal
to attack traffic.
Conclusions
In this work, we investigate the possibility of using the
DenStream clustering algorithm to detect attacks on IoT
network traffic. The central idea was to analyze whether
monitoring metrics related to the distance between clus-
ters formed by DenStream could offer indicators of the
occurrence of attacks. The process of applying DenStream
for traffic analysis started with data preparation. Packets
collected from network traffic were separated by device
and protocol (TCP, UDP, or ICMP). Fields from the head-
ers of the protocols of interest (IP, TCP, UDP, and ICMP)
were then selected to compose the data points that were
analyzed by the algorithm.
During the application of DenStream, metrics related

to the distance between potential core-micro-clusters and
outlier micro-clusters in the search space were collected
at each iteration. By applying the Page-Hinkley test to
automatically detect changes in themeasured distances, we
found that for all the devices the behavior of the maximum
distances between potential core-micro-clusters signaled
the occurrence of attacks. Therefore, monitoring these
distances can be the core of a technique to detect attacks
on these devices.
The selection of hyperparameter values for DenStream

is a critical aspect that deserves careful consideration. The
experiments showed that each combination of the device
and protocol required a different set of hyperparameter
values to yield the best results. This poses a significant
challenge when it comes to deploying this algorithm in
practical scenarios since tuning hyperparameters for every
single device would be an impractical task for end users.
Therefore, additional techniques must be developed to
automate the process of hyperparameter tuning.
In future work, some propositions could be made. First,

testing the performance of this implementation with dif-
ferent datasets could prove valuable for further validation
of the proposed method. Secondly, work with other ways
of producing the observations that will be analyzed by

DenStream. In addition to performing packet-by-packet
analysis, the option of analyzing IP flows could also be
tested. Third, validate the performance of this implemen-
tation in bigger scenarios with more devices.
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