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ABSTRACT
This work assesses the effectiveness of heterogeneous computing based on a CUDA implementation for real-time
ego-lane detection using a typical low-cost embedded computer. We propose and evaluate a CUDA-optimized algorithm
using a heterogeneous approach based on the extraction of features from an aerial perspective image. The method
incorporates well-known algorithms optimized to achieve a very efficient solution with high detection rates and combines
techniques to enhance markings and remove noise. The CUDA-based solution is compared to an OpenCV library and to
a serial CPU implementation. Practical experiments using TuSimple’s image datasets were conducted in an NVIDIA’s
Jetson Nano embedded computer. The algorithm detects up to 97.9% of the ego lanes with an accuracy of 99.0% in the
best-evaluated scenario. Furthermore, the CUDA-optimized method performs at rates greater than 300 fps in the Jetson
Nano embedded system, speeding up 25 and 140 times the OpenCV and CPU implementations at the same platform,
respectively. These results show that more complex algorithms and solutions can be employed for better detection rates
while maintaining real-time requirements in a typical low-power embedded computer using a CUDA implementation.
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RESUMO
Este trabalho avalia a eficácia da computação heterogênea, com base em uma implementação CUDA, para detecção de
faixas de sinalização de trânsito em tempo real um computador embarcado de baixo custo típico. O trabalho propõe e
analisa um algoritmo com otimizações CUDA usando uma abordagem heterogênea baseada na extração de características
de uma imagem em perspectiva aérea. O método incorpora algoritmos conhecidos otimizados para obter uma solução
muito eficiente com altas taxas de detecção, além de combinar técnicas para melhorar as marcações e remover ruídos. A
solução baseada em CUDA é comparada a uma biblioteca OpenCV e a uma implementação sequencial em CPU. O
método é avaliado por um experimento prático usando conjuntos de dados de imagens do banco de dados TuSimple em
um computador embarcado NVIDIA Jetson Nano. O algoritmo detecta até 97,9% das faixas de sinalização com uma
precisão de 99,0% no melhor cenário avaliado. Além disso, o algoritmo com otimizações em CUDA resulta em taxas
superiores a 300 fps, acelerando 25 vezes e 140 vezes a implementação do OpenCV e da CPU, respectivamente, todas
avaliadas no computador embarcado NVIDIA Jetson Nano. Esses resultados mostram que algoritmos e soluções mais
complexos podem ser empregados para obter melhores taxas de detecção, mantendo os requisitos em tempo real em um
computador embarcado de baixa potência típico usando uma implementação CUDA.
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Introduction
Most traffic accidents can be attributed to driver errors or
response time (Singh, 2015), and the automotive industry
invests in driving assistance systems (ADAS) to reduce in-
juries and fatalities caused by that. These systems typically
have a network of integrated sensors as their source of in-
formation, most commonly cameras, due to the amount of
information they provide at a relatively low cost. The Lane
Departure Warning System (LDWS) is one of the subsys-
tems for intelligent vehicle technology, which aids the
driver in dangerous circumstances, increasing the driver’s
safety.
In addition, the minimum safety requirements for cars

are constantly growing, such as those established by the
NCAP (New Car Assessment Programme). These require-
ments have increased not only in developed nations’ mar-
kets but also in emerging economies. Therefore, imple-
menting these assistance systems in automobiles, includ-
ing the LDWS, is now vital to the automotive industry and
not only for luxury or autonomous cars.
An obstacle to lane detection in practical implementa-

tions is that a considerable part of the literature around
the topic disregards the computational complexity of its
algorithms, as they do not aim to execute their methods
in embedded systems. Therefore, it limits or renders it
impossible to reproduce such methods in real-time appli-
cations (Küçükmanisa et al., 2019). For example, deep-
learning, convolutional neural networks, and pixel-level
classification networks have recently been used for lane
detection (Gansbeke et al., 2019; He et al., 2016; Hernán-
dez et al., 2017; Kim et al., 2017). However, according
to Cao et al. (2019), although results show these methods
increase detection rates and recognition accuracy, they
have limitations for real-time implementation. Specific
computational capabilities are required for the real-time
performance of these techniques, which are rarely found
in embedded systems.
A viable technique to boost real-time image process-

ing performance is parallelizing computer vision opera-
tions and employing hybrid computing utilizing CUDA
(Compute Unified Device Architecture). For instance, the
works of Zhi et al. (2019), Li et al. (2020), and Jaiswal
& Kumar (2020) highlight these gains in particular ap-
plications. In this direction, our work contributes by dis-
playing how heterogeneous computing based on a CUDA
implementation can boost the performance of ego-lane de-
tection in a typical low-cost embedded computer. We use
an improved version of the algorithm initially approached
in Silva et al. (2020) and implement it using CUDA,
whose performance is compared to an implementation
in the same GPU using the OpenCV library and to a CPU-
based one.

Although some authors (Küçükmanisa et al., 2019;
Mammeri et al., 2016; Nguyen et al., 2018; Selim et al.,
2022) have proposed and evaluated algorithms considering
the real-time constraint on embedded systems, none of
these, among others, have directly assessed the benefits
of a CUDA implementation in an embedded platform.
In addition, many implementations use libraries such
as OpenCV (Küçükmanisa et al., 2019; Mammeri et
al., 2016; Selim et al., 2022). Hence, we contribute to
the real-time lane detection topic by implementing and
evaluating a CUDA-based solution in a typical low-cost
embedded platform.
Therefore, we present an ego-lane detection algorithm

in a CUDA-optimized implementation, which uses a
monocular camera as the sensor. The solution is optimized
to take advantage of a highly parallel solution running
on a GPU of a typical embedded platform, the NVIDIA
Jetson Nano. The proposed method has three steps: image
preparation, feature extraction, and lane estimation. The
first reduces the image to a monochromatic color space
scale and applies an inverse perspective mapping. This
removes camera position distortions and obtains a suitable
region of interest, where the lanes tend to be parallel and
with constant width. Next, an adaptive filter is applied to
suppress unnecessary image information and highlight the
traffic lane markings. Finally, a sliding window method
obtains the positions of the lanes iteratively.
Benchmarks were performed using a typical database

to assess the accuracy, the false positive, and the
matched lane rate of the proposed method. The TuSim-
ple database provides several road scenes and their
ground truths. In addition, the runtime of the proposed
CUDA-optimized solution is compared with a non-parallel
CPU implementation and an implementation using a stan-
dard GPU compiled library (Bradski, 2000). Results show
that the CUDA-optimized solution significantly boosts
performance compared to the CPU and the OpenCV solu-
tions, displaying that heterogeneous computing optimiza-
tions can help achieve real-time lane detection algorithms
in typical embedded systems. Furthermore, the lane de-
tection method performs satisfactorily under usual lane
circumstances.

Materials and methods
Proposed embedded lane detection
technique

Figure 1 summarizes the proposed method showing its
three main steps:

(1) image preparation;

(2) feature extraction;

(3) lane estimation.
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It’s important to emphasize that the algorithms within each
step are highly parallelizable and thus suitable for CUDA
implementation, achieving higher energy efficiency and
lower runtimes.

Figure 1 - Simplified diagram of the proposed ego-lane
detection method.

The first step is responsible for treating the image to
obtain a better representation of the road. Initially, the
image is reduced to a monochromatic color space scale,
resulting in a single-channel one where each pixel is rep-
resented by 8 bits. Then, an IPM (Inverse Perspective
Mapping) obtains a region of interest that mitigates noise
and distortions, providing an aerial panoramic image of the
road, or simply BEV image (Bird’s Eye View) (Li et
al., 2019). Thus, we obtain in this step a grayscale im-
age from an aerial perspective where the traffic lanes tend
to be parallel and of constant width. A temporal integra-
tion technique is then used on the frames, increasing the
quality of degraded lanes and further removing more un-
wanted information (Son et al., 2019). This last technique
relies on the fact that markings do not vary considerably
in subsequent frames.

In the second step, we use two methods to highlight
lane markings on the road and to reduce noise and un-
wanted information. Given the color variation of lanes,
the algorithm uses a threshold adaptive filter based on the
image luminance (Wu et al., 2019). It uses the brightness
difference between the lane marks and the road to remove
unnecessary information. Additionally, it uses a simple

edge detector to obtain the vertical markings of the lanes
(Zhang & Ma, 2019). Then, both feature maps are com-
bined to obtain a version of the image that contains only
the stripes’ markings.
The last step estimates the lane position by identify-

ing its guiding straps and has two phases, as shown in
Figure 1. Initially, a rectangular region at the lower por-
tion of the image is set based on a pixel intensity histogram,
so the region has the highest probability of including the
lane’s traffic stripes. From this point, the system slides the
window upward and laterally repositions the window to
maximize the likelihood of finding the stripes (Cao et al.,
2019). In this process, the window runs vertically over
the image, estimating the position of the lane markings.
The sliding window method obtains two sets of markings
representing the lane in the BEV image.

Works related to the implemented algorithm

Images captured by cameras are usually in color, and many
lane detection methods convert the images to grayscale
(Huang et al., 2018; Li et al., 2019; Zhang & Ma, 2019)
to simplify the problem. In addition, predefined regions
of interest are used to remove external noise and reduce
the amount of information processed.
In Lee and Moon 2018, a detection algorithm was pro-

posed based on using two regions of interest, a rectangular
and a Λ shaped one. Wang et al. (2004) divides the region
of interest into finite sections to make the traffic lanes track-
ing simpler, while Li et al. (2014) makes use of estimators
to get straight segments from these regions. It is also pos-
sible to determine the region of interest using transforms
to remove perspective distortions.
Some works use the inverse perspective mapping (IPM)

to obtain an aerial panoramic image of the road (Bird’s
Eye View, BEV) seeking an image where the traffic lanes
tend to be parallel and of constant width (Borkar et al.,
2012; Li et al., 2019; Muthalagu et al., 2020).
Furthermore, the temporal blurring technique was pro-

posed by Borkar et al. (2009) and Son et al. (2019) to
improve the quality of degraded and worn traffic stripes.
These methods perform a temporal integration of the previ-
ous frames to enhance the markings, increasing detection
confidence.
The feature extraction method is employed in many

works related to the subject (Borkar et al., 2012; Lee &
Moon, 2018; Li et al., 2014; Son et al., 2015; Wang et al.,
2004). In such algorithms, image processing seeks to de-
tect the gradients, color patterns, and other information in
the image’s pixels to recognize the traffic stripes. Addition-
ally, seeking greater robustness to luminosity variations,
Wu et al. (2019) proposes an adaptive luminance threshold
filter to highlight the lanes and filter noise.
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Lastly, a few works highlight the efficiency of the
sliding window method for detecting the traffic lanes (Cao
et al., 2019; Muthalagu et al., 2020; Reichenbach et al.,
2018). This technique combines a good detection rate
accuracy and reduced computational complexity, viable
to embedded real-time algorithms. In-text addition, the
method can estimate the curvature of the road lane. For
instance, in (Reichenbach et al., 2018), several methods
for lane detection in embedded systems are evaluated.
Finally, some authors have addressed the lane detection

topic considering the real-time constraints (Küçükman-
isa et al., 2019; Mammeri et al., 2016; Nguyen et al.,
2018; Selim et al., 2022), as discussed in the introduction.
However, the literature has yet to address heterogeneous
computing to improve the computational performance in
the matter. Nevertheless, the works of Afif et al. (2020),
Li et al. (2020), Jaiswal and Kumar 2020, and Zhi et al.
(2019) discuss the benefits of CUDA-based algorithms
benefits in other applications with image processing and
real-time requirements, which may provide a background
in the CUDA optimization techniques.

Acceleration of algorithms using
CUDA
Architecture of a CUDA-based GPU

Unlike a traditional Central Process Unit (CPU), a Graph-
ics Processing Unit (GPU) has an architecture that can
effectively accelerate image processing and computer vi-
sion algorithms (Li et al., 2020). CUDA is a programming
interface developed by NVIDIA to facilitate software de-
velopment on GPU, and which has found wide use in the
acceleration of image processing algorithms.
A modern GPU has Stream Multiprocessors (SM),

which are independent units of decoding, instruction fetch,
and execution (Sanders & Kandrot, 2010; Yonglong et
al., 2013). SM are composed of dependent units, called
Streaming Processors (SP), which are the basic units for
thread execution on GPUs. These units are commonly
called CUDA cores on NVIDIA chips.
The Maxwell architecture (Nvidia, 2014) features an

enhanced SM. It is partitioned into four distinct processing
blocks of 32 CUDA cores each (128 CUDA cores per SM).
Each block has its features for instruction scheduling and
buffering. This configuration provides a warp size align-
ment, making it easier to use and improving efficiency.
Shared memory allows threads from the same block to

act cooperatively, facilitating the reuse of resources and
mitigating transfers between slower off-chip memories
(Nvidia, 2011; Yonglong et al., 2013). Heterogeneous pro-
gramming using CUDA is split between host and device
code. Each thread that runs on the device has a unique

identifier, called threadIdx. A set of thread blocks form a
thread grid. A kernel can run simultaneously in all threads
of a grid. Each thread has its local private memory, while
each block has a shared memory. All threads within that
block can access the shared memory. Also, threads in a
block have the same lifecycle as the block (Nvidia, 2011).
An NVIDIA Jetson Nano board is used to evaluate

all the algorithms and to validate the method using a
GPU architecture. The Jetson Nano is a commercial sin-
gle board embedded computer composed by a quad-core
ARM Cortex A57 CPU and an NVIDIA 128 core (1 SM)
Maxwell architecture GPU. To run the method in real-
time in such an embedded system, the algorithm must
perform using the maximum GPU resources as possible.
Thus, several CUDA optimizations were made to improve
efficiency.
The remainder of this section will discuss the usual

optimizations applied to kernels (functions that are exe-
cuted n times in parallel by n CUDA threads) that are
part of the proposed method. The goal is to identify and
mitigate the implementation bottlenecks. The following
sections present detailed and specific CUDA optimiza-
tions. They classify into three types of implementation
bottlenecks:

(1) memory bandwidth;

(2) instruction latency;

(3) instruction throughput.

The NVIDIA Visual Profiler, an NVIDIA profiling tool
used to optimize CUDA applications, is used to help ana-
lyze kernel execution metrics, providing important feed-
back for optimization.

Memory optimization

In general, these optimizations seek to increase the mem-
ory throughput. They aim to minimize global memory
accesses while employing the most suitable access pattern
to realize memory coalescing, thus minimizing memory
transactions.
One of the techniques is the use of shared memory for

redundant and non-coalescing accesses. Shared memory
is usually faster than global memory, i.e. has lower la-
tency and higher bandwidth. The use of shared memory is
especially profitable for unaligned data accesses.
It is also important to use the best access pattern accord-

ing to each situation, ensuring coalesced access to global
memory. Also, some optimizations were required, such as
data transposition from an array of structures (AoS) to a
structure of arrays (SoA), the use of padding, and changes
to the parallelization strategy.
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Latency optimization

Latency optimization aims to guarantee that there are as
many threads as possible in execution to mask the latency
effect. The block sizes must always be a multiple of the
warp size to ensure that an entire warp performs the same
operation, achieving higher occupancy and latency hiding.
Grid size selection is crucial and was done empirically by
comparing the performance of different sizes using the
profiler.
Additionally, grid-strided loops are used for latency

hiding. It provides an efficient solution to avoid monolithic
kernels and ensure a higher occupancy.

Instruction optimization
Some kernels are compute-intensive, which can cause a
bottleneck in instruction execution. Therefore, organizing
and optimizing their operations is necessary to avoid that.
The main objective of this type of optimization is to reduce
the number of total instructions required to carry out an
operation. One of the techniques adopted is using high-
throughput operations, such as SIMD (Single Instruction,
Multiple Data) and SIMT (Single Instruction, Multiple
Threads) warp-level primitives.
Those are instructions that perform operations with

larger data blocks. Several operations were vectorized
in a grid-strided loop using the data arrangement to en-
sure the highest execution efficiency. Also, we seek
to avoid branch divergence in warps and reduce bank
conflicts.

Image preparation and inverse
perspective mapping
There are an unlimited amount of scenarios for driving a
car. Naturally, there is plenty of content irrelevant to the
problem in the captured image. Therefore, it is a common
strategy to pre-process the input image followed by the
feature extraction technique (Hillel et al., 2014; Narote et
al., 2018; Yenikaya et al., 2013). This processing step has
been applied to images to reduce noise and external dis-
tortions, providing a better region of interest and reducing
the amount of processed data. Doing so also increases the
reliability of the input data (Narote et al., 2018). This sec-
tion details the pre-processing employed in our technique,
which includes image preparation, IPM transformation,
and temporal blurring.

Image preparation
Transforming the three-color channel RGB image to
grayscale reduces its size to a third of the original and min-
imizes the brightness interference over the three-channel
image. Furthermore, it simplifies the problem and algo-

rithms when seeking embedded processing (Huang et al.,
2018; Li et al., 2019; Narote et al., 2018; Zhi et al., 2019).
Processing the grayscale conversion has a higher degree

of parallelization. Given that all operators are simple,
the throughput is limited only by the memory bandwidth.
Patterns of 16 bytes are read in each loop and loaded to the
shared memory to ensure better efficiency when accessing
the main memory, where the access is strided without
performance loss. These patterns are converted from an
AoS to SoA, such as discussed in theMemory optimization
section before. Furthermore, all operations are vectorized,
increasing the number of pixels processed in each iteration.
The conversion to gray in 16 pixels is computed through
structures that allow isolated access to this information.

Inverse perspective mapping

In the lane detection problem, the camera typically faces
forward and causes a perspective distortion. Such dis-
tortion shows the lane markings tending to a vanishing
point, disobeying a few assumptions. The main problem is
that the traffic lane stripes lose the characteristic of being
parallel to each other, so the two markings that define a
lane become close as they are away from the camera. The
lane curvature estimation becomes more complex and less
predictable (Yu & Jo, 2018).
These assumptions are inherent characteristics of tran-

sit lanes, and computer vision algorithms can use these
parameters to fine-tune their operation. To re-establish
the characteristics of the road, several works (Li et al.,
2019; Li et al., 2014; Muthalagu et al., 2020; Sivaraman &
Trivedi, 2013) perform a change of perspective to obtain
an aerial image (BEV) through the inverse perspective
mapping (IPM). Figure 2 shows a diagram of the perspec-
tive change in this processing.

Figure 2 - Simplified diagram of the perspective change
effect from the original front view to BEV.

This operation is a projective transformation with
eight degrees of freedom that can be constrained by sev-
eral elements present in the image. The eight degrees
of freedom are obtained by selecting 8 points on the
image, which allows for solving the homography di-
rectly. Homography is the transformation relation be-
tween two planes formed by the corresponding 8 points,
with 4 points in each plane (Hartley & Zisserman, 2003).
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Figure 3(a) shows an example of these points. This ho-
mography translates into a third-order matrix, responsible
for transforming a point in the original image into a point
in the BEV perspective image, as shown in Figure 3(b).
There are two methods to obtain this matrix:

(1) dynamically during execution (Paula & Jung, 2015);

(2) using a pre-computed static manner (Huang et al.,
2018; Muthalagu et al., 2020).

The dynamic way has greater computational complexity
and depends on a specific trigger sequence. The static
method is more susceptible to variations but has a minimal
computational cost, thus making it suitable for real-time
embedded processing.

Figure 3 - A typical example of perspective change:
(a) marking the eight points used in the original image;
(b) BEV image resulting from IPM.

(a)

(b)

Using the homography matrixH it is possible to obtain
the pixels of the transformed image I(x, y) as a function
of the input image’s pixel O(x, y) through equation (1)
(Huang et al., 2018; Muthalagu et al., 2020)

I(x, y) = O

(
H11x+H12y +H13

H31x+H32y +H33
,
H21x+H22y +H23

H31x+H32y +H33

)
.

(1)

Equation (1) can produce float points coordinates that
do not belong to the image. The workaround is to calculate
the original image pixels (I) to each of the transformed
ones (O). This approach provides an output image without
interference, and it avoids the calculation of about 45%
of the total pixels because of the transformation charac-
teristics, e.g., the two black triangles in Figure 3(b). The
operations were vectorized to ensure a higher throughput

and thus improve performance. Besides, some terms in
equation (1) are constant for a couple of pixels, which
allows to keep those calculations in the registers and reuse
them in other ones.

Temporal blurring

The temporal blurring improves the lane markings by mak-
ing them more robust and obscuring moving objects, re-
ducing possible sources of external noises. One of the
expected effects is that lanes with discontinuous straps or
worn ones will have a more uniform and continuous ap-
pearance (Borkar et al., 2009), providing better detection
quality (Silva et al., 2020).
The technique exploits the assumption that lanes do not

change abruptly in a short period (in this case, in subse-
quent frames), especially when compared to other road
objects (vehicles, pedestrians, etc.). Thus, an amount ofN
previous frames are temporally integrated to increase the
confidence of the markings. By combining these images,
the marks are overlapped, increasing the amount of infor-
mation in the lanes. An example of the temporal blurring
effect is shown in Figure 4.

Figure 4 - An example of the temporal blurring effect:
(a) an input BEV image of the method; (b) result of the
temporal blurring effect for N=20.

(a)

(b)

The temporal frame integration (Son et al., 2019) is
performed by means of equation (2)

Iavg =

N∑
i=0

I(n− i)

N
, (2)

where Iavg is the resulting image with N previous frames
combined.

6 Semin., Ciênc. Exatas Tecnol. 2023, v.44: e48268
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Unlike previous kernels, the data is already allocated
within the GPU memory, and given that it performs
simple operations, the bandwidth is the major limita-
tion. The reading bandwidth is maximized using a grid-
stride loop to ensure a higher occupancy, minimizing
latency.

Feature extraction
The feature extraction procedure seeks to obtain an image
with highlighted markings features and mitigating further
useless information for the detection method. The method
assembles feature maps that filter different characteristics
of the marking. The maps are then combined to obtain a
better result.

Adaptive threshold feature map

The lane markings tend to be the elements with the highest
brightness in the image or, at least, brighter than the lanes
themselves. Therefore, the first feature map highlights the
markings based on the difference between pixel values
and the average luminance. Fixed thresholds filters are
inadequate due to ambient variation, such as asphalt and
marking colors. The solution is to use an adaptive thresh-
old filter based on the average luminance of the region of
interest (Son et al., 2019; Wu et al., 2019).
The adaptive threshold calculates an average of the

intensity (Lavg) of each pixel to the given region of inter-
est. Based on that value, it estimates a inferior (TL) and
superior (TU ) threshold, as shown in equation (3):

TL, TU =


60, 220 if 0 ≤ Lavg ≤ 25,
115, 235 if 25 < Lavg ≤ 40,
125, 240 if 40 < Lavg ≤ 70,
135, 250 if 70 < Lavg ≤ 100,
145, 255 otherwise.

(3)

Subsequently, each pixel of the image is then binarized
using equation (4):

I(x, y) =

{
1 if TL ≤ I(x, y) ≤ TU ,
0 otherwise. (4)

Figure 5(b) presents an example of this feature map, where
white traces represent the possible traffic lane markings.
To implement this procedure there are two kernels. The

first calculates the average pixel intensity of the image,
while the second performs the binarization using equa-
tion (4) and the threshold values.
Considering the image already allocated within the

GPU memory, the kernel uses a grid-stride loop to max-
imize the reading bandwidth. Furthermore, batches of
128 bits are read and then written at the shared memory.

Figure 5 - An example of the adaptive threshold feature
map: (a) typical pre-processed image; (b) feature map
obtained by the adaptive threshold method.

(a)

(b)

The calculation of the sum of the pixels is vectorized to
compute 16 pixels simultaneously.
The grid-stride loop is done by summing all input bytes

of the data. After the operation, the threads from this block
are reduced to a single value. This is done using the SIMT
operator (__shfl_down_sync) available at the CUDA
(synchronous reduction to each GPUs warp). At last, we
make the atomic sum of the accumulated values at each
warp, obtaining the total sum of the pixels.
The second kernel is responsible for making the image

binarization using TL and TU values. It has a low compu-
tational cost as previous kernels that are bandwidth bound.
To increase the throughput, it uses a set of SIMD instruc-
tions. Those are logical operators like setting if greater
than (__vsetgtu4), setting if lower than (__vsetltu4),
and unsigned minimum (__vminu4). The operators run in
groups of 4 bytes each per iteration of the grid-stride loop.

Unilateral correlation feature map
Conventional edge detectors are unsuitable for real-time
embedded system implementation due to their computa-
tional cost. This work uses a unilateral correlation filter
(Zeng et al., 2015; Zhang & Ma, 2019), as the solution.
This type of filter has a lower computational complexity
and it is based on the convolution of the image with a
separable convolution kernel.
The implemented filter is a third-order matrix that ex-

tracts a single type of edge in the image. As lane markings
are almost vertical in the BEV image, the filter is designed
to extract vertical edges, detecting horizontal variation of
pixels.
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Figure 6 presents an example of the feature map ob-
tained by processing the unilateral correlation filter.

Figure 6 - Example of unilateral correlation filter
operation: (a) typical pre-processed image; (b) fea-
ture map obtained by the unilateral correlation filter
method.

(a)

(b)

The filter also has the property of being separable.
Therefore, it is possible to replace the 3× 3 convolution
of the filter by two convolutions using the vectors [1, 2, 1]
and [−1, 0, 1]. This property decreases the computational
cost of the operation from O (m× n) to O (m+ n).
The kernel implemented for this part uses several op-

timizations aforementioned, such as the grid-stride loop,
shared memory allocation, and operation vectorization.
However, its implementation uses the tilling pattern, which
are two-dimensional structures of threads (Kirk & Hwu,
2016), exploiting the intrinsic characteristics of the opera-
tion. This kernel uses sub-matrices to carry large amounts
of information from the main to the shared memory, allow-
ing strided access for calculation. Furthermore, due to the
filter’s features, some of the values can be pre-computed
and reused in other operations, reducing the number of
operations performed in each loop.

Lane detection
The lane detection step has two stages. First, it detects
regions most likely to contain the markings, and then,
it estimates the points belonging to each of the mark-
ings. The first uses a column histogram algorithm to
obtain the regions with the highest pixel density. The
second uses these regions to initiate an iterative sliding
window method that detects the pixels belonging to the
lane markings.

Column histogram

The column histogram operation determines the regions
with the highest probability of containing the traffic lanes
based on the intensity of the pixels in each column (Cao et
al., 2019; Reichenbach et al., 2018). This is achieved by ac-
cumulating the value of each column of the feature map in
Figure 7(a). The peaks obtained in this histogram are con-
sidered as candidates, such as the example of Figure 7(b).

Figure 7 - Example of column histogram operation;
(a) typical input feature map; (b) column histogram ob-
tained for item (a).

(a)

(b)

This kernel responsible for the column histogram is one
of the most complex, thus it has a higher degree of paral-
lelization and can greatly benefit from the optimizations.
It is possible to use the shared memory to ensure efficiency
in memory access, grid-strided loops, and also instructions
optimizations.

The kernel operation adopts a two-dimensional block
to launch the threads. The shared memory stores the input
data and allocates the positions and values used across
the process. Operations were parallelized to improve the
throughput and warp-level primitives are employed. Fur-
thermore, the operation is symmetric and so it is possi-
ble to launch two similar blocks. Each one is respon-
sible for processing one side of the image, making use
of the problem’s geometry to ensure greater efficiency.
Another important aspect is that the kernel obtains only
the initial position of the markings. Therefore, only the
inferior half of the image is analyzed.

The warp-level primitive __shfl_down_sync is used
twice to obtain the maximum value in each block. The first
time it seeks the peaks of each warp. Then we use it again
to get the global peaks. The first block obtains the peak
referring to the left side of the image (left lane marking),
while the second block obtains the one on the right.

8 Semin., Ciênc. Exatas Tecnol. 2023, v.44: e48268



Real-Time Ego-Lane Detection in a Low-Cost Embedded Platform using CUDA-Based Implementation

Sliding windows

To detect the lane stripes’ positions, we group the regions
with a higher density of pixels on the feature maps. The
typical approach to obtain these positions is to process
the entire image storing them. The issue with embedded
execution is that such an approach is inefficient, as only
a minor portion of the pixels contain lane markings infor-
mation. This search can be optimized using the sliding
windows method (Cao et al., 2019; Muthalagu et al., 2020;
Reichenbach et al., 2018), which evaluates only the re-
gions of the image that are more likely to contain the lane
marks.

Based on the points estimated by the column histogram
algorithm, this technique places windows at those posi-
tions and then runs vertically over that region. Each win-
dow computes the peak of its respective small area. At
the end of the process, each peak describes a point of the
lane. Figure 8 shows an example of the procedure. The
windows at the bottom depict the starting points, and then
it vertically has the remainder of the windows. The blue
circles per window represent the points with the highest
probability of composing the lane.

Figure 8 -Example of slidingwindows operation: (a) Orig-
inal image of the road; (b) Result of the sliding windows
operation. In green the windows and in blue the points
obtained in the process.

(a)

(b)

Instead of performing over the entire image, the opera-
tion is performed only on two regions using the geometry
of the lanes. To improve the performance, we launch a
tri-dimension grid of threads exploring the inherent paral-
lelism of the operation. The x and y-axis are the sizes of
the windows, and the z-axis is the other windows on that
same lane.

The global memory data is loaded into the shared mem-
ory to ensure strided access. A column histogram com-
putes the peak for each window using warp-level prim-
itives, similarly to the previous kernel. To improve this
operation the size of the windows should fit an integer
number of warps.

Simulation test experiment
Results are divided into qualitative and quantitative analy-
sis, as well as the execution time performance. The first
subsection briefly discusses the setup and the dataset used
during the tests, followed by the results and, at last, by a
discussion and comparison with other works.

Test Environment and the Tusimple dataset

The test environment uses the NVIDIA Jetson Nano board
and its GPU, discussed previously. For reference, the
algorithms were developed in C++ language version 7.5.0
and the heterogeneous implementations were programmed
using the CUDA 10.2 API.
The experiment uses images available in the TuSim-

ple dataset. It has three subsets totaling 3626 video clips
(72520 frames) with roads comprising annotated image
frames of US highways. Each image has a 1280x720 reso-
lution captured by a camera in the middle of the vehicle’s
windshield. The dataset consists of small scenes made of
a varying number of 1-second clips. Each of these clips
contains 20 frames, and the last one has an annotation
of the polyline types for lane markings. Each scenario
may have different weather conditions at various times of
the day. Furthermore, they are taken on different types of
roads and under arbitrary traffic conditions.
Apart from the theoretical discussion before, there

are two characteristics of the algorithms calibrated
and tailored based on the TuSimple datasets’ images.
These are the homography matrix H and the sliding win-
dow format. The former is calibrated offline based on
the camera’s output image (Silva, 2021b), and the region
of interest obtained by the IPM transformation uses the
matrix H given in equation (5):

H =

 −0.05 −2.8630 1002
0 −4.0855 1429
0 −0.0043 1

 . (5)

The latter was set to a size of 32 × 30 pixels, which is
identical in numbers to the number of threads (32 horizon-
tals and 30 verticals) deployed in the CUDA algorithm,
optimizing the operation. In addition, the temporal blur-
ring integrates 20 frames (N = 20), such as the example
in Figure 4(b). The remainder of the steps follows the
characteristics discussed before.
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Qualitative analysis of ego-lane detection

We use different scenes from the dataset to analyze the
algorithm’s parts response comparing it for different im-
plementations. Figures 9(a)-(f), shows some examples.
Each element in Figure 9 consists of four images showing:
the original figure (upper left corner), the sliding window
output (upper right corner), the adjustment of detected
ranges in the BEV perspective (lower left corner), and the
final output (lower right corner). Those six scenes exem-
plify the algorithm’s response in different cases and types
of roads to the reader.
Figures 9(a) and 9(b) show results from roads with

distinct asphalt colors and internal coloring variations.
Figure 9(c) is an example of a very dark asphalt with
worn lane markings. Even in this scenario, the fea-
ture extraction performance is satisfactory, and the al-
gorithm performance is maintained. Other cases with
degraded asphalts and worn markings are shown in
Figures 9(d) and 9(e), where the image preparation and
the BEV perspective are fundamental for improving the
detection.
The perspective transformation also reduces the com-

plexity of lane detection with curvatures. Figures 9(a)
and 9(f) are examples of that. Those results show
the algorithm has satisfactory ego-lane detection even
under the least favorable circumstances, including
worn asphalts and markings, curvatures, and color
variations.
The video in Silva (2021a) illustrates the operation of

our algorithm. The video shows the images available
on the Tusimple dataset 0601. That dataset comprises
a sequence of 8200 frames assembled as a motion pic-
ture of 1-second clips. We split the image into quadrants:
The upper left corner shows the original video. The up-
per right shows the preprocessed video by the method.
The lower left shows the resulting feature map with the
windows (formed by the green rectangles) and the detected
dots in blue. The last shows the original video with its
frames overlapped by dots marking the estimated road
stripes.

Algorithm performance

Table 1 shows the proposed method’s operations execution
times for three distinct solutions. The first column presents
the execution times for the optimized heterogeneous al-
gorithm using CUDA. The second brings the times for
an intermediate implementation, which uses the graphic
chip through the OpenCV library and CUDA. The last
shows the execution times for the embedded system’s CPU
implementation. The values obtained in each function do
not consider the loading and storing times of the image.

Table 1 - Algorithm operations’ runtimes considering dif-
ferent types of implementations (values in milliseconds).

Operation CUDA OpenCV CPU
Conv. grayscale 0.269 1.320 48.514

IPM 0.305 20.913 97.181
Temporal blurring 0.763 2.834 33.346
Adapt. threshold 0.139 0.917 42.109
Uni. correlation 0.677 19.564 62.887
Column Histogram 0.081 7.091 38.348
Sliding Windows 0.106 8.603 9.098
Total runtime 2.34 61.242 331.483

Table 2 summarizes the speed-ups of the proposed
method in comparison with the other two.

Table 2 - Speed-ups comparison between the proposed
heterogeneus (CUDA) and other implemented methods.

Operation CUDA × CPU CUDA × OpenCV
Conv. Grayscale 180.3 4.9

IPM 318.6 68.5
Temporal blurring 43.7 3.7
Adapt. threshold 302.9 6.6
Uni. correlation 92.9 28.9
Column Histogram 473.4 87.5
Sliding Windows 85.8 81.1
Total speed-up 141.6 26.1

The results show that the runtime of the heteroge-
neous implementation is significantly better than the others.
The optimized algorithm is 25 and 140 times faster than
the intermediate and the CPU methods, respectively. Nat-
urally, the execution time gain varies depending on the
algorithm’s part. At specific components, it is possible to
observe that the proposed implementation achieves much
higher performance, even compared to the version running
on the GPU compiled in OpenCV.
In the CPU-based approach, processing a single frame

took over 300 milliseconds, equivalent to approximately
three frames per second (fps). The runtimes obtained
demonstrate the inability to meet the criteria for a real-
time application. The main reason for this long time is
the image processing operations, which are serialized. A
typical camera (or video) has 30 fps, and the time between
frames is reasonable to assume as the minimum for a real-
time application.
TheOpenCV approach had a speed-up of approximately

5.5 times compared to the CPU one, processing a single
frame every 60 milliseconds or 16 fps. Much of the im-
provement is due to the speed-up of image processing oper-
ations, such as conversion to grayscale, adaptive threshold,
and temporal integration. Despite a significant improve-
ment, the implementation still does not meet the necessary
criteria for real-time execution.
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Figure 9 - Example of images in six different scenarios for four stages of the proposed method: (a) and (b) display
roads with good quality markings but distinct colors, (c), (d), and (e) depict worn markings and degraded asphalts, and
(f) shows an example of lanes with curvatures

(a) (b)

(c) (d)

(e) (f)

Finally, the proposed heterogeneous method can pro-
cess a frame in less than three milliseconds. That is equiv-
alent to processing over 300 fps and complying with a
real-time requirement. It is evident that to maximize the
performance on the GPU, the parallelization of the meth-
ods is necessary. It is worth noting that since the algorithm
runs at least five times faster than the minimum required
for a real-time application, it would still be possible to
implement other features in the lane detection method.
Additional implementations in the algorithm could fur-
ther improve the detection quality without preventing the
real-time requirement.

Quantitative analysis of ego-lane detection on
Tusimple dataset

The benchmark compares the ego-lanes obtained by the
algorithm with the ground truth. Thus, we demonstrate

that the method using heterogeneous computing is capable
of detecting the lane markings accordingly and is suitable
for embedded applications.

It is possible to evaluate the quality of the lane mark-
ings estimation using the ground truth available in each
clip of the dataset comparing with the results obtained
by the proposed algorithm. The principal quality metric
evaluated is the accuracy (ACC), described by

ACC =

∑
clip Pvalid∑
clip Ptotal

, (6)

where Pvalid corresponds to the number of correct points
and Ptotal to the number of total points.

Equation (6), measures the rate of valid estimates
made by the method compared to the ground truth.
An estimated point is valid if the difference between
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the true and estimated point is less than a threshold
value (Tpixel).
In addition to validating each point in the lane, it is

necessary to validate the lane itself. A detected lane is
said to be valid if it has at least Tpoint% of valid points,
as shown in equation (7):

Matched =
Mpred

Npred
, (7)

whereMpred is the number of matched predicted lanes,
Npred is the number of all predicted lanes. Similarly, equa-
tion (8) measures the rate of markings estimated by the
method that does not match the ground truth ones:

FP =
Fpred

Npred
, (8)

where Fpred is the number of wrong predicted lanes.
Matched represents the lane rate and FP the false posi-
tive rate.
The results of ACC, Matched and FP obtained for

the TuSimple dataset are arranged in Table 3. The data
presents values for a Tpixel of 20 px, 35 px, and 50 px,
and Tpoints = 80%.

Table 3 - Performance metrics for different thresholds in
each of the three subsets of the TuSimple dataset.

Dataset TPixel
(px)

ACC
(%)

Matched
(%)

FP
(%)

0313
20 81.3 74.0 26.0
35 88.4 84.4 15.6
50 92.2 87.7 12.3

0531
20 90.0 87.7 12.3
35 95.2 94.8 5.2
50 97.3 95.9 4.0

0601
20 92.3 91.0 9.0
35 97.2 97.3 2.7
50 99.0 97.9 2.1

The ACC rate of the proposed method ranged from
81.3% to 99.0%, in the worst and best performance, re-
spectively. The dataset 0313 detection rate is degraded
because most images are taken from roads with non-
reflective raised pavement markers called Botts’ dots
in place of painted lane marks. These Botts’ dots are
usually yellow or white. White-colored dots on con-
crete pavements will turn a pavement-like color due
to dirt. The feature extraction algorithm is optimized
for traditional traffic stripes and not such markings.
On the other hand, dataset 0601 has long stretches of
lanes with signaling in good condition, ensuring better
results.

The proposed method performed well under the differ-
ent conditions present in the datasets. The results were
satisfactory even for the unconventional lanes present in
dataset 0313. The overall average accuracy values for the
different Tpixel = 20 px, 35 px, and 50 px are respec-
tively 91.2%, 96.2%, and 98.1% when disregarding such
markings. Comparison with other works and algorithms,
both in terms of accuracy and computational complexity,
is presented next.

Comparison with other methods and
discussions

Table 4 places the proposed method in the lane detection
scenario. It concisely presents the performance of other
works, including similar methods for ego-lane and multi-
lane detection. All values are from their respective publi-
cations. Thus, we can make a reasonably fair comparison
between the methods. But we must consider that they run
on different systems, where some use other datasets and
apply different methodologies to establish their metrics.
However, the comparison shows strong evidence that the
proposed method performs better considering embedded
real-time applications.
The deep learning methods (Philion, 2019; Zou et al.,

2020) perform multi-lane detection using the TuSimple
dataset. They show high detection rates and approach real-
time execution, even performing a more complex task than
ego-lane detection. However, both works report running
their methods on desktops with dedicated graphics process-
ing systems. Therefore, they have far superior processing
capabilities than a GPU integrated into an embedded sys-
tem, which would extrapolate the limited resources of the
latter.
The works of Kühnl et al. (2012), Wu et al. (2019)

and Muthalagu et al. (2020) present solutions for ego-lane
detection using conventional desktop computers. Their de-
tection rates are slightly lower than the other methods that
also use desktops. Among them, the fastest one utilizes
lower-resolution images and a dedicated GPU card.
The authors in Kim et al. (2016) present an even sim-

pler multi-lane detection solution, which approximates
the lanes to straight lines, not detecting the curvatures. It
features a high detection rate but uses a low-resolution
image, directly impacting the runtime and quality of these
detections. However, unlike the other proposed methods,
it achieves requirements close to real-time in an embedded
system.
From the average processing time per frame in Ta-

ble 4, only the proposed method can satisfy the real-
time criteria established in this work. The optimization
performed by the heterogeneous implementation using
CUDA leads to an average processing time of 2.34 ms.
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Table 4 - Performance comparison between selected lane detection algorithms.

Method Algorithm Average
Detection

Avg. Proces.
Time (ms)
per Frame

Input
Resolution

System
Environment

Multi-lane (Son et al., 2019) 98.9 667.0 640x360 Intel Core i7-4th
Ego-lane (Wu et al., 2019) 96.33 261.1 1280x720 Intel Core i7-2th
Multi-lane (Zheng et al., 2018) 95.7 65.4 768x432 Intel Core i7-6th

Multi-lane
(deep leaning)

(Philion, 2019) 97.25 65.3 1280x720 NVIDIA
GTX 1080, GPU

Ego-lane (Muthalagu et al., 2020) 95.75 63.6 1280x720 Intel Core i5-6th
Ego-lane (Kühnl et al., 2012) 94.40 45.0 800x600 NVIDIA GTX 580 GPU

Multi-lane
(deep learning)

(Zou et al., 2020) 97.25 42.0 1280x720 Intel Xeon E5-2th
GTX TITAN-X GPU

Multi-lane
(straight)

(Kim et al., 2016) 98.10 34.0 640x480 NVIDIA Jetson
TK1 board

Multi-lane (Cao et al., 2019) 98.42 22.2 1280x720 Intel Core i5-6th

Ego-lane Proposed
Solution

98.15∗
2.34 1280x720 NVIDIA Jetson

Nano board96.15∗∗

∗Results without the TuSimple dataset 0313.
∗∗Results with the TuSimple dataset 0313.

That indicates the proposed method is executed using only
part of the processing power and capabilities of a GPU
tailored for embedded systems. Additionally, its average
detection rate, excluding the TuSimple subset 0313, was
approximately 98%. These results demonstrate the feasi-
bility of implementing our method in embedded systems.
Furthermore, adding improvements or new features to the
algorithm is possible without compromising the real-time
criteria.

Conclusions
This work presents a viable solution for ego-lane detec-
tion using a low-cost embedded platform. The proposed
solution using heterogeneous computing based on CUDA
shows that performance can be boosted significantly com-
pared to non-optimized solutions, such as OpenCV imple-
mentations.
The method performs within the established real-time

limits. The embedded system processes each frame in
approximately 2.34 ms, 25 times faster than the OpenCV
GPU-compiled version and 140 times faster than the CPU-
executed sequential version. Additionally, considering the
method’s run-time, which is superior to 400 frames per
second, future implementations can improve even further
and enhance the detection quality, still coping with the real-
time criteria. Hence, other state-of-the-art algorithms can
be implemented and optimized similarly to those reported,
or the same GPU could execute other tasks besides the
ego-lane detection algorithm.

Moreover, the algorithm proved efficient for detecting
ego-lane on roads and highways running TuSimple dataset
images with different scenarios. The method’s perfor-
mance ranged from 92.3% to 99.0% accuracy in the best
subset, detecting up to 97.9% of the ego-lane available
with 80% of the valid points. In this way, the work is in the
same range as other similar methods, with the difference
of being executed in an inexpensive graphics-processing-
tailored real-time embedded system.
Future works may assess the CUDA implementation

in other algorithms, such as deep learning, convolutional
neural networks, pixel-level classification networks, and
others. Hence, it would be possible to evaluate if these
more computationally costly methods could perform in
real-time in typical embedded systems while seeking to
increase detection rates, especially in unconventional lane
conditions such as those of the TuSimple 0313 dataset.
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