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ABSTRACT
Gross motor skills such as sitting, jumping, and running are activities that involve the large muscles of the human body.
The Test of Gross Motor Development, or TGMD, is widely used by researchers, pediatricians, physiotherapists, and
educators from different countries to assess these skills in children aged 3 to 11 years. An important part of the test is
that the movement, performed by the children, needs to be recorded and assessed by two or more professionals. The
assessment process is laborious and takes time, and its automation is one of the main points to be developed. In recent
years, methods have been proposed to automate the assessment according to the TGMD. The hypothesis investigated in
this work is that it is possible to induce a machine learning model to identify whether the movement executed by the
child is correct, considering only the first criterion of the TGMD-3 jumping skill. The skeleton of the children was
extracted using PoseNet. A dataset of 350 images of Brazilian children between 3 and 11 years old performing the
preparatory movement for the jump was used. The experimental results show an accuracy of 84%.
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RESUMO
As habilidades motoras grossas são atividades que envolvem os grandes músculos do corpo humano como sentar, saltar
e correr. O Test of Gross Motor Development, ou TGMD, é um teste muito utilizado por pesquisadores, pediatras,
fisioterapeutas e educadores de diversos países para avaliar essas habilidades em crianças na faixa etária de 3 até 11 anos.
Parte importante do teste é que o movimento executado pelas crianças precisa ser gravado e avaliado por dois ou mais
profissionais. O processo de avaliação é trabalhoso e leva tempo, sendo sua automatização um dos principais pontos a
serem desenvolvidos. Nos últimos anos, têm sido propostos métodos para automatizar a avaliação dos movimentos de
acordo com os critérios do TGMD. A hipótese investigada neste trabalho é a de que é possível induzir um modelo de
machine learning para identificar se o movimento da criança está correto, considerando apenas o primeiro critério da
habilidade de salto do TGMD-3. Para isso, foi extraído o esqueleto das crianças utilizando o PoseNet. Foi utilizado um
dataset de 350 imagens de crianças brasileiras entre 3 e 11 anos realizando o movimento preparatório para o salto. Os
resultados experimentais mostram uma acurácia de 84%.

palavras-chave avaliação automática, aprendizado de máquina, desenvolvimento motor, TGMD-3

Received: May 09, 2023 Accepted: September 14, 2023 Published: October 05, 2023
1Computer Science Department, State University of Londrina, Londrina, Paraná, Brazil. E-mail: edson.luiz.pilati@uel.br
2Prof. Dr., Design Department, State University of Londrina, Londrina, Paraná, Brazil. E-mail: spinosa@uel.br
3Prof. Dr., Computer Science Department, State University of Londrina, Londrina, Paraná, Brazil. E-mail: jacques@uel.br

Semin., Ciênc. Exatas Tecnol. 2023, v.44: e48131 1

https://www.doi.org/10.5433/1679-0375.2023.v44.48131


Pilati Filho, E. L.; Spinosa, R. M. O.; Brancher, J. D.

Introduction
The Motor development can be formally defined as
changes in motor behavior that occur throughout life
and the processes underlying these changes (Clark,
2005; Gallahue et al., 2013). Understanding this phe-
nomenon, especially in children, depends on the observa-
tion and assessment of changes in these classes of move-
ments, which implies identifying, describing, and measur-
ing behaviors at various moments (Manoel & Connolly,
1995).
Motor development is often divided into gross mo-

tor skills and fine motor skills. The first area activities
involve the large muscles in the human body, such as sit-
ting, jumping, walking, and running. Fine motor skills
are those activities that involve smaller muscles, such as
manipulating objects, grasping, and writing (Gonzalez et
al., 2019).
Assessment instruments are very useful tools to monitor

the general development of an individual. In kindergarten,
the use of assessment tools for Fundamental Motor Skills
(FMS) is essential, as it allows professionals to determine
the developmental status of the child’s FMS; monitor the
child’s progress in relation to motor skills programs; ex-
amine the effectiveness of the programs and ensure the
adequacy between the activities carried out and the devel-
opment of the child (Marques et al., 2017).
Different protocols have been developed for child mo-

tor assessment, such as the Korperkoordination Test fur
Kinder (KTK) (Kiphard & Schilling, 1974), the motor
development scale (Rosa Neto, 2002), the Movement
Assessment Battery for Children (MABC) (Henderson et
al., 2007), the Test of Gross Motor Development (TGMD)
(Ulrich, 2000, 2017), among others.
Out of these protocols, the TGMD stands out, as it is

an instrument designed to assess the fundamental motor
skills of children aged between 3 and 11 years (Ulrich,
2017) with standardized and validated procedures for the
Brazilian population. The test is easy to apply and has been
used for more than 30 years by researchers, pediatricians,
physiotherapists, and educators from different countries,
both to assess motor development levels and to assist in
the planning of school intervention programs (Valentini
et al., 2017).
In its third version, TGMD-3, the evaluation of 13

skills divided into two classes of movements are proposed,
namely: locomotor (running, galloping, hopping on one
foot, horizontally jumping, laterally running and skipping)
and manipulative (dribbling, two-handed striking, one-
handed striking, overhand throwing, underhand throwing,
catching and kicking) (Ulrich, 2017). In order to apply the
test, the evaluators must pay attention to the procedures
proposed by the technical manual, which include the effi-

cient demonstration together with the verbal instruction of
the skill that will be performed, an attempt to familiarize
the child and two valid attempts that will be filmed for
later analysis and assessment.
Each skill has between 3 and 5 equivalent criteria that

must be performed to account for the child’s performance
score. Each correct criterion receives a score of 1, and each
incorrect criterion receives a score of 0, generating the par-
tial score of the motor skill. The participant’s recording
is essential for the analysis stage, in which two or more
specialists carefully watch all the children’s videos, ob-
serving whether the corresponding performance criteria
were executed during the performance of each motor skill
(Ulrich, 2017).
The 4 criteria for the jumping skill of the TGMD-3 are:

1. Preparatorymovement includes flexion of both knees
with arms extended behind the body.

2. Arms extend forcefully forward and upward reaching
full extension above the head.

3. Take off and land on both feet simultaneously.

4. Arms are thrust downward during landing.

In the TGMD, the assessment task can become complex
and susceptible to human error, since the evaluator needs to
be very careful when analysing the key points of the video
that correspond to the performance criteria. The amount
of analysis required can be extremely time-consuming in
surveys involving large samples, considering that each test
participant generates 26 videos that must be scored indi-
vidually. The automation of the process is a very natural
and relevant way to speed up the correction process and
enhance the reliability of the result.
The purpose of this work is to generate a machine

learning model that is capable of identifying whether
the child’s movement is correct for the first criterion
of jumping skill. Through the pose recognition model
PoseNet ("Estimativa", 2018) provided by Tensorflow
(Abadi et al., 2015) it was possible to identify the points of
articulation of the child’s body in images extracted from
the videos, which were extracted when the child is execut-
ing the preparatory movement of the jumping skill, from
the extracted points it was possible to define new features
to identify if the movement was executed correctly.
Some recent works are being developed on the theme

addressed in this paper.
In Suzuki et al. (2021), the authors propose a way to

automate the assessment of the TGMD-3 skill criteria. The
work continues with the improvement of the application
developed by the authors in Suzuki et al. (2019) and in
Suzuki et al. (2020), but the focus of the work is to present
a proposal for diagnosing the abilities of the TGMD-3.
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The strategy was to use the anomaly detection technique,
an unsupervised method, in which the authors trained a
model with correct movements, and everything that differs
from these movements is considered an anomaly.
In this way, the child’s skeleton is presented with some

colors, the parts of the body where the child possibly per-
formed the movement wrongly are presented in red. This
alternative is like a heat map, it does not automatically
show the score directly, it just provides the evaluator with
possible points of failure in the movement performed by
the child. The results indicate that it was possible to visu-
ally emphasize the points that correspond to the TGMD-3
criteria.
It is possible to verify that the work of Suzuki et al.

(2021) proposes a way to facilitate the evaluation process
for the professional evaluator. Despite providing a diag-
nosis of the movement in the form of a heat map, the
automatic attribution of the grade is not performed. In this
way, the importance of this paper is noted by advancing in
the automation of the evaluation of the TGMD-3 criteria,
in addition, the proposal of this paper does not require
equipment that needs to be attached to the child during the
execution of the skills, which makes it the simplest model
to adopt.
In Bisi et al. (2017) to assess children’s movement com-

petence according to TGMD-2, a study was carried out
with 45 Italian children aged 6 to 10 years old. Five IMUs
(inertial measurement unit) sensors were used that were
mounted on the back, ankles and wrists to capture the
movements.
The movements were captured on video and submitted

to 3 professional evaluators to provide a score according to
the TGMD-2. In parallel, an algorithm was developed for
automatic analysis of videos with data captured by sensors,
the results point to a reduction in time from 15 minutes
to 2 minutes of evaluation, but lacks improvements in
quality, showing an agreement of more than 87% when
compared to the traditional assessment technique (Bisi et
al., 2017). However, this technique is limited in relation to
the proposal of this paper, as it is mandatory to use sensors
and equipment to carry out the evaluation.
The sessions in this paper are structured as follows.

The Methods section contains a description of the dataset,
in addition, it includes the description of the Feature selec-
tion step. The results and discussions present the scores
and some discussions related to the induced models and,
subsequently, the conclusions of the work.

Methods
The experiments carried out in this paper consider only
the first criterion of the TGMD-3’s jumping skill, since
it is the object of study. The objective is to induce a ma-

chine learning model capable of identifying whether the
preparation movement of the TGMD-3 jumping skill was
performed correctly, this preparation movement only in-
cludes the first criterion.

Dataset
The videos that we used consist of Brazilian children be-
tween 3 and 11 years old performing the jumping skill
of TGMD-3. The videos were recorded for the work of
Spinosa (2019) and reused in this work. Data confiden-
tiality was maintained in accordance with the research
guidelines of the work Spinosa (2019). The study was
approved by the Institutional Ethics Board under CAAE
number: 75943317.6.0000.5231. The videos were submit-
ted to the assessment of two professionals, who assigned
scores to the movements. Only the videos in which there
was agreement in the assessment were used, that is, the
videos in which the two professionals attributed the same
score for the first criterion. Being score 1 for movement
performed correctly and score 0 for movement executed
incorrectly.
350 videos were selected, 175 with a score of 1 and

175 with a score of 0 for the first criterion. Some videos
are from the same child performing the movement, as
two valid attempts per child were recorded. From these
videos, images were extracted of the moment when the
child prepares to jump. The images were submitted to the
PoseNet pose recognition model provided by TensorFlow
("Estimativa", 2018).
The acquisition of the images was made by the au-

thors,who includes a specialist. Since the moment of the
preparatory movement is a window of frames, it is not dif-
ficult to acquire an image that represents the first criterion,
the preparatory movement is the moment right before the
child starts the impulse for the jump. The acquisition was
made by a process of opening each video, identifying the
moment that represents the first criterion, and extracting
the image.
To achieve the extraction of the skeleton points was cre-

ated an algorithm in JavaScript implementing the already
trained model of PoseNet, the PoseNet model is trained
with the Coco Dataset from microsoft (Lin et al., 2014).
With this model is possible to recognize 17 keypoints of
the human body, the implemented algorithm developed
in JavaScript works by feeding the model with a loaded
imagem in the browser, proceding the execution of the
model allows the console of the browser to print the points
of the skeleton.
The model provides a skeleton of the human body with

two coordinates for each point of articulation as shown
in Figure 1. The points extracted by the model that were
taken into account were the shoulders, elbows, wrists, hips,
knees and ankles.
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Figure 1 - Skeleton of a child extracted with PoseNet.

The PoseNet, Figure 1, was selected because of its
accuracy in the detection of the human body, as shown
in Jo and Kim (2022), where a study was carried out to
compare the PoseNet, MoveNet and OpenPose models on
mobile devices. The test images were divided into three
groups, the first with images containing a single person,
the second group with images containing multiple people
and the third group with images without any person. The
third group containing images of animals and objects was
adopted to identify whether any of the models estimate
poses, even when there are no humans to identify in the im-
age. The results in Jo and Kim (2022) show that the model
that was faster in estimating poses was MoveNet, while
OpenPose was the slowest. The model that presented the
most accuracy was PoseNet. The accuracies of OpenPose,
PoseNet, MoveNet Lightning, andMoveNet Thunder were
86.2%, 97.6%, 75.1%, and 80.6%, respectively.
There are 12 points in total, 6 for the right side of the

body and 6 for the left side. Each point extracted from the
body receives a horizontal coordinate value and a vertical
coordinate value. Coordinates are provided for both the
right and left sides, so it is possible to identify the position
of the articulation point in the image. The model also
extracts the points that correspond to the eyes and nose,
but as they are not of interest for the assessment, they were
removed.
In total, 24 coordinates were extracted, representing

the 12 points. The coordinates together with the score
received in the criterion formed the features of the initial
dataset, with the score received in the criterion being the
target that should be predicted by the model.

Feature selection

The images taken from the videos do not have the same
size, which implies that the coordinates of the skeletons
are not reliable for training a model without first going
through modeling and feature selection, as a coordinate
in one image can be completely displaced in another.

In addition, there were children who performed the move-
ment from left to right, and there were children who per-
formed from right to left. That alone, makes it impossible
to use the dataset with these 24 coordinates. Another issue
is that children are not the same height, so distances may
vary. It was necessary to think of strategies to generate fea-
tures that are proportional and represent the first criterion
of the jumping skill.
From the description of the first criterion of the jumping

skill, it is possible to extract two informations that resulted
in obtaining the score: arms extended behind the body and
knees flexed. Since only the first criterion is considered,
the only points to analyse are the wrist and knee.
As all children were recorded laterally for the execution

of this skill, the point that represents the shoulder was
considered as the delimiter of what is in front and what
is behind the child’s body. Thus, to establish whether the
arms are extended behind the body, was calculated the
horizontal coordinate of the shoulder minus the horizontal
coordinate of the wrist, in this way it is possible to generate
a positive feature for arms behind the body and negative
for arms in front of the body. The calculation was done
for the right side and for the left side, resulting in two new
features selected for the new dataset.
In most videos, children perform the movement from

left to right, however, in 18 videos, children performed
from right to left. In these videos, the order of subtrac-
tion to know if the arms are behind the body was inverted,
the horizontal coordinate of the wrist minus the horizon-
tal coordinate of the shoulder. Thus, it was possible to
maintain the positive feature when the arms are behind
the body.
When the knees are flexed, the distance between the

hip and the ankle needs to be less than the distance when
the child is standing upright. To find out the hip-ankle dis-
tance when the child is in an upright posture, the Euclidean
distances of the hip-knee and knee-ankle were calculated
in the plane of coordinates provided by PoseNet, the two
distances were added, obtained the hip-ankle distance of
the child in upright posture. It calculated the difference
between the child’s hip-ankle distance in an upright pos-
ture and the hip-ankle vertical distance measured on the
image. The calculation was done for the left and right
sides, resulting in two new features for the new dataset.
With this calculation, it was possible to obtain two fea-

tures that identify how flexed the knees are in relation to
the child’s height.
After these steps, 4 new selected features were obtained,

two representing whether the arm is behind the body (right
and left), and two representing the flexion of the knees
(right and left). These 4 new features involve only the
original features that really matter for the assessment.

4 Semin., Ciênc. Exatas Tecnol. 2023, v.44: e48131



A Machine Learning Model to Automatic Assessment of Gross Motor Development

The result was a new dataset with the 4 features and the
score received in the criterion as the target, the initial
dataset with all 24 coordinates was not used in training.

Table 1 - Features selected for the training phase.

Features Side
Distance between wrist and shoulder right
Distance between wrist and shoulder left
Knee flexion related to child size right
Knee flexion related to child size left

Data visualization

For data visualization, the Principal Component Analysis
technique was used. The visualization of all data from
the new features was in accordance with Figure 2. It is
possible to identify two sets, a nucleus of points where the
movement was done correctly (dots), that is, where the
score received was 1, and another where the movement
was done incorrectly (triangles), with the score 0 on the
criterion. For the PCA, the new dataset with the 4 features
was used.

Figure 2 - Data visualization with two-component PCA.

Results and discussion
The dataset with the 4 selected features was used for
the training phase, with the target to be predicted being
the score received in the first criterion of the jumping
ability.
In Figure 3 it is possible to verify the entire method-

ological process used in this work to obtain a machine
learning model capable of identifying whether the move-
ment performed by the child is correct or wrong.

Figure 3 - Diagram of processes to obtain the model.

Three algorithms were chosen to induce a model
capable of classifying the images in order to say
whether the movement was performed correctly or not.
The three selected algorithms were K-nearest neighbors,
Random Forest, and One-class SVM.
The separation of training and test data was done ran-

domly in the proportion of 60% for training, 20% for val-
idation/test, and 20% was separated as holdout. Careful
attention was taken to separate data as a holdout to evalu-
ate the performance of the model after the training phase.
The holdout, test and training data were separated in the
proper proportion between the two classes 0 and 1, thus
maintaining the balance of the dataset throughout the pro-
cess. This resulted in 210 training images, 70 validation
images, and 70 holdout images.
For the One-class SVM, the dataset with only class 1

was used, as the anomaly detection technique was used,
where it is expected that the anomalies are all data from
class 0. The data of the 175 images with grade 1 were
randomly divided into 80% for training and 20% for test-
ing, resulting in 140 images for training and 35 images for
testing. Out of the 175 images with class 0 that were left
out of training, 20% were randomly selected, generating a
sub-dataset of 70 images for testing, 35 with class 1, and
35 with class 0.
For the models generated by K-nearest neighbors and

Random Forest, the K-fold was used, also from sklearn
(Pedregosa et al., 2011), to cross-validate the dataset, thus
avoiding overfitting the models. The K-fold used divided
the dataset into 5 parts. The Stratified K-fold version was
used, this way, the data selected for the test part are chosen
in a balanced way between the two classes 1 and 0.
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For the One Class SVMmodel, the K-fold was not used
because of the need for training only on class 1, the class 0
was not included in the training phase because the strategy
used was the anomaly detection, therefore the only data
that has value for training is from class 1.
In the implementation of K-nearest neighbors, it was

possible to define the number k of neighbors that must
be considered to predict the class of an input data. The
smallest number of neighbors that provided the best results
was 11 in a range of 1 to 100 neighbors tested. Furthermore,
it is a good practice to use the number k of neighbors as
odd, thus forcing the decision of a class if the test data is
exactly on the border separating two classes.
For the K-nearest neighbors, the K-fold generated

5 machine-learning models, one for each cross-validation
subdivision. Table 2 presents the results of the models
generated by K-nearest neighbors in the 5 folds.

Table 2 - Performance of cross-validation KNN models.

Fold Accuracy Precision Recall F1-score
1 0.84 0.84 0.84 0.84
2 0.89 0.89 0.89 0.89
2 0.79 0.79 0.79 0.78
4 0.84 0.85 0.84 0.84
5 0.86 0.86 0.86 0.86

The average metrics of the KNN models are as follows.
An accuracy of 0.84, a precision of 0.85, a recall, and
f1-score of 0.84 were obtained. The holdout sub-dataset,
that is, the separate part of the dataset that was never seen
by the models in the training phase, was submitted to the
prediction of the 5 models. The average results presented
by the models in the holdout sub-dataset were 0.85 for
average accuracy, 0.90 for average precision, 0.78 for
average recall, and 0.84 for average f1-score.
Figure 4 represents the confusion matrix of the best

model generated by the K-nearest neighbors on the holdout
data.

Figure 4 - Confusion matrix of the best KNN model on
the holdout data (vertical axis is the target).

In the implementation of the Random Forest algorithm,
it was possible to indicate the number of decision trees
to be used, 500 decision trees were used in the algorithm,
which is a reasonable number to create a model. For the
Random Forest, the 5-part K-fold was also used to perform
cross-validation and avoid overfitting the models. Table 3
presents the results of the models generated by Random
Forest in the 5 folds.

Table 3 - Performance of cross-validation Random Forest
models.

Fold Accuracy Precision Recall F1-score
1 0.82 0.83 0.82 0.82
2 0.91 0.92 0.91 0.91
2 0.79 0.79 0.79 0.79
4 0.80 0.81 0.80 0.80
5 0.86 0.86 0.86 0.86

The average metrics of the Random Forest models are
as follows. An accuracy of 0.84, a precision of 0.84, a
recall of 0.84 and an f1-score of 0.84 were obtained. The
holdout sub-dataset was submitted to the prediction of the
5 models. The average results presented by the models
in the holdout sub-dataset were 0.93 of average accuracy,
0.89 of average precision, 0.75 of average recall and 0.81
of average f1-score.
Figure 5 represents the confusion matrix of the best

model generated by Random Forest on the holdout data.

Figure 5 - Confusion matrix of the best Random Forest
model on the holdout data (vertical axis is the target).

In the implementation of the One-class SVM, two pa-
rameters were adjusted. First, the use of the RBF kernel
(Radial basis function) was defined, which is non-linear,
this implies the generation of a nucleus of points that will
be used to define whether the preparatory movement is cor-
rect or not. All anomalies outside the core are considered
wrong movements, so only class 1 data from the dataset
were used, conditioning the model to recognize everything
outside of that core as wrong movement.
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It was defined that a total of 20% of the training data
should be considered outliers, that is, they should be out-
side the main core, 20% was the number that generated
better results in the separation of classes for the One-class
SVM.
For the One-class SVM algorithm, 50 iterations were

performed, in each iteration a new training and test set
was randomly drawn in the same proportion in which they
were initially divided, that is, 80% for training and 20%
for testing, always adding to the test data 20% of data with
class 0 also randomly selected.
For the model generated by One-class SVM the average

accuracy was 0.77, precision 0.77, recall 0.79 and the
average f1-score was 0.77.
The results obtained demonstrate the possibility of gen-

erating a model that is capable of predicting whether the
first criterion for the jumping ability was performed cor-
rectly. In addition, it is possible to identify the progress
compared to the work of Bisi et al. (2017) and Suzuki et al.
(2021).
In the works of Suzuki et al. (2021), the diagnosis of the

movement is made in order to visually show the evaluator
where there was possibly a failure in the execution of the
movement, in this paper, an automatic evaluation approach
was presented from images that represent the first criterion,
automatically providing the final score for the criterion,
however, it is necessary to provide images of the right
moments that represent the first criterion, which does not
differ from the work of Suzuki et al. (2021) regarding this
difficulty, since in their work, it is also necessary for the
evaluator to actively identify the points in the video that
represent the criteria.
Regarding the work by Bisi et al. (2017), this paper

presents no need for equipment to evaluate the first cri-
terion of the jumping skill. The agreement between pro-
fessional assessments and the automatic assessment that
achieved in their work was 87% on average, which is very
close to the results of the proposal of this paper. However,
it is important to note that the comparison is difficult, be-
cause in the case of Bisi et al. (2017), complete movements
are evaluated.

Conclusions
Measuring motor development in children is extremely
important, as it is fundamental for both the child’s physical
and social issues. A child with deficits in motor develop-
ment will certainly be more likely to present physical and
cognitive problems during their maturation period.
The work presented an approach to solving the au-

tomatic evaluation problem of the first criterion of the
TGMD-3 jumping skill. The children’s skeletons were
extracted with PoseNet and a model was presented in the

selection of features to represent the first criterion, that
is, the preparatory movement for the jump skill. With the
proposed modeling, it was possible to induce models ca-
pable of predicting whether the movement was performed
correctly.
Machine-learning models were generated using the K-

nearest neighbors, Random Forest, and One-class SVM
algorithms. The model generated by the One-class SVM
obtained an average accuracy of 77%, in this model the
anomaly detection technique was used. The models gener-
ated by K-nearest neighbors and Random Forest had an
average accuracy of 84%.
The work stands out, compared to other approaches,

in the simplification of the processes involved and the
direct inference of the criterion score. In the proposed ap-
proach, the use of sensors attached to children and specific
equipment is not necessary.
As future work, it would be interesting to carry out the

same feature modeling process for the remaining criteria
of the jumping skill, providing an overview of a complete
skill, also it would be interesting the implement of au-
tomatic assessment for the other skills of the TGMD-3
test.
Some major challenges can be found, mainly, in skills

that involve object detection, such as the balls used in the
manipulation skills, but there are expectations for new
studies in the area addressing the automatic assessment of
motor development by the TGMD-3 test.
In addition, it is possible to point out, as an important

step for future work, the automatic recognition of key
points in the children’s videos, facilitating the identifi-
cation of moments in the video in which the criteria are
evaluated.
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