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ABSTRACT
This study approaches the analysis of the stability of the epidemiological model SIR with loss of immunity. This is a
model given by a system of ordinary differential equations. Initially, we present the model and its interpretation. Then
we define the constants and elements that compose the model, so we present the results obtained using the qualitative
theory of ordinary differential equations, especially the theory of planar systems related to the dynamics of fixed points.
Finally, we show that the system representing the SIR model is globally stable and they have two types of dynamic that
depend on model constants, and their meaning for epidemiology.
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RESUMO
Este trabalho aborda a análise da estabilidade do modelo epidemiológico SIR com perda de imunidade. Esse modelo é
dado por um sistema de equações diferenciais ordinárias. Inicialmente mostramos o modelo, sua interpretação e em
seguida definimos as constantes e elementos que compõem o modelo. Então apresentamos os resultados obtidos da
teoria qualitativa de equações diferenciais ordinárias, em especial a teoria planar em relação a dinâmica de pontos fixos.
Por fim mostramos que o sistema que representa o modelo SIR é globalmente estável e tem dois tipos de dinâmica, que
dependem das constantes do modelo e quais os seus significados para a epidemiologia.

palavras-chave modelo SIR, equações diferenciais ordinárias, pontos fixos, estabilidade

Received: March 30, 2023 Accepted: Agust 25, 2023 Published: September 11, 2023
1Prof. Dr., Dept. Mathematics, UEL, Londrina, PR, Brazil. E-mail: adeval@uel.br
2Undergraduate student, Dept. Mathematics, UEL, Londrina, PR, Brazil. E-mail: kalelbgimenez@gmail.com

Semin., Ciênc. Exatas Tecnol. 2023, v.44: e47860 1

https://www.doi.org/10.5433/1679-0375.2023.v44.47860


Ferreira, A. L; Araujo, K. B. G.

Introduction

Ordinary differential equations are widely used for mod-
eling real-world problems such as population growth,
species interactions, physical phenomena, epidemics, and
others (Zill, 2003).

In particular, epidemic models are extensively used as
they aid in predicting and understanding how a disease
spreads, and the duration of an epidemic and help the
implementation of methods to reduce the disease’s impact
on the population. These models are highly efficient in
determining the best control measures, which depend on
the disease, population, and epidemic scale. However,
these models have limitations, such as their inability to
precisely predict which portions of the population will be
infected or the exact course of the epidemic (Keeling &
Rohani, 2008).

It is estimated that mathematical studies on diseases be-
gan more than 300 years ago, given the various epidemics
that have occurred in the world. The first mathematical
model for an epidemic was developed by Daniel Bernoulli
(1700-1782) to study and show that inoculation with a
live virus obtained from a patient of smallpox, would re-
duce the death rate and increase the population of France,
see Daley and Gani (2001) for more details. With the
formalization of epidemiological mathematics in conjunc-
tion with biologists and physicians various advances have
been made in the study of epidemics, such as studies on
Malaria by Ross (1911) and the studies by Kermack and
McKendrick (1927) which were landmarks for epidemio-
logical studies (Shil, 2016).

In this study, we consider an acute infectious disease,
meaning a disease that manifests itself over a short period
of days or weeks, such as influenza, flu, and chicken-
pox. We study the compartmental SIR model by Kermack
and McKendrick (1927), which divides a population into
compartments and shows how the numbers in these com-
partments may fluctuate over time. For simplification,
we consider a closed population without demography and
the factor of the individuals losing immunity after a cer-
tain period of time (Keeling & Rohani, 2008). We use
results from the Qualitative Theory of Ordinary Differ-
ential Equations present in Doering and Lopes (2016),
Sotomayor (2011), Arrowsmith and Place (1982), and
Perko (2013), to do the same as Báez-Sánchez and Bobko
(2020) for our simplified model, that is, study the stability
of this model in relation to its parameters, since the focus
is the dynamic of the system. This type of study is very
important since the dynamic of the system helps to predict
how the disease spreads the population. An example of
this is the use of the SIR model for COVID-19, and it can
be seen in Nesteruk (2021).

Materials and methods
First let us define the SIR model proposed by Kermack
and McKendrick (1927). Consider the population is fixed
and the individuals are homogeneously mixed. S(t) rep-
resents the fraction of susceptible individuals at time t,
I(t) is the fraction of infected individuals at time t, and
R(t) is the fraction of recovered individuals at time t
given by

S(t)+ I(t)+R(t) = 1. (1)

In equation (1), the susceptible are the individuals who can
become infected, the infectious are individuals who have
the disease and we assume that while they have the dis-
ease they are capable of infecting susceptible individuals
and the recovered are the individuals who have recovered
from the disease. This model we add the assumption that
recovered individuals lost their immunity to the disease
after a certain period of time.

A susceptible individual contracts the disease from
an infectious individual at a rate β > 0, thus becoming
infected and staying infected until it recovers at a rate γ ,
so this recovered individual becomes susceptible again at
a rate ρ . The model is given by equations (2)-(4),

S′ =−βSI +ρR, (2)

I′ = βSI − γI, (3)

R′ = γI −ρR, (4)

where (′) represents the time derivative and the system is
subject to the initial conditions.

We are considering the individuals move between
the compartments following the diagram presented in
Figure 1.

Figure 1 - Diagram SIR with loss of immunity.

Constant β

Using the law of mass action in epidemiology, we as-
sume that the disease spreads at a rate proportional to the
product of the fractions of susceptible and infectious popu-
lations, considering that individuals randomly encounter it
(Pachi, 2006). Therefore, as defined in López-Flores et al.
(2021), we define the proportionality constant β as the
product of the average number of individuals contacted

2 Semin., Ciênc. Exatas Tecnol. 2023, v.44: e47860



Stability of the Epidemiological Model SIR with Loss of Immunity

by an infected individual per day and the probability of
transmission, and is called transmission coefficient, which
indicates the rate of new infections when a contact occurs
between susceptible and infected individuals.

Constant γ

We can define the constant γ as in López-Flores et al.
(2021), based on the concept of probability distribution.
For this purpose, we assume the entire population is in-
fected at t = 0, i.e, I(0) = 1, and there are no new infec-
tions, then βSI = 0, thus from equation (3) we isolate the
recovery phenomenon, so we get{

I′ =−γI
I(0) = 1.

(5)

The analytic solution of the system described by
equation (5) is

I(t) = e−γt . (6)

By deriving equation (6), we have the rate at which I(t)
varies, so

I′ =−γe−γt . (7)

The rate represented by equation (7) is negative, as I(t)
is decreasing because people recover over time. The
equation (7) also represents the rate at which people re-
cover and when we take −I′(t) it is a positive rate, given
by a fraction of the population per unit of time. When
everyone recovers, we have

∫
∞

0
−I′dt =

∫
∞

0
γe−γtdt =−e−γt

∞

0
= 1, (8)

therefore, with equation (8) and −I′ ≥ 0, we have that
−I′(t) is a probability density function for 0 ≤ t < ∞.
The average time that individuals are with the disease is
given by the mean, or expected, value of t in this interval,
that is,

∫
∞

0
t(−I′)dt =

∫
∞

0
γte−γtdt =

1
γ
.

Thus, we can interpret γ as the rate at which individuals
recover, and 1

γ
as the average time individuals stay with

the disease and its unit being 1/day.

Constant ρ

In the same way as we did for the constant γ , we as-
sume at t = 0 the entire population is recovered, that is,
R(0) = 1 and don’t have new infectious, i.e, γI = 0. From
equation (4) we can isolate the phenomenon of losing

immunity and obtain,{
R′ =−ρR
R(0) = 1.

(9)

The analytic solution of the system described by
equation (9) is

R(t) = e−ρt . (10)

By deriving equation (10), we have

R′ =−ρe−ρt , (11)

which is negative, as R(t) decreases because individuals
lose their immunity over time and become susceptible
again. From equation (11), we have −R′ = ρe−ρt , which
is positive and indicates the rate of individuals that lose
their immunity and is measured by a fraction of the popu-
lation per unit of time. So, when all individuals become
susceptible again we have

∫
∞

0
−R′dt =

∫
∞

0
ρe−ρtdt =−e−ρt

∞

0
= 1. (12)

Therefore, since −R′(t) > 0 and equation (12) holds,
−R′ is a probability density function for 0 ≤ t < ∞. Thus
the average time that individuals remain immune is given
by

∫
∞

0
t(−R′)dt =

∫
∞

0
ρte−ρtdt =

1
ρ
,

so ρ its the rate at which individuals become susceptible
again, and the average time until they lose their immunity

is
1
ρ

, which is given by 1/day.

Basic reproductive ratio

Let’s define now the basic reproductive ratio, as in Keel-
ing and Rohani (2008), denoted by R0. This is a very
important value in epidemiological models. It is the av-
erage number of individuals infected by each infectious
individual when a disease is introduced into the popula-
tion, that is, it gives us the number of individuals that each
infectious individual can infect, assuming that the entire
population is susceptible to the disease. We can represent
it as,

R0 = β
1
γ
=

β

γ
. (13)
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We are looking at each infectious individual and calculat-
ing how many susceptible individuals can transmit the
disease during the time they are infected. For exam-
ple, Table 1 shows estimated values of R0 for different
diseases.

Table 1 - Examples of estimates for R0.

Disease R0 Source
Influenza 1.2−1.4 Chowell et al. (2008)

Chickenpox 10−12 Zaparolli (2020)

SARS 2−4
World Health

Organization (2003)

Using the equation (1), we have R = 1−S− I, so we
can rewrite the equations (2) and (3) by

S′ =−βSI +ρ(1−S− I), (14)

I′ = βSI − γI. (15)

We will analyze the stability of the equations (14) and
(15) in the phase plane given by

T = {(S, I) : S ≥ 0, I ≥ 0, S+ I ≤ 1},

which is a compact set.

Results and discussion
From the definition and representation (13) of R0 we can
note:

• If R0 > 1 the disease will spread in the population;

• If R0 < 1 the disease will not spread in the popula-
tion.

This already shows the importance of this value, as
if we have a very high R0, the disease spreads quickly
through the population. And from its definition, we can
introduce measures that help to decrease the value of R0,
if we can change the constants β and γ .

In this context, we will analyze the dynamics of the
system described by equations (14) and (15) for R0 > 1
and R0 < 1.

Local stability

For a local stability analysis, first we will find the null-
clines for the system, that is, when

S′ =−βSI +ρ(1−S− I) = 0, (16)

I′ = βSI − γI = 0, (17)

with equations (16) and (17) we have

• S′ = 0 when I =
ρ −ρS
ρ +βS

;

• I′ = 0 when I = 0 or S =
γ

β
.

The fixed points, or equilibrium points, are when S′ and
I′ are zero and in this case we have two fixed points, given

by (S∗, I∗) = (1,0) and (Se, Ie) =

(
γ

β
,

ρ(β − γ)

β (ρ + γ)

)
.

Note that, when R0 < 1, we have
γ

β
> 1, so the fixed

point (Se, Ie) will not be in the phase plane. We can graph-
ically see where these fixed points are located in the phase
plane for both cases.

Figures 2 and 3 show the nullclines and fixed points for
R0 < 1 and R0 > 1, respectively.

Figure 2 - Nullclines and fixed points for R0 < 1.

Figure 3 - Nullclines and fixed points for R0 > 1.

In Figure 2, we can observe the nullclines of S and I in
the phase plane T for R0 < 1. In this case, there exists a
unique fixed point in T , which is (S∗, I∗).

In Figure 3, we have the nullclines of S and I in the
phase plane T for R0 > 1. In this case we have (S∗, I∗)
and (Se, Ie) in T .
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The system, equations (14) and (15), is not a lin-
ear system. Therefore, for the study of its local
stability, we perform a linearization of the system.
This involves studying the Jacobian matrix of the system,
which is

J(S, I) =

 −β I −ρ −βS−ρ

β I βS− γ

 . (18)

The trace (τ) and determinant (∆) of J are relative with
the eigenvalues of the matrix in equation (18) (Sotomayor,
2011), thus:

1. For the fixed point (S∗, I∗) we have the matrix,

J(S∗, I∗) =

 −ρ −β −ρ

0 β − γ

 , (19)

we have the trace and determinant is,

τ = (−ρ +β − γ), (20)

∆ =−ρ(β − γ). (21)

2. For the fixed point (Se, Ie) we have the matrix,

J(Se, Ie) =


−ρ

β − γ

ρ + γ
−ρ −γ −ρ

ρ
β − γ

ρ + γ
0

 , (22)

where,

τ =−ρ
β − γ

ρ + γ
−ρ, (23)

∆ = ρ(β − γ). (24)

The matrices (19) and (22) show us that:

• If R0 < 1, we only have the fixed point (S∗, I∗) inside
the phase plane, and in this case from equations (20)
and (21) we have, ∆ > 0 and τ < 0. Thus (S∗, I∗) is
an attractor for the linear system given by the matrix
in equation (18), and by the Lyapunov-Perron Theo-
rem (Doering & Lopes, 2016), it is also an attractor
for the nonlinear system described by equations (14)
and (15). This means that all solutions that start
close to it in the phase plane will approach it as time
increases.

• If R0 > 1, we have both fixed points in the phase
plane. For (S∗, I∗), from equation (21), we have
∆ < 0, so it is a saddle point for the linear system

given by the matrix in equation (18), meaning that
solutions starting outside of this equilibrium will
move away from it. By the Linearization Theorem
(Arrowsmith & Place, 1982), (S∗, I∗) is also a saddle
point for the system described by equations (14)
and (15). For (Se, Ie), with equations (23) and (24),
we have ∆ > 0 and τ < 0, so it is an attractor by
the matrix, equation (18), and, by the Lyapunov-
Perron Theorem (Doering & Lopes, 2016), (S∗, I∗)
is a saddle point, and (Se, Ie) is an attractor for the
system, equations (14) and (15).

The Linearization and Lyapunov-Perron Theorems give
us the dynamics of solutions locally around each fixed
point. So, locally, when the disease is not spreading in
the population, the system will approach (S∗, I∗) = (1,0),
meaning that there will be no infectious individuals and
the entire population will be susceptible. Now, when
the disease is spreading, given an initial condition close
to (Se, Ie), the solutions will move away from (S∗, I∗)
and tend for (Se, Ie), which means that we will always
have a fraction of the population of infectious individu-
als, and in epidemiology, this value is called the endemic
equilibrium.

Global Stability

In the study of global stability, we want to determine what
happens to solutions that start in the phase plane but are
far from the fixed points.

We initially have that solutions starting at I = 0 re-
main at I = 0 and approach (S∗, I∗), since I = 0 is the
stable manifold of that fixed point. To analyze solutions
starting at other points, we will use the differentiable func-
tion V : T → R, given by V (S, I) = S+ I. We have that
V (S(t), I(t)) gives us the value of V along the solutions
of equations (14) and (15) (Perko, 2013), and we are an-
alyzing solutions on the line S+ I = 1. From this, we
have,

⟨∇V (S, I),(S′, I′)⟩= ρ(1− (S+ I))− γI ≤ 0,

for S+ I = 1, i.e, solutions that start on this boundary of
the phase plane will continue on the phase plane. We now
need to verify that they approach the equilibrium (Se, Ie).

By the Poincaré-Bendixon Theorem (Sotomayor,
2011), as the solution remains in a compact set, it will
approach either an fixed point or a closed orbit. We will
use the Dulac’s Criterion (Doering & Lopes, 2016) for the
open set E = {(S, I)∈R2, I > 0} that has no holes and the

differentiable function g : E → R, given by g(S, I) =
1
I

.
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Thus,

div(g(S, I)S′,g(S, I)I′) =−β − ρ

I
, (25)

since the divergence, equation (25), does not change sign
and is not zero for I > 0, we do not have closed orbits in
this open set. Therefore, solutions start in the phase plane
will only approach the fixed point.

Using the programming language R and modified codes
from (Frost et al., 2018), we computed the vector fields
for the SIR model by assigning values to the parameters.
In Figures 4 and 5, we can visualize the results obtained
from the stability analysis of the model.

Figure 4 - Vector field for R0 = 0.83, β = 0.1, γ = 0.12,
ρ = 0.03.

In Figure 4 we have a disease in which people stay
sick for an average of 8 days, and remain immune for
an average of 30 days and the transmission coefficient is
0.1, that is, a 10% probability of transmission in contact
between infected and susceptible. Therefore, we have
R0 < 1, and the solutions will converge to the point (S∗, I∗).
The simulation used initial conditions of S0 = 0.2, I0 = 0.6
and S0 = 0.8, I0 = 0.1.

In Figure 5 we have a simulation for a disease with
R0 > 1, i.e, is spreading through the population. In this
case individuals stay sick for around 10 days, remain
immune for an average of 30 days and the transmission
coefficient is 0.3, that is, a 30% probability of transmission
in contact between infected and susceptible. As we can
see, the solutions converge to the fixed point (Se, Ie). The
initial conditions used were S0 = 0.2, I0 = 0.6 and S0 =

0.8, I0 = 0.1.

Figure 5 - Vector field for R0 = 3, β = 0.3, γ = 0.1,
ρ = 0.03.

Conclusions
We can conclude that the SIR model with loss of immunity
is stable, regardless of its parameters and for both cases of
R0. However, for each case, we have different behaviors
of the system dynamics. We have:

1. For R0 < 1, the disease does not spread, and all solu-
tions converge to the equilibrium point of the phase
plane, where the number of infected individuals in
the population is zero.

2. For R0 > 1, the solutions approach the endemic
equilibrium, which indicates that for a disease with
these assumptions, we will always have infectious
individuals within the population. Consequently, the
disease will always be present in the population at
the endemic equilibrium.

In addition, we have an estimate of the number of in-
dividuals in each compartment for the system to reach
equilibrium, which is a value sought when studying the
spread of a disease over a long period of time. This study
also shows that it is possible to introduce control factors,
and methods that decrease the β constant, thus modify-
ing the R0 and making the spread of the disease smaller,
reducing its impact within the population. For example,
the controlling factor can be using masks or control the
encounter of the susceptible with the infectious.
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