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Abstract
This article discusses the importance of monitoring water quality in public health and use of mathematical
modeling to predict environmental impact. For monitoring, the E. coli indicator was chosen, and a one-
dimensional hydrodynamic equation was used for mathematical simulation, which was solved using the
Crank-Nilcolson method. The results of the mathematical model and developed algorithm were validated
according to data from the literature.
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Resumo
Este artigo discorre sobre a importância do monitoramento da qualidade da água na saúde pública e a utilização
da modelagem matemática para previsão de impactos ambientais. Para o monitoramento foi escolhido o
indicador E. coli e utilizado para simulação matemática uma equação hidrodinâmica unidimensional que
foi solucionada pelo método de Crank-Nilcolson. Os resultados do modelo matemático e o algoritmo
desenvolvidos foram validados pela literatura.
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Introduction

Intense human changes in water resources have
hindered their management, in terms of various en-
vironmental degradation factors, various social, eco-
nomic, environmental, and technological changes, and
uncertainties concerning future of water resources
(SEFFRIN, 2001).

Mathematical modeling favors predictive and un-
derstanding studies of phenomena, such as predictions
regarding the physical-chemical and biological charac-
teristics of water bodies, and can thus be considered a
support tool in studies and decision-making related to
environmental impact (BASSANEZI, 2002).

In particular, in the management of water bodies,
mathematical and computational modeling is a powerful
tool, as it can simulate empirical situations by analyz-
ing remote and imminent scenarios of the most diverse
phenomena (CLIVERD et al., 2016).

The use of these computational resources associated
with mathematical modeling is a complex problem
solver in environmental management and water en-
gineering. Note that these mathematical applications
in water systems can manage resources in a man-
ner compatible with the assimilation potentials of wa-
ter bodies, in addition to effluent release patterns,
and with classifying water bodies into a use class
and licensing a potentially suspected pollution activity
(BALDOCHI, 2002; TUNDISI, 2021).

Therefore, mathematical modeling applied to hydro-
dynamics is a tool of extreme importance for managing
water resources, but its use is still limited to the different
methods of obtaining information about the behavior of
the system, which invites adaptations both in present
and future scenarios, because its limiting character
affects the ability of the models to present the quality
of the modeled results in a real and precise manner
(JOBIM, 2012).

For the evaluation of water bodies contaminated by
sewage, the most used parameters concern the presence of
microorganisms with pathogenic potential and Escherichia
coli (E. coli), a direct environmental indicator of fecal
contamination and easy resistance to the main antimi-
crobials (OSINSKA et al., 2016). In addition, it is a
microorganism that can be isolated in various places in
the human body, and some of its strains are responsible
for diseases such as pneumonia, meningitis, and intesti-
nal infections, which can lead to death when neglected
(ARBOS et al., 2017).

Therefore, monitoring the microbiological quality of
water from fresh and treated sewage receiving bodies is
crucial for sustainable urban development such that envi-
ronmental, social, economic, and public health impacts
can be estimated and controlled, particularly for planning
public administration.

In this context, a useful tool for estimating the con-
centration of E. coli is mathematical modeling, because
experimental research has operational problems and high
costs. Another advantage of mathematical modeling is its
ability to adapt easily and quickly to different scenarios;
among these models, the Lagrangian and Eulerian models
can be used to simulate the dispersion of pollutants in
rivers (OLIVEIRA, 2015).

Given the importance of achieving greater environmen-
tal control, this study aims to present a reliable manner
for simulating the transport of E. coli in a water body.
It is a useful and low-cost tool that serves as an experi-
mental laboratory for teaching dispersion phenomena and
the advection of said agents in water courses.

Despite the apparent simplicity, Partial Differen-
tial Equations (PDEs) provide a quantitative descrip-
tion for many central models in physical, biological,
and social sciences. PDEs govern complex phenomena
of motion, reaction, diffusion, equilibrium, conserva-
tion, and more. Since 1949, see Von Newmann (1949),
the use of computing machines were predicted to find
numerical solution of PDEs that model practical problems.
Several methods were developed to solve this problems
and we refer to Brandt (1977), Castro, Gomes and Stolfi
(2012), Castro, Gomes and Stolfi (2016), Wesseling
(2004), LeVeque (2002) and the references therein. Maybe
the first numerical method for nonlinear equations was
presented originally in 1928 by Courant, Friedrichs and
Lewy (1967).

Turning to finite-difference schems, as presented in
the following sections, we propose solving the equation
of the one-dimensional hydrodynamic model adapted
from a three-dimensional model using the Crank-Nicolson
method (CRANK; NICOLSON, 1947), which is implicit
and stable.

Material and method

The mathematical model and its discretization

In this study, a coliform transport model was adapted
from a three-dimensional hydrodynamic model used by
Liu, Chan and Young (2015) for a one-dimensional model.
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The parameters of advection, dispersion, and decay were
considered as the first order for bacteria, because of their
mortality and sedimentation during the transport process.
The model is given by equation (1)

Ct +uCx+vCy+wCz =(µxCx)x+(µyCy)y+(µzCz)z−KC,

(1)
where u is the velocity in the x-direction, v the velocity
in the y-direction, w the velocity in the z-direction, µx the
diffusion in variable x, µy the diffusion in variable y, µz

the diffusion in variable z, and K is the decay coefficient
of coliforms.

Some factors such as non-punctual sources and
sediment resuspension may affect the concentration
of coliforms in water, but this variable was not con-
sidered because of the difficulty in obtaining these
parameters.

The equation used is an adaptation that considers the
time and spatial variations in fecal coliform concentration,
as given in equation (2)

Ct =−νCx +(µCx)x −KC, x ∈ [0,L], t ∈ [0,T ], (2)

where C(x, t) is the concentration of fecal coliforms, t the
temporal variable, ν the speed of the incompressible fluid
in the x-direction, the diffusion coefficient, K the decay
parameter of linear coliforms that describes the process
of removing the pollutant, L the length of the stretch of
stream to be analyzed that begins at the point of effluent
release, and T is the defined time limit.

The initial condition used was the Dirichlet type, that
is the constant is given by equation (3)

C(x,0) =

{
C0, se x < d

CL, se x ≥ d,
(3)

where C0 is the concentration at the launch point, CL the
natural concentration of the stream (obtained before the
launch point), and d the effluent release point.

For discretization, consider 0 ≤ x ≤ L, so the domain
[0,L]× [0,∞] is first partitioned into sub-rectangles of the
shape ∆x×∆t, where ∆x = xi −xi−1 and ∆t = t j − t j−1, as
shown in Figure 1.

Another important factor to consider in the mesh is
that the Crank-Nicolson method is unconditionally stable
for ∆x and any value of ∆t, but may present some oscilla-
tions if the ratio ∆t ≤ ∆x2

2 is not applied. To avoid these
oscillations, the algorithm considers a restriction in ∆t

that is widely used in computational fluid dynamic (CFD)
simulations.

Figure 1 – Mesh.

Source: The authors.

Equation (2) was discretized using the Crank-Nicolson
method, which is a method of finite differences, and there-
fore consists of approaching the derivatives of the differen-
tial equation using the differences in each corresponding
subinterval of the partition. The derivatives are presented
in equations (4)-(6). That is,

Ct =
c j+1

i − c j
i

∆t
(4)

Cx =
1
2

(
c j+1

i+1 − c j+1
i−1

2∆x
+

c j
i+1 − c j

i−1

2∆x

)
(5)

Cxx =
1
2

(
c j+1

i+1 −2c j+1
i + c j+1

i−1

∆x2 +
c j

i+1 −2c j
i + c j

i−1

∆x2

)
,

(6)
where C(xi, t j) = c j

i .

Replacing the derivatives in equation (2) and
rearranging the therms we obtain equation (7):

(
β

2
− γ

)
c j+1

i+1 +(2γ +α +2)c j+1
i −

(
β

2
+ γ

)
c j+1

i−1 =

−
(

β

2
− γ

)
c j

i+1 +(−2γ −α +2)c j
i +

(
β

2
+ γ

)
c j

i−1,

(7)
where β = ν∆t

∆x , γ = µ∆t
∆x2 and α = K∆t.

Therefore, rewriting equation (7), we obtain equa-
tion (8):

Cc j+1
i+1 +Bc j+1

i −Ac j+1
i−1 =−Fc j

i+1 +Ec j
i −Dc j

i−1, (8)

where A = β

2 + γ , B = 2γ +α + 2, C = β

2 − γ , D = A,
E =−2γ −α +2 and F =C.

Note that A, B, C, D, E and F are coefficients of the
discretized equation. After partitioning the interval [0,L],
there are N points on the x-axis, with which the solution
of equation (2) is approximated.
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In equation (8), by varying the i indexes from 1 to N,
the following system is obtained:

Cc j+1
0 +Bc j+1

1 −Ac j+1
2 =−Fc j

0 +Ec j
1 +Dc j

2 (9)

Cc j+1
1 +Bc j+1

2 −Ac j+1
3 =−Fc j

1 +Ec j
2 +Dc j

3 (10)

...

Cc j+1
N−2 +Bc j+1

N−1 −Ac j+1
N =−Fc j

N−2 +Ec j
N−1 +Dc j

N .

(11)

This system, equations (9)-(11), can be written
in a matrix form, and the matrix of the system is
tridiagonal

MC = R, (12)

where the coefficient matrix M is a square matrix, the
unknown vector C, the independent term vector R are
given by

M =



B C 0 . . . 0

−A B C
...

0
. . . 0

... −A B C

0 . . . 0 −A B


, (13)

C =



c j+1
1

c j+1
2
...

c j+1
N−1

c j+1
N


, R =



R(1)
R(2)

...
R(N −1)

R(N)


(14)

and R(i) =−Fc j
i−1 +Ec j

i +Dc j
i+1.

It is important to mention that using the data obtained
with the initial solution at j = 0, the system, in equa-
tion (12), is resolved such that the solution is obtained at
time t1 = ∆t. This process was repeated using the solution
at t1 to obtain the solution at t2 = 2∆t. In this manner, the
solution to the problem given in equations (2)-(3) can be
obtained at any time t j = j∆t.

Numerical implementation

This section is dedicated to explain the implementa-
tion of the numerical solution, however, it is important to
mention the general advantages in seek a approximation
to the analytical solution.

A major advantage of a numerical method is
that a numerical solution can be obtained for pro-
blems, where an analytical solution does not exist.

The methods can provide accurate solutions in cases deal-
ing with complex problems for which analytical solutions
cannot be obtained and, in this case, it would be impossi-
ble to handle otherwise. An additional advantage is, that a
numerical method only uses evaluation of standard func-
tions and the operations: addition, subtraction, multiplica-
tion and division.

Due to the simplicity to build the code, we use
Scilab 6.1.1 (SCILAB..., 2021) to implement the
numerical solution to the problem given in equations
(2)-(3). The analytical solution, used to compare with
numerical solution was also implemented in Scilab.
This open source software for numerical computation has
a powerful open computing environment for scientific
applications. The figures were produced using the plot
function.

Results

The convergence order

To validate the proposed algorithm, tests were per-
formed and compared with those in theoretical works
(DIAS, 2003; SOCOLOFSKY; JIRKA, 2021). In each
case, simulations with the same parameters were per-
formed by applying the numerical convergence analysis
method, which consists of comparing the performances
of numerical methods in relation to the analytical solu-
tion to the same point, expressed as Galdino (2003), by
equations (15) and (16)

C(x, t,∆t)≈ c(x, t)+E(x, t)∆tq, (15)

C(x, t,
∆t
2
)≈ c(x, t)+E(x, t)

∆tq

2q . (16)

This approximation enables the estimation of
the convergence ratio of the method using the
equation (17)

∥C(x, t,∆t)− c(x, t)∥∞

∥C(x, t, ∆t
2 )− c(x, t)∥∞

≈ 2q, (17)

where q represents the order of the numerical method.
The Crank-Nicolson method is a second-order numerical
method, i. e., q = 2; thus, the ratio that must be observed
in the method must approach 4 to validate the convergence
of the algorithm.
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Numerical experiments for pure diffusion

For the first simulation, a comparison was made be-
tween the numerical solution of given in equations (2)-(3)
and exact solution of equation (18), which is a pure diffu-
sion situation given by

Ct = (µCx)x. (18)

The exact solution is given in terms of the error function
by equation (19):

C(x, t) =C0

(
1− erf

(
x√
4µt

))
. (19)

The simulation parameters considered in problem (2)-
(3) to produce Figure 2 were L = 5m, µ = 0.01m/s, ν = 0,
K = 0, C0 = 1 and CL = 0.

Figure 2 shows the curves related to the simulation
with different mesh spacings. With an increase in the
number of steps, a greater number of points can be seen
to coincide with the analytical solution, and the same
phenomenon is observed for different values of t. There-
fore, the numerical solution can be considered to ap-
proach the analytical solution with the refinement of the
mesh.

Applying the numerical convergence analysis method,
using equation (17), the refinement of the mesh is
observed by doubling the number of steps in each
simulation, beginning with 25 steps up to 400 steps,
for t = 0.25s.

Observing the error and ratio between these errors,
according to Table 1, implies the convergence of the
method, because, for each refinement, the ratio ap-
proaches 4; thus, the method for pure diffusion can be
validated.

Table 1 – Validation data of the algorithm with the error
mesh parameters for t = 1s for pure diffusion.

Steps ∆∆∆xxx ∆∆∆ttt EEE === ∥CCC−−− ccc∥∞∞∞ Reason
25 0.2 0.02 0.021032

50 0.1 0.005 0.005258 3.999856

100 0.05 0.00125 0.001314 4.002854

200 0.025 0.0003125 0.000328 4.000585

400 0.0125 0.000078125 0.0000821 4.000006

Source: The author.

Figure 2 – Comparing numerical and exact solutions with
a) 25 steps, b) 50 steps, c) 100 steps, and d) 200 steps in
space and at times t = 20, 40, 60, 80, and 100s.

(a)

(b)

(c)

(d)

Source: The author.
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For Figure 3, the same analysis was performed, but
using times t = 0.25s and 0.50s, to verify that the method
requires more time to converge at longer time inter-
vals. By analyzing the graph, the algorithm is evidently
more accurate if a longer time interval is considered,
because the error for time t = 0.25s is on a scale of
1.0× 10−4 for a step number equal to 400, and for the
same step number for t = 1s, the error is in a scale
of 1.0×10−5.

Figure 3 – Error ratio with an increased number of steps
at different time intervals for pure diffusion.

Source: The author.

Numerical experiments for diffusion-advection

The simulation parameters considered in problem
(2)-(3) to produce Figure 4 were L = 5m, µ = 0.1m/s,
ν = 0.5m/s, K = 0, C0 = 1 and CL = 0. In the simulation,
the advective part of the differential equation was consid-
ered, which was responsible for the transport of the matrix
(coliforms) because the presence of current in the stream
was considered.

In Figure 4, the graphs of the analytical solution, equa-
tion (20), are compared with the graph of the numerical
solution, which was generated in different numbers of
steps. The diffusion-advection equation is

Ct +νCx = (µCx)x. (20)

From Figure 4, the greater the number of steps, the
closer the numerical simulation is to the analytical solu-
tion.

In Figure 4, a deviation of the points is noticed when
approaching the end of the stretch x = L. This is because
of the difference in the contour conditions imposed on the
algorithm and exact solution, but the same does not affect
the efficiency of the algorithm compared with the exact
solution.

Figure 4 – Refining comparison of numerical solutions
with the exact solution, with parameters a) 25 steps, b)
50 steps, c) 100 steps, and d) 200 steps in space and
at times t = 2, 4, 6, and 8s for the diffusion-advection
equation.

(a)

(b)

(c)

(d)

Source: The author.
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Table 2 lists the ratio of the errors of two consecutive
refinements. For comparison, the number of sample points
is always doubled to validate the stability and convergence
of the method. As observed when the mesh size is reduced,
the ratio approaches four, confirming that the method is of
order 4, thereby validating the algorithm for equation (20).

Table 2 – Validation data of the algorithm with the er-
ror mesh parameters for t = 1s for diffusion-advection
equation.

Steps ∆∆∆xxx ∆∆∆ttt EEE === ∥CCC−−− ccc∥∞∞∞ Reason
25 0.2 0.02 0.032354

50 0.1 0.005 0.008322 3.887614

100 0.05 0.00125 0.002089 3.984201

200 0.025 0.0003125 0.000524 3.983979

400 0.0125 0.000078125 0.000131 3.999237

Source: The author.

To analyze the convergence of the algorithm for
shorter time intervals, Figure 5 was generated, which
demonstrates that, at shorter time intervals, the algo-
rithm did not present a large difference in error, remain-
ing at (t = 1.0, 0.5, and 0.25s) on the same scale of
a 1.0×10−4 error.

Figure 5 – Error ratio with an increased number of steps
at different time intervals for diffusion-advection.

Source: The author.

Numerical experiments for diffusion-advection and decay

The simulation parameters considered in problem (2)-
(3) to produce Figure 6 were L = 5m, µ = 0.01m/s,
ν = 0.5m/s, K = 1m/s, C0 = 1 and CL = 0. The simula-
tion considered beyond the advective part of the previous
section; the coliform decay was considered, which is the
natural death of bacterial cells that sink to the bottom of
the stream.

Figure 6 shows that the numerical solution approaches
the analytical solution by increasing the number of steps
in each simulation.

Figure 6 – Refining the mesh of the simulated model with
the exact solution, with parameters a) 25 steps, b) 50 steps,
c) 100 steps, and d) 200 steps in space and at times t = 1,
2, 3, 4 and 5s for diffusion-advection with decay.

(a)

(b)

(c)

(d)

Source: The author.
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Another point to note, in Figure 6, is that compar-
ing the results with the problems of pure diffusion and
diffusion-advection, a decrease in concentration is ob-
served in a shorter time, confirming the effect of decay on
the capacity of self-purification of water through theoreti-
cal simulation.

As in the previous sections, a numerical convergence
analysis was performed. By observing the relationship
between the overall error and mesh decrease, and the
higher the number of steps, the smaller the overall error
seemed to be. In addition, it presented a ratio close to four,
confirming that the numerical method is second-order.
Table 3 presents the results.

Table 3 – Validation data of the algorithm with the error
mesh parameters for t = 1s for diffusion-advection and
decay equation.

Steps ∆∆∆xxx ∆∆∆ttt EEE === ∥CCC−−− ccc∥∞∞∞ Reason
25 0.2 0.02 0.0186993

50 0.1 0.005 0.0049043 3.812838

100 0.05 0.00125 0.0012286 3.991779

200 0.025 0.0003125 0.0003075 3.995447

400 0.0125 0.000078125 0.0000769 3.9987

Source: The author.

To verify the behavior of the method in shorter time
intervals, error analyses were conducted for times t = 0.5s

and 0.25s. The longer the simulation time, the higher the
accuracy of the method was observed to be, and, in this
analysis, a difference was verified in the error scale of
10 times.

Therefore, in Figure 7, at time t = 1s and 400 steps, the
error is on a scale of 1.0×10−5, and, for time t = 0.25s

with the same step number, an error scale of 1.0×10−4,
validating the algorithm for longer time intervals.

Figure 7 – Error ratio with an increased number of steps at
different time intervals for diffusion-advection and decay.

Source: The author.

Conclusion

The mathematical model was based on theoretical
models from the literature. The mathematical model
was solved using the Crank-Nilcolson finite differences
method because it is stable in space and time for
second-order EDPs; the mathematical solution was sim-
ulated and compared to models from the literature
to validate the developed algorithm, which was vali-
dated by refining the mesh and overall error of the
models.

The simulated model presented results similar to those
of the literature, thereby validating the algorithm. There-
fore, the present work and mathematical simulations are
satisfactory compared with the literature.
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