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Abstract
The theory of singular value decomposition of matched matrices is used to verify the heterogeneity of rows,
columns and between matched two-way tables. An exploratory analysis that can be visualized in biplots
and through simulations studies with the hierarchical log-linear model using ordinary residuals and the
components of residual deviance. The effect of heterogeneity was studied generating different sample sizes
and their behavior was checked by adjusting Poisson’s model. We concluded that the model of ordinary
residuals is the one that best reflects the degree of heterogeneity among the matched tables. Finally, an
illustrative example is presented in order to guide the researcher to interpret the relationship between the
results of the log-linear models with the biplots considering the effects between the sum and difference
between the tables.
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Resumo
A teoria da decomposição de valores singulares é utilizada para verificar a heterogeneidade de linhas, colunas
entre tabelas de dupla entrada. Em uma análise exploratória, essa relação pode ser visualizada em biplots e
através de estudos de simulações com o modelo log-linear hierárquico, por meio dos resíduos ordinários e da
componente da deviance residual. O efeito da heterogeneidade foi estudado, gerando diferentes tamanhos de
amostra e seu comportamento foi verificado ajustando o modelo Poisson. Concluiu-se que dado o resíduo
ordinário, a heterogeneidade entre as tabelas é melhor explicada pelos biplots. Por fim, apresenta-se um
exemplo ilustrativo para orientar o pesquisador na interpretação da relação entre os resultados dos modelos
log-lineares com os biplots considerando os efeitos entre soma e diferença entre as tabelas.
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Introduction

One of the main purposes of categorical data analysis
is studying the association between two or more variables,
but this identification may be complicated if tables with
more complex structures are considered. The application
of multivariate techniques, such as correspondence analy-
sis (CARLIER; KROONENBERG, 1998; GREENACRE,
2003) and multiple factor analysis (ABDI; WILLIANS;
VALENTIN, 2013; BÉCUE-BERTAUT; PAGÈS, 2008),
may be an alternative to such problem. On the other hand,
these methodologies use techniques of residual adjustment
(BET, 2012) and, depending on the sample, the percentage
of variability to be restored by the components may be
low.

Another way to look into the association of categorical
variables is the use of biplots, whose coordinates may be
obtained by decomposing singular values (AITCHISON;
GREENACRE, 2001). The contribution biplot can be ap-
plied to a wide variety of analyses, such as correspondence
analysis, principal component analysis, log-ratio analysis,
and various forms of discriminant analysis, and, in fact,
to any method based on dimension reduction through the
singular value decomposition (GREENACRE, 2013; VAN
DER HEIJDEN; MOOIJAART, 1995). Dossou-Gbété and
Grorud (2002), however, mention that high dispersions
among the frequency of categorical variables result in an
asymmetric biplot, which may lead to a wrong association
of the variables under analysis.

Biplots may be applied in situations that involve
"matched" two-way tables. According to Dossou-Gbété
and Grorud (2002), the term "matched" appears as a sim-
ple extension of the concept of two-way tables, which
are cross-classified according to two homologous fac-
tors (with levels in one-to-one relationship). This con-
text shows an improvement to the technique of singu-
lar value decomposition that allows simultaneous esti-
mations of coordinates to be used in the construction of
biplots for the sum and difference of two or more contin-
gency tables (FALGUEROLLES, 2000; GREENACRE,
2003). Nevertheless, it is worth mentioning that due to
high contingency dispersion, these biplots tend to be
asymmetric.

Given the relation of high dispersion with the
resulting asymmetric biplots, the use of generalized
methods has been common as a research tool for
the relation of biplots with the structure or hierar-
chy of categorical variables (BRZEZINSKA, 2012).

Because of such problems, Van Der Heijden, Falguerolles
and Leeuw (1989), have contributed by using log-linear
and as, more specifically, association models (POW-
ERS; XIE, 2000) and bilinear models (FALGUEROLLES,
2000). Problem is that, regardless of the model applied
into the analysis of categorical data, the results obtained
with the biplot technique are exploratory and, conse-
quently, the use of models applied to categorical data will
bring inferential results, such as parameter interpretation
and residue analysis.

The hierarchical log-linear model connection and an
exploratory analysis given by the biplots technique, for
combined double-entry tables, making it possible to infer
about the degree of heterogeneity of the tables. The impor-
tance of this result is verified not only in the centroid of
the biplots, but also in the behavior of the components of
the sums of squares, given the residual information of the
model, which influence the estimates of the effects A+B

(the sum of the tables) and A−B (difference between the
tables), considering different degrees of heterogeneity be-
tween them, thus, the importance of having a simulation
study is justified.

Considering that the main purpose is to carry out a
study using a simulation that points out the performance
of a methodology involving the relation between hierarchi-
cal log-linear methods and the biplots, this work aims at
proposing a Monte Carlo simulation study on hierarchical
log-linear models, thus allowing the identification of the
most adequate residue to contemplate the heterogeneity
between matched two-way tables at the construction of Bi-
plots. The importance to carry out an inferential procedure
is highlighted among the several advantages provided by
this study, relating to model adjustment and its contribu-
tion to the interpretation of a Biplot, which heterogeneity
effect results in more asymmetric biplots. In such context,
the researcher is expected to have more confidence while
interpreting biplots, because such interpretation is mostly
subjective.

Therefore, this paper is structured as follows: In-
troduction; Materials and methods; Random genera-
tion of matched two-way tables by log-linear mod-
els; Singular value decomposition of matched two-
way tables implemented to biplot visualizations; Re-
sults and discussion; Influence of the residuals to iden-
tify the level of heterogeneity according to sum of
matched tables; Influence of the residuals on the iden-
tification of levels of heterogeneity, according to the dif-
ference between matched tables; Numerical example;
Conclusions.
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Methodology

The methodology used in this work was divided into
the following structure: In section Random generation of

matched two-way tables by log-linear models, the struc-
ture of the design is given, as well as the model specifica-
tion, predictor and linking function were mentioned. After
adjusting the model, the frequency in each cell was ob-
tained, and then replaced with ordinary residuals or with
deviance residue components, creating three situations to
be assessed in each scenario.

In section Singular value decomposition of matched

two-way tables implemented to the biplot visualizations,
the decomposition of singular values was implemented by
obtaining coordinates in each of these situations and sce-
narios. As for heterogeneity of matched tables, assessing
"sum" and "difference" between tables is important. Thus,
the empirical distributions of sum of squares of such com-
ponents were collected after 2000 simulations and their
averages were computed so as to be used to build plots
and biplots.

Random generation of matched two-way tables by log-

linear models

There are several types of log-linear models for two-
way contingency tables (FALGUEROLLES; FRANCIS,
1994). A saturated model that includes all the possible
effects to explain every single expected cell frequency
given by equation (1)

η jk = β0 +β1 j +β2k +β12k, (1)

where β0 represents an overall effect or a constant, β1 j

represents the main or marginal effect of the jth row, β2k,
represents the main or marginal effect of the kth column
and β12k represents the interaction.

Considering that yi jk represents the observation that
belongs to the ith group, i =1, 2, to the jth row j =1,· · · ,5,
and kth column, k =1,· · · ,3, the hierarchical structure was
given according to the layout of Table 1.

Following such specifications, the log link function is

g(µi jk) = log(µi jk) = ηi jk, (2)

where µi jk = g−1(ηi jk).
Using the structure as reference, see Table 1, each

yi jk was simulation of Poisson model considered a linear
predictor, defined by

ηi jk = β0 +β1i +β2 j +β3k, (3)

Table 1 – Contingency table with structured groups.
Column (k)

Group (i) Row (j) 1 2 3 Total
1 y111 y112 y113 y11+

2 y121 y122 y123 y12+

1 3 y131 y132 y133 y13+

4 y141 y142 y143 y14+

5 y151 y152 y153 y15+

1 y211 y212 y213 y21+

2 y221 y222 y223 y22+

2 3 y231 y232 y233 y23+

4 y241 y242 y243 y24+

5 y251 y252 y253 y25+

Source: The authors.

that included the effect of the table, but did not consider
interaction parameters.

Assuming log link function equation (2), and ηi jk de-
fined in equation (3), the as a hierarchical log-linear model
written as, equation (4)

log(µi jk) = β0 +β1i +β2 j +β3k, (4)

where β11 = 0, β1i, i = 2, is the effect of the ith table
(group), β21 = 0, β2 j, j = 2, · · · ,5, the effect of the jth

row and β31 = 0, β1k, k = 2, · · · ,4, the effect of the kth

column. Thus, yi jk = E(eηi jk).
Therefore, upon the independence of tables, rows and

columns, our model has I + J+K number of independent
parameters. The marginal distribution was defined by yi j+

and yi+k, i =1 or 2, so the sample size was given by ηi =

yi j++ yi+k, i = 1,2.
The specification as to what parametric values should

be used in the Monte Carlo simulation to generate yi jk

was determined considering the increase in the level of
heterogeneity among the tables, as well as the discrep-
ancies related to the effect of rows and columns, as de-
scribed on Table 2. The combination of these parametric
values resulted in 32 scenarios, which were assessed in
2000 Monte Carlo simulations, implemented to software R
(R CORE TEAM, 2015).

Singular value decomposition of matched two-way tables

implemented to the biplot visualizations

As Greenacre (2003) recommended, Table 1 was
partitioned into two tables Gi, named G1 and G2, ac-
cording to rows, in order to extract the components
that relate the influence of the variables represented
in the columns and the differences between tables, si-
multaneously represented by G1 + G2 and G1 − G2.
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Table 2 – Parametric values used in the simulation to obtain frequencies on the contingency tables, according to the
crescent order of heterogeneity among tables.

Parameter
Group Row Column Description

β1 β2 β3

0
0.2 0.2 Low and equal row and column effects

1

1.5
1.0 1.0 High and equal row and column effects

2

2.5
0.2 1.0 Low row effect and high column effect

3

3.5
1.0 0.2 High row effect and low column effect

4

Source: The authors.

To do so, the singular value decomposition was applied to
the matrix N given by equation (5)

N =

[
G1 G2

G2 G1

]
. (5)

At this stage, it is worth mentioning that elements yi jk

that constitute matrices G1 and G2 were also replaced by
ordinary residuals expressed by ri jk and given by

ri jk = ˆyi jk − yi jk, (6)

that is, the difference between predicted and observed
values, and the components of deviance residuals rD

i jk,
given by equation (7)

rD
i jk = sign

(
yi jk − ˆyi jk

){
2yi jklog

(
yi jk

ˆyi jk

)
+2

(
ηi jk − yi jk

)
log

(
ηi jk − yi jk

ηi jk − ˆyi jk

)} 1
2
. (7)

Assessing the residuals in singular value decomposi-
tion applied to matched tables is important, because the
log-linear model was generated upon independence of
rows and columns; however, no restriction was made as to
the homogeneity or heterogeneity of the residual variance.
Thus, considering ordinary residuals and deviance residue
components, respectively, both residue heterogeneity and
homogeneity are shown in the biplot visualizations.

After obtaining different residuals in different effect
levels in tables, rows and columns, the next step was sin-
gular value decomposition, based on partitioned matrices.
Considering matrix N, equation (5), constituted by G1

and G2, there was correction by average, resulting in
block matrix M, constituted by matrices A1 and A2 so
that, equation (8):

M =

[
G1 −1c̄T G2 −1c̄T

G2 −1c̄T G1 −1c̄T

]
=

[
A1 A2

A2 A1

]
, (8)

where c̄ = 0.5(ḡ1 + ḡ2) being ḡi the average row
of Gi.

The sum of the squared elements in matrix M,
equation (8), may be decomposed into two components:
one due to the matrix sum A1 +A2 and one due to matrix
difference A1 −A2 written as equation (9)

2∑
i

∑
j
(a1 jk − c̄k)

2 +2∑
i

∑
j
(a2 jk − c̄k)

2

= ∑
i

∑
j
(a1 jk − c̄k +a2 jk − c̄k)

2 +∑
i

∑
j
(a1 jk +a2 jk)

2.

(9)
If an evaluation of averages A1 and A2 is necessary,

rather than summing, the sum component A1 +A2 must
be divided by the number of columns.

However, according to Greenacre (2003), a sin-
gle singular value decomposition applied to matrix M,
equation (8), may provide both components A1 +A2 and
A1 −A2, considering the expressions defined as

A1 +A2 =UDαV T (10)

and
A1 −A2 = XDβY T , (11)

where U and X are singular vector matrices to the
left and V and Y are singular vector matrices to
the right, each with k orthonormal columns. Dα and
Dβ represent diagonal matrices with positive singu-
lar values γ at a decreasing order of magnitude.
Therefore, the decomposition of Matrix M, equation (8),
is described by equation (12).[

A1 A2

A2 A1

]
2 j×2k

=
1√
2

[
U X

U −X

]

×

[
Dα 0
0 Dβ

]
1√
2

[
V Y

V −Y

]T

. (12)

138
Semina: Ciênc. Ex. Tech., Londrina, v. 43, n. 2, p. 135-146, July/Dec. 2022



Heterogeneity among contingency tables diagnosed by hierarchical log-linear models and their effect on Biplots

Still according to Greenacre (2003), altering the signal
of singular values in X and Y , corresponding to the matrix
difference, and the presence of factor 1√

2
multiplying the

singular values to the left and to the right ensures a correct
normalization of the solution and the fact that singular
values to the left and to the right of the equation are or-
thonormal. Note that components A1 + A2 and A1 −A2,
equations (10) and (11), are not separated, but interspersed
according to the magnitude of the corresponding singular
values, which are disposed at a decreasing order.

Discriminating the vectors associated to components
A1 +A2 and A1 −A2 implies that the singular vectors to
the left (U) and to the right (V ) refer to the component
A1 + A2 and have two identical copies to each vector,
which are arranged in the same column, one on top of
the other, resulting in a vector twice as big as expected,
according to equation (8). On the other hand, for singular
vectors X and Y, which correspond to component A1 −A2,
the initial vector and the arranged vector have opposite
signs, which allow us to separate the k related to com-
ponent A1 + A2 and thek related to component A1 −A2

from the resulting vectors (2k).
Once these vectors associated to components were

identified, we obtained the coordinates for A1 +A2 and
A1 −A2. The biplots were created considering the aver-
ages of both main coordinates, gathered from 2000 Monte
Carlo simulations.

Thus, in order to build the biplots, the contribution
of each autovalue should not be calculated in total of
n autovalues, but as n/2, since half of these autovalues
are related to the sum A1 +A2 and the other half, to the
difference A1 −A2.

According to Greenacre (2003), in order to report these
aspects A1+A2 and A1−A2, it is possible to calculate two
matrices, one for the sum, or average, and another one for
the difference, and carry out separate analyses, but it is
also possible to reach both results by making a single SVD
analysis of a bigger matrix, formatted as a special block
matrix, though the result will be a decentralized difference
matrix. In such case, the resulting biplots show, simulta-
neously, the differences between columns and rows, as
well as differences between both matrices (AITCHISON;
GREENACRE, 2001; GREENACRE, 1993).

Results

When it comes to the applicability of Monte Carlo
simulations, as used herein, we find it proper to obtain the
empirical distribution of biplot coordinates by adjusting

log-linear models linked to decomposition into singular
values. Therefore, an analytical study is inviable.

In order to validate the methodology, a great number
of experiments had been necessary, which would only
be possible by implementing computational system. It is
possible to assess heterogeneity through the magnitude
of average coordinates, obtained from 2000 simulations.
For further details on the computational implementation
we included, please refer to the script attached in appendix,
where we describe all functions used to obtain the results.
The heterogeneity between contingency tables is not only
reported numerically, but also graphically.

We obtained the results shown in Table 3 using the
contingency table as reference, structured according to
the layout of Table 1 and, aiming at comparing the
heterogeneity among the tables, characterized by the para-
metric values, as defined in β1. We also kept the effect
of categorical variables constant, as represented in the
rows and columns, with the respective parametric values,
as specified in β2 j = 0.2 and β3k = 0.2. Such results cor-
respond to the sum of squared components A1 +A2 and
A1−A2, considering the numbers gathered from the hierar-
chical log-linear models, adjusted by maximum likelihood
method.

Considering the hierarchical log-linear model, the ratio
between sample sizes from the contingency tables A1 and
A2 follow the relation:

nA1

nA2

= eβ1i (13)

where β1i corresponds to the heterogeneity between tables.
Thus, the higher β1i is, the larger the heterogeneity be-
tween sample sizes from the tables.

According to Falguerolles (2000), in case of matched
matrices that represent the analysis of categorical data
from two contingency tables A1 and A2, the resulting ma-
trix for the sum A1 +A2 results in the accumulation, cell
to cell, of frequencies from both tables, and A1 −A2 is the
difference between frequencies. If such frequencies be-
tween tables differ substantially from the total or marginal
frequencies, such fact will supersede the analysis of the
difference matrix, i.e., A1 −A2. According to Greenacre
(2003), when sample frequencies nA1 and nA2 have similar
sizes, there will not be such problem, especially when the
data are not collected according to a given design that
exposes the difference matrix.

Note that in the results shown on Table 3, there is
statistical evidence that there is effect based on type of
residuals to the log-linear model, of expressive differences
as to the components.
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Table 3 – Sample size and sum of squares of components A1 +A2 and A1 −A2, as a function of group and distribution
parameters.

Simulated data
β1 Sample size Ordinary residuals Residual deviance components

nA1 nA2 A1 +A2 A1 −A2 A1 +A2 A1 −A2

0.0 43 43 40 74 17.06 29.61
1.0 318 117 212 346 15.25 26.67
1.5 865 193 496 755 15.82 25.50
2.0 2347 318 1235 1701 16.03 24.72
2.5 6380 523 3207 4023 16.41 23.79
3.0 17349 864 8534 9847 17.21 23.43
3.5 47149 1424 23103 25124 17.35 22.38
4.0 128157 2349 61371 65276 17.71 22.29

Source: The authors.

When we used the residual deviance components, there
is proximity of results obtained in relation to the sum of
squares to the components. So it is possible to state that
such waste does not establish the heterogeneity between
the tables. Thus, this discussion emphasizes the results re-
lated to the adjustment of log-linear model, using ordinary
residuals.

Influence of the residuals to identify the level of

heterogeneity according to sum of matched tables

A1 + A2.

In order to assess the performance of ordinary
residuals, Figure 1(a), and the residual deviance compo-
nents, Figure 1(b), we considered the parametric values
specified for β1i, which characterize the heterogeneity
among tables, as a function of the sum of squares of com-
ponent A1 +A2.

Considering the residual deviance components,
Figure 1(b), we observed that the low effect of variables
organized in “rows” caused the component A1 +A2 to pro-
vide higher numbers in all situations. Considering ordinary
results, the total synthesized variation in A1 +A2 did not
cause differences to the effects among rows and columns.
Such result is noticeable when verifying the similarity
between curves, Figure 1(a). Similarly, as a comparison,
the occurrence of this result was similar to situations in
which the observed frequencies, Figure 1(c), were used in
the study of table heterogeneity for component A1 +A2.

In this way, we understand that the contribution of
parameters β2 to the categorical levels described in the
table rows and β3 the levels arranged in the columns
has a greater impact on the effect of groups β1, when
biplots are constructed with residual deviance, Figure 1(b).
Considering the ordinary residuals, Figure 1(a), this effect
is more stable, therefore, the use of ordinary residuals is
recommended because it presents a more homogeneous

behavior in relation to the magnitude of the parameters
associated with the rows and columns of the tables.

Thus, it can be said that use of ordinary residuals al-
lows to verify, in a manner similar to the use of the ob-
served frequencies, the behavior of the sum of squares
of components A1 +A2 due to the heterogeneity of the
combined table and, moreover, has the advantage add in-
formation of the adjusted model. Thus, it was found the
performance of using ordinary residuals in the building
biplots from the eigenvectors and eigenvalues of com-
ponents A1 + A2 considering the parametric values β1i

increasing and with fixed β2 j = 0.2 and β3k = 0.2.
The biplots built to β1i = 0 are illustrated in Figure 2(a).

In this case, the generated tables are homogeneous and it is
noticed a symmetric biplot and very close to zero residual,
as expected. For the parameter β1i = 2.0, Figure 2(b), the
heterogeneity is identified by the asymmetry of Biplot and
increasing the magnitude of both the first coordinate on the
second axis. This occurs similarly when used β1i = 4.0,
Figure 2(c), but there is not a proportional increase in
the magnitude of the coordinates. This may be associated
with the fact that the sum component, having as main
characteristic the overall average of the column, not being
able to distinguish the heterogeneity levels generated by
the log-linear model, but only the existence or not of this.

In case of the parameter β1i = 2.0 and β1i = 4.0, the
biplot created is asymmetric, since the centroid is located
next to the variables represented in the “row”. Relating this
result to the level of heterogeneity, Figure 1(b), there is
statistical evidence to confirm that, in hierarchical log-
linear models, the influence in component A1 + A2 is
more pointed out towards categorical variables represented
in the “row”, which is different from what Greenacre
(2003) mentions, when they say that adding two matrices,
Tables 1 and 2, provides a general idea of column variation.

140
Semina: Ciênc. Ex. Tech., Londrina, v. 43, n. 2, p. 135-146, July/Dec. 2022



Heterogeneity among contingency tables diagnosed by hierarchical log-linear models and their effect on Biplots

Figure 1 – Sum of squares of component A1 +A2 obtained as a function of different degree of heterogeneity β1 for
combined β2 = 0.1 or 1.0 and β3 = 0.2 or 1.0, using: (a) ordinary residuals; (b) residual deviance components and
(c) observed frequencies.

(a) (b) (c)

Source: The authors.

Figure 2 – Biplots related to components A1 +A2 considering ordinary residuals for fixed β2 = 0.2 and β3 = 0.2
parameters and different degree of heterogeneity β1: where in (a) β1 = 0.0; (b) β1 = 2.0 and (c) β1 = 4.0.

Vj the variables represented in lines and the Tk variables represented in the columns.

(a) (b) (c)

Source: The authors.

With such characteristics, the biplot obtained by ordi-
nary residuals for matrix A1 +A2, used just to verify the
presence or absence of total variation, is recommended.

Influence of the residuals to identify the level of

heterogeneity according to difference between matched

tables A1 −A2

Following the same scenarios assessed in subsec-
tion Influence of the residuals to identify the level

of heterogeneity according to sum of matched tables

A1 +A2, the study of the influence of ordinary residuals,
Figure 3(a). And the residual deviance components,
Figure 3(b), as well as the observed frequencies,
Figure 3(c), to estimate component A1 −A2 is illustrated
below.

Considering the residual deviance components,
Figure 3(b), there is an antagonistic effect in relation to
the level of heterogeneity in the table, when compared
to its influence upon component A1 + A2, Figure 1(b).

In such contexts, the increase in heterogeneity among the
tables caused a reduction in component A1 −A2, which is
interpreted as the sum of squares of the difference among
the tables. The results obtained when using residual de-
viance components, Figure 3(b), are not in accordance
with Greenacre (2003), since they mention that the result
between two tables, that is, A1 −A2, will fall upon the dif-
ferences between the tables variables, matrices, within
each row variable and upon the way they vary in be-
tween rows.

As to biplots, once the ordinary results were ob-
tained, the same behavior happened in relation to the
effect of component A1 +A2. Naturally, the vector sizes
and the variable disposition differ from the components
mainly, because they have different coordinates, since,
for each case, the eigenvalues for A1 +A2 and A1 −A2

have been discussed. The difference occurs when using
β1i = 0, because the biplots obtained were asymmetric,
Figure 4(a).
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Figure 3 – Sum of squares of component A1 −A2 obtained as a function of different degree of heterogeneity β1 for
combined β2 = 0.1 or 1.0 and β3 = 0.2 or 1.0, using: (a) ordinary residuals; (b) residual deviance components and
(c) observed frequencies.

(a) (b) (c)

Source: The authors.

Figure 4 – Biplots related to components A1 −A2 considering ordinary residuals for fixed β2 = 0.2 and β3 = 0.2
parameters and different degree of heterogeneity β1: where in (a) β1 = 0.0; (b) β1 = 2.0 and (c) β1 = 4.0.

Vj the variables represented in lines and the Tk variables represented in the columns.

(a) (b) (c)

Source: The authors.

It is observed that, despite being asymmetrical,
the growing magnitude of the coordinate values on
the axes are associated with increased heterogeneity
of the tables. Thus, to the degree of heterogeneity
zero, the average coordinates of the adjusted ordinary
residuals are very close to zero, allowing such tables to
have similar frequencies, just like component A1 +A2,
Figure 2(a).

On the other hand, in the case of the increase
of the parameter considered for heterogeneity in the
tables, there is a gradual increase in the average co-
ordinate, and to β1i = 2.0, Figure 4(b), approximately
twice as much as obtained in β1i = 0, and approximately
four times greater when using β1i = 4.0, Figure 4(c).
It is possible to assess heterogeneity through the mag-
nitude of average coordinates, obtained from 2000
simulations.

Numerical Example

In order to illustrate the methodology proposed, we
present an application to sensory analysis, in which we
observe the frequency of men and women who consume
two kinds of coffee in Paris, New York and Tokyo, as a
function of age, Table 4. Two tables with two-way are
displayed, where matrix A1 refers to coffee Bourbon and
matrix A2 to coffee Catuaí.

The adjusted hierarchical log-linear model is given as
follows:

log(ηi jk) = 2.58 + 0.44β12 + 0.01β22 +

+0.14β23 +0.09β24 +0.19β25

+0.22β26 +0.08β32 +0.01β33, (14)

where β1i, β2 j and β3k are the parameters related to tables
(2 types of coffee), rows (6 arrangement between sex and
age) and columns (3 cities).
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Table 4 – Data on the number of people who consume coffee.
Type of Coffee Sex and Age City

Paris NY Tokyo
Men < 30 17 16 15
Men 30-50 22 18 19

Bourbon (A1) Men > 50 24 19 27
Women < 30 25 27 25
Women 30-50 27 31 28
Women > 50 28 32 25

Men < 30 18 16 22
Men 30-50 10 18 18

Catuaí (A2) Men > 50 13 19 18
Women < 30 15 13 9
Women 30-50 16 15 9
Women > 50 14 20 11

Source: The authors.

By means of residual deviance, there is statistical evi-
dence, p-value =0.268. The parameters for table β1, rep-
resenting the difference between coffees, was estimated in
0.44 and corresponds to the log of the ratio between sizes
for each of the tables, that is, considering n as given by
equation (13)

nA1

nA2

=
425
274

= 1.55 = e0.44. (15)

When the general profile evaluation A1 +A2 for coffee
consumption as a function of city, age and sex is gath-
ered, considering ordinary residuals, the sum of squares is
222.16. The singular values corresponding to A1 +A2 are
13.95 and 5.25, and the third value is close to zero. The
contribution to the biplot in two coordinates was 99.9%.
When using observed frequencies, the sum of squares was
423.5, with singular values equal to 18.28, 8.16 and 4.77,
94.6% of contribution, Figure 5(a).

The individual behavior does not repeat the ex-
pected behavior, when it comes to observed frequen-
cies, as observed when comparing Figure 2(c) and
Figure 5(b). In relation to ordinary residuals, because data
heterogeneity is considered, the expected behavior was
preserved according to the simulated results, Figure 2(a)
and Figure 5(a).

As for the general profile evaluation A1 − A2 for
coffee consumption in relation to cities, sex and age,
the sum of squares for ordinary residuals was 847.44.
The singular values corresponding to A1 +A2 are 26.19;
11.78 and 4.78. When observed frequencies were used,
the sum of squares was 2222.89 and the singular val-
ues were 44.87; 12.919 and 6.55, Figure 6(a) and
Figure 6(b).

For component A1 −A2 there was a similarity in be-
havior for both biplots, when using ordinary residuals,
Figure 6(a), and observed frequencies, Figure 6(b). Both
are asymmetric and have similar correspondences between
variables "row" and "column", and only differed because
of the rotation in relation to the first singular value (1st vs.-
horizontal axis).

For purposes of comparison, we carried out a singular
value decomposition, Figure 7 and Figure 8, having the
data obtained from tables as reference, considering the
total sum of coffee consumers per city and sex/age A1+A2,
Table 5 and the difference among consumers A1 − A2,
Table 6.

For the sum of consumers, there are similar bi-
plots, which confirms the efficacy of this methodology,
both for observed frequencies and ordinary residuals ob-
tained by adjusting the hierarchical log-linear model,
Figure 5(a).

Note that the difference between the consumer’s
responses were more similar among the biplots,
when using observed frequencies and ordinary
residuals, Figure 7(a). In general, interpreting bi-
plots is the same relation to the biplots illustrated in
Figure 8(b).

The percentage of explained variability and the
singular values obtained in each case previously as-
sessed are displayed in Table 7, where the per-
centage of sample variation, explained by the bi-
plots, had adequate values, with special attention to
component A1 + A2, where the ordinary residue is
considered.
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Figure 5 – Biplots related to component A1 +A2 (Bourbon + Catuaí), where considering: (a) ordinary residuals and
(b) observed frequencies.

(a) (b)

Source: The authors.

Figure 6 – Biplots related to component A1 −A2 (Bourbon + Catuaí), where considering: (a) ordinary residuals and
(b) observed frequencies.

(a) (b)

Source: The authors.

Figure 7 – Biplots related to component A1 +A2 using table data (Bourbon + Catuaí), where considering: (a) ordinary
residuals and (b) observed frequencies.

(a) (b)

Source: The authors.

Figure 8 – Biplots related to component A1 −A2 using table data (Bourbon + Catuaí), where considering: (a) ordinary
residuals and (b) observed frequencies.

(a) (b)

Source: The authors.
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Table 5 – Total frequency of people who consume coffee, considering the types of coffee Bourbon and Catuaí.
Sum of observed Sum of adjusted

frequencies ordinary residuals
Sex and age City City

Paris NY Tokyo Paris NY Tokyo
Men < 30 35 32 37 0.934 -4.30 3.38
Men 30 - 50 32 36 37 -2.395 -0.66 3.05
Men > 50 37 38 45 -2.310 -3.89 6.21
Women < 30 40 40 34 2.650 0.22 -2.86
Women 30-50 43 46 37 1.730 2.02 -3.74
Women > 50 42 52 36 -0.580 6.62 -6.03

Source: The authors.

Table 6 – Difference among frequencies of number of people who consume coffees Bourbon and Catuaí.
Differences between Differences between adjusted
observed frequencies ordinary residuals

Sex and age City City
Paris NY Tokyo Paris NY Tokyo

Men < 30 -1 0 -7 -8.37 -7.84 -14.26
Men 30-50 12 0 1 4.57 -7.92 -6.33
Men > 50 11 0 9 2.51 -9.05 0.63
Women < 30 10 14 16 1.93 5.40 8.04
Women 30-50 11 16 19 2.09 6.50 10.20
Women > 50 14 12 14 4.80 2.20 4.93

Source: The authors.

Table 7 – Difference among frequencies of number of people who consume coffees Bourbon and Catuaí.
Operation carried Contribution to the
out in the original Type of data Singular first two sv’s

tables used values (sv) 1st 2nd 3rd

Ordinary residue 13.95 5.24 0.01 99.99%
A1 +A2

Observed frequency 18.28 8.16 4.77 94.60%

Ordinary residue 26.18 10.51 4.61 97.40%
A1 −A2

Observed frequency 28.37 10.58 4.47 97.87%

Source: The authors.

Conclusion

The use of hierarchical log-linear models is viable to
verify the level of heterogeneity among matched two-way
tables. The use of ordinary residuals, based in the results
described in Figure 1(a). The adjustment of hierarchical
log-linear models was also found to be a promising alter-
native to build and interpret biplots, when compared to
biplots with observed frequencies.
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