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Convergência numérica de um sistema de equações Telegráficas
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Abstract
Numerical convergence of a Telegraph Predator-Prey system is studied. This partial differential equation
(PDE) system can describe various biological systems with reactive, diffusive, and delay effects. Initially, the
PDE system was discretized by the Finite Differences method. Then, a system of equations in a time-explicit
form and in a space-implicit form was obtained. The consistency of the Telegraph Predator-Prey system
discretization was verified. Von Neumann stability conditions were calculated for a Predator-Prey system
with reactive terms and for a Delayed Telegraph system. On the other hand, for our Telegraph Predator-Prey
system, it was not possible to obtain the von Neumann conditions analytically. In this context, numerical
experiments were carried out and it was verified that the mesh refinement and the model parameters, reactive
constants, diffusion coefficients and delay constants, determine the stability/instability conditions of the
discretized equations. The results of numerical experiments were presented.

Keywords: Reactive-Diffusive-Telegraph system, Maxwell-Cattaneo delay, discretization consistency, Von
Neumann stability, numerical experimentation.

Resumo
Estuda-se a convergência numérica de um sistema Predador-Presa Telegráfico. Esse sistema de equações
diferenciais parciais (EDP) pode descrever vários sistemas biológicos com efeitos reativos, difusivo e de
retardo. Inicialmente o sistema de EDPs foi discretizado pelo método de Diferenças Finitas. Então, um
sistema de equações em uma forma explícita no tempo e em uma forma ímplicita no espaço foi obtido.
A consistência da discretização do sistema Predador-Presa Telegráfico foi verificada. A seguir, as condições
de estabilidade de von Neumann foram calculadas para um sistema predador-presa com termos reativos e para
um sistema telegráfico com retardo. Por outro lado, para o nosso sistema Predador-Presa Telegráfico não foi
possível obter analiticamente as condições de von Neumann. Neste contexto foram realizados experimentos
numéricos e verificou-se que o refinamento da malha e os parâmetros do modelo, as constantes reativas,
coeficientes de difusão e constantes de retardo, determinam as condições de estabilidade/instabilidade das
equações discretizadas. Os resultados das experimentações numéricas foram apresentados.

Palavras-chave: Sistema Telegráfico-Difusivo-Reativo, retardo de Maxwell-Cattaneo, consistência da discre-
tização, estabilidade de Von Neumann, experimentação numérica.
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Introduction

Currently, there is a growing interest in the study of
population dynamics, mainly due to the need to have better
control of epidemics (ABIDEMI; ZAINIDDIN; AZIZ,
2021; CIRILO et al., 2021a; CIRILO et al., 2021b; PAUL
et al., 2021), or to reduce the economic, biological and
social losses caused by invasive species (ASH et al., 2022;
KISHORE et al., 2021; LI; YUAN; WANG, 2023), among
other needs.

The first mathematical studies aimed at describ-
ing interactions between populations took place in
the 1920s (BAZYKIN, 1998). During this period, the
Lotka-Volterra mathematical model emerged (LOTKA,
1925; VOLTERRA, 1926). This model describes the
predator-prey interaction between two populations
through the system of ordinary differential equations,
given by

dS1

dt
= a1S1 − c1S1S2

(1)
dS2

dt
= −a2S2 + c2S1S2,

where S1 > 0 and S2 > 0 denote the population densities
of the interacting species, with S1 being the density of
prey and S2 the density of predators. Furthermore, a1 > 0
is the birth rate of the species S1, a2 > 0 is the death
rate of the species S2, and the parameters c1 > 0 and
c2 > 0 are the interaction rates between the two species.
The non-derivative terms on the right side of the system,
equation (1), are called reactive terms.

Later in the 1950s, Holling carried out experiments
to investigate how the rate of prey capture by a predator
is related to the density of the prey (HOLLING, 1959a;
HOLLING, 1959b), a relationship called the functional
response.

Holling identified three general categories of
functional responses, Figure 1. The type 1 functional
response is linear, when the number of prey consumed
increases in direct proportion to prey density. The type 2
functional response says that as the prey population
increases, predators become satiated and consume a
constant number of prey (saturation). The type 3
functional response is similar to type 2, except at
low prey density, when prey switching effects occur
(TANSKY, 1978).

Still in the 1950s, Huffaker investigated the effects of
spatial structure on the interaction of mite populations.

Figure 1 – The three types of functional responses identi-
fied by Holling.

Source: Adapted by Holling (1959a).

Among several results, Huffaker showed that the predator-
prey interaction could not survive in a homogeneous envi-
ronment without dispersion (HUFFAKER, 1958).

Currently, through more complex mathematical
modeling, there are works that emphasize the studies of the
dynamics of invasive species, epidemics and other biologi-
cal phenomena (BEARUP; PETROVSKAYA; PETRO-
VSKII, 2015; CIRILO et al., 2019; DE ROOS; MC-
CAULEY; WILSON, 1991; GREENHALGH; KHAN;
PETTI, 2017; LEWIS; PETROVSKII; POTTS, 2016; LI;
Li; YANG, 2016; TILLES; PETROVSKII; NATTI, 2016;
TILLES; PETROVSKII; NATTI, 2017).

As the description of the effects of predating on
one species by another improved, the mathematical
models became more complex. Thus, in parallel with the
development of more realistic and complex biological
models, studies on the convergence of numerical methods
applied to these models have become essential.

The Lax Equivalence Theorem is fundamental for the
analysis of the convergence of numerical solutions
of PDEs. The theorem says that in a well-posed initial
value problem that has been consistently discretized,
stability of the numerical method is a necessary and suffi-
cient condition for numerical convergence (LAX; RICHT-
MYER, 1956).

About stability of numerical methods, it is associated
with the propagation of numerical errors in the iterative
process (HIRSCH, 2007). The numerical method is
said to be stable if the errors decrease along the
iterative process, otherwise, if the errors increase, the
numerical solution will diverge and the numerical method
is said to be unstable. Finally, a numerical method
is said to be conditionally stable if it depends on
certain parameters so that the errors remain limited.
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In the case of linear problems, the von Neumann stability
analysis is widely used (CUMINATO; MENEGUETTE,
1999). In the case of nonlinear initial condition problems,
the stability of a numerical method can hardly be verified
analytically (ISAACSON; KELLER, 1994). In such sit-
uations, numerical experiments are used to analyze the
stability of the numerical method used (OLIVEIRA et al.,
2019).

About consistency of numerical method, we say that
a discretized problem is consistent when it tends to the
original differential equation if the increments in the inde-
pendent variables tend to zero (SANGAY, 2015).

In this context, the objective of this work is to verify
the consistency and stability of a numerical method
applied to a Telegraph Predator-Prey system. The con-
ditions for the convergence of the numerical model are
analyzed through numerical experiments.

Modeling the Telegraph Predator-Prey system

In this section, the Maxwell-Cattaneo Diffu-
sion equation system is first modeled and then
the Telegraph Predator-Prey equation system is
developed.

Maxwell-Cattaneo Diffusion system

The classical law of diffusion, Fick’s law (PAUL et al.,
2014), is a law that describes the diffusion of a property
in systems that are not in equilibrium. In systems where
there are concentration gradients of a property, then there
is a flow of this property which tends to homogenize the
system.This homogenizing flow will go in the opposite
direction of the gradient and, if this flow is weak, it can be
approximated by the first term of a Taylor series, resulting
in Fick’s law. In the case of a Predator-Prey system in one
dimension, this modeling is expressed mathematically by
(PAUL et al., 2014),

J j =−D j
∂S j

∂x
, (2)

where flow J1 is due to diffusion of population density
of prey S1 and flow J2 is due to diffusion of population
density of predator S2, while D1 and D2 are the diffusiv-
ity coefficients for prey and predators, respectively. Note
that the negative sign, in equation (2), indicates that the
homogenizing flow occurs in the opposite direction of the
concentration gradient, ie, from high concentrations to
low concentrations.

On the other hand, Fick’s law proposes that signals
propagate with infinite speed, which in practice does not
happen, configuring the so-called "Paradox of Fourier’s
law" (MICKENS; JORDAN, 2003). To correct this prob-
lem, Fick’s law is modified by the Maxwell-Cattaneo Dif-
fusion law (CATTANEO, 1958) which introduces a lag
time τ for each action. Thus, due to the finite speed of
propagation of information, the system does not react
instantly to an action.

For predator-prey systems, the Maxwell-Cattaneo Dif-
fusion law is given by (CIRILO et al., 2019)

(
1+ τ j

∂

∂ t

)
J j =−D j

∂S j

∂x
, (3)

where τ1 is the reaction time of the prey when exposed
to predating and τ2 is the predator’s reaction time to cap-
ture prey. Note that, contrary to the system (1), in the
system (3) we have S j = S j(x, t), for j = 1,2, so that now
the population densities of prey and predator, respectively,
also depend on the spatial variable x.

Telegraph Predator-Prey system

For predator-prey systems, in the context of Huffaker’s
hypotheses, the Maxwell-Cattaneo diffusion law must
be incorporated into the population density conservation
law. According to the Conservation Principle, the rate of
change of a property in a volume V must be equal to the
net flux of that property through the surface of V , plus the
amount of the property transformed into the interior of V

due to reactive effects (FORTUNA, 2012). Thus, the con-
servation equation for predator-prey system, considering
diffusive, reactive and delay effects, is written as

∂S j

∂ t
=−

∂J j

∂x
+Fj (S j) , (4)

where J j are the population flows described by system (3)
and Fj(t,x,S) represents the prey reaction term, if j = 1,
and the predator reaction term, if j = 2. Note that the
equation (4) is a transport equation.

Therefore, deriving equation (4) with respect to time t

and equation (3) with respect to coordinate x, we have

∂ 2S j

∂ t2 =− ∂

∂ t

(
∂J j

∂x

)
+

∂

∂ t
Fj (S j) (5)

τ j
∂

∂x

(
∂J j

∂ t

)
+

∂J j

∂x
=−D j

∂ 2S j

∂x2 . (6)
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Noting that Fj = Fj(S j,x, t) and S j = S j(x, t), it fol-
lows from the chain rule that

∂

∂ t
Fj (S j) =

d
dS j

Fj(S j)
∂S j

∂ t
, (7)

so that equation (5) is rewritten as

∂ 2S j

∂ t2 =− ∂

∂ t

(
∂J j

∂x

)
+

d
dS j

Fj(S j)
∂S j

∂ t
. (8)

Multiplying equation (8) by τ j, and subtracting the
resulting equation from equation (6), it follows that

τ j
∂ 2S j

∂ t2 − τ j
d

dS j
Fj (S j)

∂S j

∂ t
= D j

∂ 2S j

∂x2 +
∂J j

∂x
. (9)

Finally, obtaining
∂J j

∂x
from equation (4) and substi-

tuting in equation (9), we obtain the delayed predator-
prey equations, whose population densities S j are sub-
ject to reactive-diffusive processes (CIRILO et al., 2019;
MENDEZ; FEDOTOV; HORSTHEMKE, 2010), i.e.,

τ j
∂ 2S j

∂ t2 +

[
1− τ j

d
dS j

Fj (S j)

]
∂S j

∂ t
= D j

∂ 2S j

∂x2 +Fj (S j) .

(10)

The equations (10) will be designated in the remaining of
the work as Telegraph Predator-Prey equations. Note that
the equations (10) have the same structure as the classical
Telegraph equation, which describe the propagation of
electrical signals in long conducting cables.

Discretization of the Telegraph Predator-Prey
system

Consider the equations (10) with the following initial
and boundary conditions

τ1
∂ 2S1

∂ t2 +

[
1− τ1

dF1

dS1

]
∂S1

∂ t
= D1

∂ 2S1

∂x2 +F1 (11)

τ2
∂ 2S2

∂ t2 +

[
1− τ2

dF2

dS2

]
∂S2

∂ t
= D2

∂ 2S2

∂x2 +F2 (12)

S j(x,0) = S0
j ,

∂S j(x, t)
∂ t

∣∣∣∣t=0

= 0 , ∀x ∈ [0,L] (13)

S j(0, t) = S j(L, t) = 0 , ∀t ∈ [0,T ] , j = 1,2, (14)

where t and x are the temporal and spatial variables, τ1

and τ2 are the delay parameters of the populations, D1

and D2 are the diffusivity coefficients of the populations,

S1(x, t) and S2(x, t) are the population densities, finally
F1 and F2 are the prey and predator reactive terms of the
populations, respectively. In this work, it is considered
that the reactive terms present functional responses of the
Holling 1 type, see Figure 1, i.e.,

F1 = F1(S1,S2) = a1S1 −b1S2
1 − c1S1S2 (15)

F2 = F2(S1,S2) =−a2S2 + c2S1S2, (16)

where a1 is the prey birth rate, b1 is the prey saturation
term, c1 is the prey death rate due to predating, a2 is the
predator death rate in the absence of prey and c2 is the
predator birth rate due to predating (NATTI et al., 2019).

The initial conditions S0
1 and S0

2 are the initial
population densities of prey and predators, respectively.
Finally, the Dirichlet boundary conditions, equation (14),
impose that at the boundary of the problem domain, the
population densities are null.

To discretize the Telegraph Predator-Prey
equations (11) and (12) the one-dimensional mesh
shown in Figure 2 is used.

Cardinal point notation is used in the discretization
of the problem domain. The labels P, W and E stand for
center (P point where the calculation is performed), east
and west, respectively. Lowercase acronyms are cardinal
variations from the center P. As shown in Figure 2, the
population densities S1 and S2 are calculated at the center
of the cell. Note that storage shifted to population densities
has a positive impact on numerical computation, reducing
numerical instability (CIRILO et al., 2018; FERREIRA et

al., 2001; FORTUNA, 2012; GRIEBEL; DORNSEIFER;
NEUNHOEFFER, 1998; SAITA et al., 2021).

As for the numerical method for discretizing the PDEs,
the Finite Difference Technique was used (BURDEN;
FAIRES, 2008; CUMINATO; MENEGUETTE, 1999).
Thus, central finite differences are used for the discretiza-
tion of the second derivatives, that is,

(
∂ 2S j

∂ t2

)∣∣∣∣k
P
≈ 1

(∆t)2

(
S j|k+1

P −2S j|kP +S j|k−1
P

)
(17)

(
∂ 2S j

∂x2

)∣∣∣∣k
P
≈ 1

(∆x)2

(
S j
∣∣k
E −2 S j

∣∣k
P + S j

∣∣k
W

)
, (18)

while for the first derivative in time, regressive finite dif-
ferences are used

(
∂

∂ t
S j

)∣∣∣∣k
P
≈ 1

∆t

(
S j
∣∣k
P − S j

∣∣k−1
P

)
. (19)
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Figure 2 – Discrete one-dimensional mesh used for the Telegraph Predator-Prey system.

Source: The authors.

Finally, for the equation (11), it is still necessary to
discretize the term([

1− τ1
∂

∂S1
F1 (S1,S2)

]
∂S1

∂ t

)∣∣∣∣k
P
=

(
∂S1

∂ t

)∣∣∣∣k
P
− τ1

(
∂

∂S1
F1 (S1,S2)

)∣∣∣∣k
P

(
∂S1

∂ t

)∣∣∣∣k
P
. (20)

From equation (15), it follows that(
∂

∂S1
F1 (S1,S2)

)∣∣∣∣k
P
= a1 −2b1 S1|kP − c1 S2|kP , (21)

then using the equations (19) and (21) in the equation (20),
one obtains that (

∂

∂S1
F1 (S1,S2)

∂S1

∂ t

)∣∣∣∣k
P
≈

(
a1 −2b1 S1|kP − c1 S2|kP

)( 1
∆t

(
S1|kP − S1|k−1

P

))
≈

1
∆t

(
a1 S1|kP −2b1 S2

1
∣∣k
P − c1 S1|kP S2|kP

− a1 S1|k−1
P +2b1 S1|k−1

P S1|kP + c1 S1|k−1
P S2|kP

)
. (22)

Substituting the equations (15), (17)-(19) and (22) in
equation (11), it follows that the discretization of the prey
equation is given by

S1|k+1
P =Ω1

(
ϒ1S1|kW +Π1S2

1|kP + Φ1S1|kP +Λ1S1|kE +Γ1

)
(23)

where

ϒ1 =− D1

∆x2 , Λ1 =− D1

∆x2 (24)

Ω1 =−∆t2

τ1
, Π1 =

2τ1b1

∆t
+b1 (25)

Φ1 =
1− τ1

(
a1 − c1S2|kP +2b1S1|k−1

P

)
∆t

+
2τ1

∆t2 +
2D1

∆x2

−a1 + c1S2|kP (26)

Γ1 =
τ1S1|k−1

P

∆t2 −
(
1− τ1 (a1 − c1S2|kP)

)
S1|k−1

P

∆t
. (27)

Note that the discretized prey equation (23) is explicit in
time and implicit in space.

In a similar way, the formula for the discretization
of the predator equation is obtained. The only difference
is in the derivation of the predator reactive term, from
equation (16),(

∂

∂S2
F2 (S1,S2)

)∣∣∣∣k
P
=−a2 + c2 S1|kP . (28)

So the equation for discretizing the predator equation is
given by

S2|k+1
P = Ω2

(
ϒ2S2|kW +Φ2S2|kP +Λ2S2|kE +Γ2

)
, (29)

where

ϒ2 =− D2

∆x2 , Λ2 =− D2

∆x2 , Ω2 =−∆t2

τ2
(30)

Φ2 =
1− τ2(−a2 + c2S1|kP)

∆t
− 2τ2

∆t2 +
2D2

∆x2 +a2 − c2S1|kP
(31)

Γ2 =
τ2S2|k−1

P

∆t2 −
(
1− τ2(−a2 + c2S1|kP)

)
S2|k−1

P

∆t
. (32)

Again, note that the discretized prey equation (29) is
explicit in time and implicit in space.

Numerical model consistency

The numerical solution of a problem does not al-
ways tend to the exact solution of the same problem. The
resulting error between the exact solution of the contin-
uous problem and the numerical solution obtained from
the discretized equations is called local truncation error
(LTE) (CUMINATO; MENEGUETTE, 1999). In most of
the applied problems, the exact solution is not known and
this is our case. In such situations one can estimate the
Local Truncation Error through Taylor Series (BURDEN;
FAIRES, 2008) and use this estimate to prove that the
method is consistent at the limit of the continuum, when
∆x,∆t → 0.
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Consider PDEs equations (11) and (12) and using
the Finite Difference method, we have the following dis-
cretized equations

τ1

∆t2

(
S1

∣∣∣∣k+1

P
−2S1

∣∣∣∣k
P
+S1

∣∣∣∣k−1

P

)

+
1
∆t

[(
1− τ1

(
a1 − c1 S2|kP −2b1 S1|kP

))
S1|kP

−
(

1− τ1

(
a1 − c1 S2|kP −2b1 S1|kP

))
S1|k−1

P

]
− D1

∆x2

(
S1

∣∣∣∣k
E
−2S1

∣∣∣∣k
P
+S1

∣∣∣∣k
W

)
−F1

∣∣∣∣k
P
= 0 (33)

and

τ2

∆t2

(
S2

∣∣∣∣k+1

P
−2S2

∣∣∣∣k
P
+S2

∣∣∣∣k−1

P

)

+
1
∆t

[(
1− τ2

(
−a2 + c2 S1|kP

))
S2|kP

−
(

1− τ2

(
−a2 + c2 S1|kP

))
S2|k−1

P

]
− D2

∆x2

(
S2

∣∣∣∣k
E
−2S2

∣∣∣∣k
P
+S2

∣∣∣∣k
W

)
−F2

∣∣∣∣k
P
= 0, (34)

where F1 and F2 are the prey and predator reactive terms,
equations (15) and (16), respectively.

Assuming that W = P−∆x and E = P+∆x, let the
Taylor Series expansions of the population densities in
equations (33) and (34) be calculated around k and P,
that is,

S j

∣∣∣∣k+1

P
= S j

∣∣∣∣k
P
+∆t

∂S j

∂ t

∣∣∣∣k
P
+

(∆t)2

2
∂ 2S j

∂ t2

∣∣∣∣k
P
+

(∆t)3

3!
∂ 3S j

∂ t3

∣∣∣∣k
P

+O(∆t4), (35)

S j

∣∣∣∣k−1

P
= S j

∣∣∣∣k
P
−∆t

∂S j

∂ t

∣∣∣∣k
P
+

(∆t)2

2
∂ 2S j

∂ t2

∣∣∣∣k
P
− (∆t)3

3!
∂ 3S j

∂ t3

∣∣∣∣k
P

+O(∆t4), (36)

S j

∣∣∣∣k
W
= S j

∣∣∣∣k
P
−∆x

∂S j

∂x

∣∣∣∣k
P
+

(∆x)2

2
∂ 2S j

∂x2

∣∣∣∣k
P
− (∆x)3

3!
∂ 3S j

∂x3

∣∣∣∣k
P

+O(∆t4), (37)

S j

∣∣∣∣k
E
= S j

∣∣∣∣k
P
+∆x

∂S j

∂x

∣∣∣∣k
P
+

(∆x)2

2
∂ 2S j

∂x2

∣∣∣∣k
P
+

(∆x)3

3!
∂ 3S j

∂x3

∣∣∣∣k
P

+O(∆t4). (38)

Substituting the equations (35)-(38) in the equations
(33) and (34), with their respective j = 1,2, we obtain
that

τ1
∂ 2S1

∂ t2

∣∣∣∣k
P
+

[
1− τ1

dF1

dS1

∣∣∣∣k
P

]
∂S1

∂ t

∣∣∣∣k
P
−D1

∂ 2S1

∂x2

∣∣∣∣k
P
−F1

∣∣∣∣k
P︸ ︷︷ ︸

PDE

=
∆t
2

(
1− τ1

dF1

dS1

∣∣∣∣k
P

)
∂ 2S1

∂ t2

∣∣∣∣k
P
− ∆t2

3!

(
1− τ1

dF1

dS1

∣∣∣∣k
P

)
∂ 3S1

∂ t3

∣∣∣∣k
P︸ ︷︷ ︸

local truncation error

+

(
1− τ1

dF1

dS1

∣∣∣∣k
P

)
O(∆t3)−2τ1O(∆t2)+2D1O(∆x2)︸ ︷︷ ︸

local truncation error

(39)

and

τ2
∂ 2S2

∂ t2

∣∣∣∣k
P
+

[
1− τ2

dF2

dS2

∣∣∣∣k
P

]
∂S2

∂ t

∣∣∣∣k
P
−D2

∂ 2S2

∂x2

∣∣∣∣k
P
−F2

∣∣∣∣k
P︸ ︷︷ ︸

PDE

=
∆t
2

(
1− τ2

dF2

dS2

∣∣∣∣k
P

)
∂ 2S2

∂ t2

∣∣∣∣k
P
− ∆t2

3!

(
1− τ2

dF2

dS2

∣∣∣∣k
P

)
∂ 3S2

∂ t3

∣∣∣∣k
P︸ ︷︷ ︸

local truncation error

+

(
1− τ2

dF2

dS2

∣∣∣∣k
P

)
O(∆t3)−2τ2O(∆t2)+2D2O(∆x2).︸ ︷︷ ︸

local truncation error

(40)

Finally, taking the limit of the continuum, when
∆t,∆x → 0, the equations (39) and (40) tend to

τ1
∂ 2S1

∂ t2

∣∣∣∣k
P
+

[
1− τ1

dF1

dS1

∣∣∣∣k
P

]
∂S1

∂ t

∣∣∣∣k
P
−D1

∂ 2S1

∂x2

∣∣∣∣k
P
−F1

∣∣∣∣k
P
= 0

(41)

and

τ2
∂ 2S2

∂ t2

∣∣∣∣k
P
+

[
1− τ2

dF2

dS2

∣∣∣∣k
P

]
∂S2

∂ t

∣∣∣∣k
P
−D2

∂ 2S2

∂x2

∣∣∣∣k
P
−F2

∣∣∣∣k
P
= 0.

(42)

Note that the equations (41) and (42) are the PDEs
(11) and (12), calculated at the mesh point P and
at the instant k. It is concluded that the discretized
equations (23) and (29), or equivalently equations (33)
and (34), are consistent with the PDEs (11) and (12),
respectively.

Numerical model stability

The von Neumann stability condition is based
on the superposition principle, that is, which the
error is the superposition of the errors accumu-
lated at each iteration (CRANK; NICOLSON, 1947).
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The von Neumann stability condition produces a neces-
sary but not sufficient condition for stability (CUMINATO;
MENEGUETTE, 1999).

Consider ∆x and ∆t the partitions in space and time,
respectively, and I =

√
−1 the imaginary complex number.

Let Ei, for i = 1, ...N, be the error at each mesh point in
time step t = 0. Then we write Ei through a complex
Fourier series (FORTUNA, 2012)

Ei =
N

∑
n=1

a0
n eIαn(i∆x), i = 1, ... N, (43)

where αn =
nπ

L
and N∆x = L.

The time dependence of the error Ei is incorporated
through the amplitude a0

n → ak
n. It is assumed that the error

tends to grow or decay exponentially with time, so the
error, equation (43), in time k is written as

Ek
i =

N

∑
n=0

eγnkeIαni∆x. (44)

Now Ek
i is the error at the position i and at the time step k.

The error, equation (44), is a propagation of harmonic
waves of the type eγkeIξ i. In order for this propagation to
be stable, the absolute value of the error amplitude must be
less than or equal to unity (CUMINATO; MENEGUETTE,
1999; FORTUNA, 2012), i.e.,

|eγk| ≤ 1. (45)

Next, the von Neumann stability conditions will be
obtained for the equations (11) and (12) when:

I) F1,F2 ̸= 0 and τ1,τ2 = 0 (Predator-Prey system
with reactive terms);

II) F1,F2 = 0, τ1,τ2 ̸= 0 (Telegraph equations);

III) F1,F2 ̸= 0 and τ1,τ2 ̸= 0 (Telegraph Predator-
Prey system). In this case the stability analysis
will be obtained through numerical experiments.

Von Neumann conditions for a Predator-Prey system

Consider the following Diffusive Predator-Prey system

∂S1

∂ t
= D1

∂ 2S1

∂x2 +a1S1 −b1S2
1 − c1S1S2 (46)

∂S2

∂ t
= D2

∂ 2S2

∂x2 −a2S2 + c2S1S2, (47)

where S1, S2 are the densities of prey and preda-
tor populations, respectively. The parameters a1, a2,
c1, c2, and b1 are positive constants described in
equations (15) and (16), while D1 > 0 and D2 > 0
are the prey and predator diffusion rates, respectively.

Note that the equations (46) and (47) are the equations
(11) and (12) when τ1 = τ2 = 0.

For the discretization of the equations (46) and (47),
we use progressive finite differences in time first-order
derivative and central finite differences in space second-
order derivative. Then the discretized versions of the
equations (46) and (47) have the form

S1|k+1
P = S1|kP +σ1

(
S1|kE −2S1|kP +S1|kW

)
+∆tS1|kP

(
a1 −b1S1|kP − c1S2|kP

)
(48)

S2|k+1
P = S2|kP +σ2

(
S2|kE −2S2|kP +S2|kW

)
+∆tS2|kP

(
−a2 + c2S1|kP

)
(49)

where σ j =
∆t D j

∆x2 for j = 1,2.

Note that the equations (48) and (49) are non-linear,
due to the reactive terms F1 and F2. On the other hand, the
von Neumann superposition procedure is valid only for
linear equation systems. Then it is necessary to linearize
the equations (48) and (49).

It is assumed, in the nonlinear terms of (48) and (49),
that the variables S1 and S2 are locally positive constants
m1 and m2, respectively. From this hypothesis, it follows
that the linear version of the equations (48) and (49) is
given by

S1|k+1
P = S1|kP +σ1

(
S1|kE −2S1|kP +S1|kW

)
+∆tS1|kP (a1 −b1m1 − c1m2) (50)

S2|k+1
P = S2|kP +σ2

(
S2|kE −2S2|kP +S2|kW

)
+∆tS2|kP (−a2 + c2m1) . (51)

Assuming that S1|kP = S2|kP = eγkeIξ P,
in equations (50) and (51), we obtain for the point
P, in the time k,

eγ = 1−4σ1 sin2
(

ξ

2

)
+∆t (a1 −b1m1 − c1m2) (52)

eγ = 1−4σ2 sin2
(

ξ

2

)
+∆t (−a2 + c2m1) . (53)

The stability condition requires that |eγ | ≤ 1, so

−1 ≤ 1−4σ1 sin2
(

ξ

2

)
+∆t (a1 −b1m1 − c1m2)≤ 1

(54)

−1 ≤ 1−4σ2 sin2
(

ξ

2

)
+∆t (−a2 + c2m1)≤ 1. (55)
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Finally, after some algebraic manipulations, we get

0 ≤ ∆t ≤ ∆x2

2D1 sin2
(

ξ

2

)
− ∆x2

2
(a1 −b1m1 − c1m2)

(56)

0 ≤ ∆t ≤ ∆x2

2D2 sin2
(

ξ

2

)
− ∆x2

2
(−a2 + c2m1)

, (57)

which are the von Neumann conditions for the predator-
prey discretized equations (48) and (48), respectively.
Note that the conditions in equations (56) and (57) impose
restrictions on the spatial refinements ∆x and temporal
refinements ∆t for stability in the numerical experiments.

Von Neumann conditions for a Telegraph system

Consider the telegraph equation system

τ j
∂ 2S j

∂ t2 +
∂S j

∂ t
= D j

∂ 2S j

∂x2 , (58)

where τ j > 0 and D j > 0 are delay and diffusion constants,
respectively, for j = 1,2.

Using the discretization schemes given in equations
(17)-(19) in equation (58), it follows that

S j
∣∣k+1
P =

(
2− ∆t

τ j
−

2D j∆t2

∆x2
τ j

)
S j
∣∣k
P

+
D j∆t2

∆x2τ j

(
S j
∣∣k
E + S j

∣∣k
W

)
−
(

1− ∆t
τ j

)
S j
∣∣k−1
P . (59)

From the von Neumann hypothesis S j
∣∣k
P = eγkeIξ P, we

get that

eγ = 2− ∆t
τ j

−
2D j∆t2

τ j∆x2 (1− cosξ )−
(

1− ∆t
τ j

)
e−γ . (60)

Multiplying by eγ and making use of trigonometric trans-
formations, the equation (60) is rewritten as

e2γ −2β jeγ +

(
1− ∆t

τ j

)
= 0, (61)

where β j = 1− 2σ j
∆t
τ j

sin2
(

ξ

2

)
− ∆t

2τ j
and σ j =

D j∆t
∆x2 ,

for j = 1,2. Solving the roots of equation (61)

g1,2 = eγ = β j ±

√
β 2

j −1+
∆t
τ j
. (62)

To analyze the roots of equation (62), consider the
Lemma I.

Lemma I: Let x∈ (0,1] and a(x) be a real function defined

by a(x) =
x
2

. If for each x ∈ (0,1] we take y ≤ 1− a(x),

then 0 ≤
√

y2 −1+ x+ y ≤ 1.

Proof: Let y be a real number such that y ≤ 1− x
2

for all

x ∈ (0,1]. Thus, we have y ∈
[ 1

2 ,1
)
. So,

0 ≤
√

y2 −1+ x+ y ≤
√(

1− x
2

)2
−1+ x+1− x

2

=

√
x2

4
+1− x

2
= 1.

Therefore, 0 ≤
√

y2 −1+ x+ y ≤ 1. □

In the context of Lemma I, consider the following
cases:

Case I) β 2
j −1+

∆t
τ j

< 0

In this case

√
β 2

j −1+
∆t
τ j

generates conjugate complex roots,

that is,

g1,2 = β j ± i

√
1− ∆t

τ j
−β 2

j . (63)

Taking the norm of equation (63)

||g||2 = β
2
j +1− ∆t

τ j
−β

2
j = 1− ∆t

τ j
< 1 , if 0≤ ∆t

τ j
≤ 1. (64)

So, in this case, when 0 ≤ ∆t
τ j

≤ 1 and β 2
j −1+

∆t
τ j

< 0, by

Von Neumann’s criterion there is numerical convergence for
the (59) system.

Case II) β 2
j −1+

∆t
τ j

≥ 0

In this case, for 0 ≤ ∆t
τ j

≤ 1, equation (62) can result in

g j = eγ = 2β j, when
∆t
τ j

= 1, therefore we must limit the

possible values of β j. From Lemma I, we impose that

1
2
≤ β j ≤ 1− ∆t

2τ j
, (65)

which results in

1
2
≤ 1−2σ j

∆t
τ j

sin2
(

ξ

2

)
≤ 1. (66)

Solving the inequality of equation (66), it follows that

0 ≤ σ j ≤
1
4
. (67)

Then, by Lemma I, if 0 <
∆t
τ j

≤ 1 and β 2
j −1+

∆t
τ j

≥ 0, the

von Neumann stability condition of the discretized equation

(59) is given by

0 ≤ σ j ≤
1
4
, (68)

where σ j =
D j∆t
∆x2 for j = 1,2.
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Stability diagram for a Telegraph Predator-Prey system

In the case of equations (11) and (12), or in its dis-
cretized form given by the equations (23) and (29), which
describe a Telegraph Predator-Prey system with diffusive,
reactive, and delayed effects, it was not possible to obtain
an analytical form for the von Neumann stability condition.
In this context, numerical experiments will be carried out
to obtain the stability diagram for the numerical scheme
used.

Setting the reactive parameters a1 = 1 s−1,
a2 = 0.75 s−1, b1 = 0.5 m/s, c1 = 0.5 m/s, and
c2 = 0.5 m/s (NATTI et al., 2019), phase diagrams of the
variables D j, diffusibility coefficient, and τ j, delay time,
were constructed, for j = 1,2.

The phase diagrams show the regions of stability and
instability of the PDE system, equations (11) and (12),
for different values of ∆t and ∆x. It is important to
note that D1 = D2 and τ1 = τ2 in all simulations, that
is, there was no different diffusion or delay between
the populations S1 and S2. In the following numerical
experiments, the following initial and boundary conditions
were considered

S1(x,0) = S0
1 = S2(x,0) = S0

2 =

15; 24 ≤ x ≤ 26

0; otherwise
(69)

S1(0, t) = S1(50, t) = S2(0, t) = S2(50, t) = 0, (70)

where x ∈ [0,50] and t ∈ [0,100].
All the simulations contained in this work were carried

out in an Ubuntu operating system, where the codes were
all programmed in FORTRAN 90 language and the images
generated via Gnuplot software.

First, some simulations were carried out with differ-
ent partitions of the temporal domain. Fixed ∆x = 0.1,
Figures 3 and 4 show the graphs of the numerical
stability/instability regions, as a function of the diffu-
sion, D j, and the delay time, τ j, of prey and predator
populations, for two different values of ∆t, ∆t = 0.002 in
Figure 3 and ∆t = 0.001 in Figure 4.

Note that when refining the temporal domain, to a
fixed ∆x, the numerical stability region grows. See the
values of D j in Figures 3 and 4.

Now we set ∆t = 0.0015255. Figures 5 and 6 show
the graphs of the numerical stability/instability regions,
as a function of the diffusion, D j, and the delay time,
τ j, of prey and predator populations, for two different
values of ∆x, ∆x = 0.1 in Figure 5 and ∆x = 0.025 in
Figure 6.

Figure 3 – Region of stability/instability for the Tele-
graph Predator-Prey system for refinements ∆x = 0.1
and ∆t = 0.002.

Source: The authors.

Figure 4 – Region of stability/instability for the Tele-
graph Predator-Prey system for refinements ∆x = 0.1 and
∆t = 0.001.

Source: The authors.

Figure 5 – Region of stability/instability for the Tele-
graph Predator-Prey system for refinements ∆x = 0.1 and
∆t = 0.0015255.

Source: The authors.

Note that when refining the spatial domain, to a fixed
∆t, the numerical stability region decreases. See the values
of D j in Figures 5 and 6.
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Figure 6 – Region of stability/instability for the Tele-
graph Predator-Prey system for refinements ∆x = 0.025
and ∆t = 0.0015255.

Source: The authors.

Numerical convergence analysis

The objective of this section is to analyze the con-
vergence of the numerical scheme used to solve the
model under study. In general, to verify numerical con-
vergence, the Lax Equivalence Theorem must be satis-
fied (LAX; RICHTMYER, 1956; ROMEIRO et al., 2021;
STRIKWERDA, 2004).

Lax Equivalence Theorem: For a consistent finite

difference scheme of a well-posed initial value problem,

stability is a necessary and sufficient condition for conver-

gence.

First, it is necessary to verify if the PDE system,
equations (11) and (12), are well-posed, that is, if
the problem in question has a solution and if it is
unique. In the literature there are works on the exis-
tence and uniqueness of solutions of Telegraph equations
(AYALA, 2012). There are also several works on the
existence and uniqueness of Telegraph Predator-Prey
systems, or more general Telegraph models (BOCIU;
LASIECKA, 2010; CAVALCANTI; CAVALCANTI;
FERREIRA, 2001; CAVALCANTI; CAVALCANTI; SO-
RIANO, 2002; MUSTAFA, 2012; SHAOYONG, 1997).

There are also several works on numerical conver-
gence of telegraph-type models (ATANGANA, 2015; EL-
AZAB; EL-GAMEL, 2007). On the other hand, numerical
convergence studies of Telegraph Predator-Prey models,
with Reaction-diffusion-delay effects, are few and recent
(CIRILO et al., 2019). Then, a numerical study of mesh re-
finement is presented to evaluate the process of numerical
convergence for this model.

Mesh refinement and convergence

Note that S1 and S2 are population densities of prey and
predators, respectively, so to obtain the total population
of prey and predators, in a time t, one must integrate S1

and S2 at the position coordinate x. This calculation is
performed using the definite integral

Pj(t) =
∫ X f

X0

S j(x, t)dx, (71)

where P1 and P2 are the populations of prey and predator,
respectively, at time t.

Let Ni be the number of partitions in the spatial
domain, x ∈ [X0, X f ], and N j the number of partitions
in the temporal domain t ∈ [T0, Tf ]. Thus, we have the
following relations

∆x =
X0 −X f

Ni −1
and ∆t =

T0 −Tf

N j −1
. (72)

Next, an analysis of the convergence of the
numerical solution of the problem regarding the mesh
refinement is performed. The Table 1 presents the
values of the parameters used in the simulations.
The initial and boundary conditions are those given earlier
in equations (69) and (70).

Table 1 – Values used for model parameters in the
numerical simulations

Parameters Prey Predator
a j (s−1) 1.0 0.75
b j (m/s) 0.5 0.0
c j (m/s) 0.5 0.5

D j (m2/s) 1.0 1.0
τ j (s) 0.001 0.001
T0 (s) 0.0 0.0
Tf (s) 100.0 100.0
X0 (m) 0.0 0.0
X f (m) 50.0 50.0

Source: The authors.

Table 2 presents numerical experiments for the
solution of the discretized Telegraph Predator-Prey
system (23)-(32), as a function of the mesh refinement.
The process of population convergence is observed as a
function of this refinement.

Numerical experiments on convergence in the Telegraph

Predator-Prey system

In this subsection, two numerical experiments are car-
ried out for the Telegraph Predator-Prey system (11)-(12)
in order to better understand the stability/instability phase
diagrams obtained in Figures 3-6.

60
Semina: Ciênc. Ex. Tech., Londrina, v. 43, n. 1Esp, p. 51-66, Jan./Dez. 2022



Numerical convergence of a Telegraph Predator-Prey System

Table 2 – Prey population P1(t) and predator population
P2(t) of the Telegraph Predator-Prey model for various re-
finements ∆x and ∆t, at time t = 100 s, with the parameters
in Table 1.

∆∆∆xxx(((mmm))) ∆∆∆ttt(((sss))) PPP1(((ttt === 111000000))) PPP2(((ttt === 111000000)))

5.0 0.002 62.69325 18.90470
3.5 0.002 65.13776 19.45726
2.0 0.002 70.27077 20.51610
1.0 0.002 71.68832 21.04255

0.75 0.00175 72.22790 21.17758
0.5 0.0015 72.56129 21.29889
0.1 0.001 73.13264 21.49681

0.05 0.0005 73.20856 21.52185
0.01 0.0001 73.26829 21.54183
0.005 0.00005 73.27579 21.54433

0.0025 0.000025 73.27954 21.54558

Source: The authors.

Let us consider the stability and instability regions
obtained in Figure 5, when ∆t = 0.0015255 and ∆x = 0.1.
Figure 7 presents these regions again. Figure 7 also shows
two points, one in the region of stability of the numerical
scheme and the other at the limit of the region of instability
of the numerical scheme.

Figure 7 – Region of stability/instability for the Tele-
graph Predator-Prey system for refinements ∆x = 0.1 and
∆t = 0.0015255. The point (0.05,20) is in the stability
region, while the point (0.05,61) is at the limit of the
instability region.

Source: The authors.

For the first numerical experimentation in this subsec-
tion, the values of the model parameters are presented in
Table 3. Note that this simulation corresponds to the point
in the stability region of Figure 7.

Figure 8 presents the population densities of prey and
predators, in space coordinate, for the first numerical ex-
periment at time t = 100.

Figure 9 presents the temporal variation, in x = 25, of
the populations of prey and predators in the first numerical
experiment.

Table 3 – Model parameter values for the first numerical
experiment, corresponding to the point in the stability
region of Figure 7

Parameters Prey Predator
a j (s−1) 1.0 0.75
b j (m/s) 0.5 0.0
c j (m/s) 0.5 0.5

D j (m2/s) 20.0 20.0
τ j (s) 0.05 0.05

Source: The authors.

Figure 8 – Population densities of prey and
predators of the Telegraph Predator-Prey model,
in t = 100, corresponding to the first numerical
experiment.

Source: The authors.

Figure 9 – Populations of prey and predators
over time of the Telegraph Predator-Prey model,
in x = 25, corresponding to the first numerical
experiment.

Source: The authors.

Figure 10 shows population densities of predator and
prey in the entire spatial and temporal domain. Note
that in this simulation there are no negative population
densities.
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Figure 10 – 3D graph of predator and prey population den-
sities of the Telegraph Predator-Prey model corresponding
to the first numerical experiment.

Source: The authors.

For the second numerical experiment in this subsec-
tion, the values of the model parameters are presented in
Table 4. The second numerical experiment corresponds
to the point at the limit of the instability region in
Figure 7.

Table 4 – Model parameter values for the second
numerical experiment, corresponding to the point at the
limit of the instability region in Figure 7.

Parameters Prey Predator
ai (s−1) 1.0 0.75
bi (m/s) 0.5 0.0
ci (m/s) 0.5 0.5

Di (m2/s) 61.0 61.0
τi (s) 0.05 0.05

Source: The authors.

Figure 11 presents the population densities of prey and
predators, in space coordinate, for the second numerical
experiment at time t = 100. Note that the final population
density of predators is zero, that is, the extinction of preda-
tors occurs.

Figure 12 presents the temporal variation, in x = 25,
of prey and predators populations in the second numerical
experiment.

The Figure 13 shows population densities of predator
and prey in the entire spatial and temporal domain. It
is observed that for some values of t there are negative
population densities, as can be seen in Figure 14.

Note this behavior is unrealistic from a biological point
of view. According to the numerical solution presented in
the second experiment, given the initial condition (69), the
prey population rapidly decreases, becomes negative and
grows again until it reaches saturation. This is evidence of
the instability of numerical solutions.

Figure 11 – Population densities of prey and preda-
tors of the Telegraph Predator-Prey model, in t = 100,
corresponding to the second numerical experiment.

Source: The authors.

Figure 12 – Populations of prey and predators over
time of the Telegraph Predator-Prey model, in x = 25,
corresponding to the second numerical experiment.

Source: The authors.

Figure 13 – 3D graph of predator and prey population den-
sities of the Telegraph Predator-Prey model corresponding
to the second numerical experiment.

Source: The authors.
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Figure 14 – Observation (first red line) of the spa-
tial/temporal region where negative solutions for prey
population density occur.

Source: The authors.

Conclusion

In this work, the mathematical modeling of the
diffusive-reactive predator-prey system with delay (11)-
(12) was performed. This model is also called Telegraph
Predator-Prey system. Through numerical modeling, this
EDP system was discretized by the Finite Difference
method, equations (23)-(32).

First, it was verified that the discretized equations (23)-
(32) were consistent with the PDEs (11)-(12) of the math-
ematical model.

In the sequence, through the von Neumann proce-
dure, the numerical stability of systems simpler than
the Telegraph Predator-Prey system was discussed. For
the predator-prey system (46)-(47) and for the telegraph
equation system (58) it was found that the numerical
scheme used is conditionally stable, since the stability
constraints (56)-(57) and (68) depend on the parameters
of these models.

On the other hand, for the telegraph predator-prey
system (11)-(12), it was not possible to obtain an ana-
lytical mathematical relationship for the von Neumann
stability condition. Then, through numerical experiments,
phase diagrams of the stability/instability regions were
constructed as a function of the diffusion D j and delay
time τ j parameters of the model (11)-(12), see Figures 3-6.
Thus, it can be concluded that the telegraph predator-prey
system (11)-(12) is also conditionally stable, depending
on its diffusion, delay and reactive parameters.

Through numerical experiments again, the conver-
gence of the numerical model was analyzed. Through the
spatial and temporal refinement of the mesh, it was found
that the prey and predator populations of the telegraph
predator-prey system converged, as shown in Table 2.

Finally, it was possible to observe the numerical insta-
bilities that occur in numerical simulations. In the phase
diagram presented in Figure 7, two points were chosen,
one in the region of stability of the numerical scheme
and the other at the limit of the region of instability of
the numerical scheme. It was found that when passing
from the stability region to the instability region, negative
fluctuations occur for population densities, which is an
evidence of instability of numerical solutions, as can be
seen in Figure 14.
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