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Count time series with excess zeros: A Bayesian perspective using
zero-adjusted distributions

Séries temporais de contagem com excesso de zeros: Uma perspectiva
Bayesiana utilizando distribuições zero-ajustadas
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Thelma Sáfadi3

Abstract
Models for count data which are temporally correlated have been studied using many conditional distributions,
such as the Poisson distribution, and the insertion of different dependence structures. Nonetheless, excess
of zeros and over dispersion may be observed during the counting process and need to be considered when
modelling and choosing a conditional distribution. In this paper, we propose models for counting time series
using zero-adjusted distributions by inserting a dependence structure following the ARMA(p, q) process on a
Bayesian framework. We perform a simulation study using the proposed Bayesian analysis and analyse the
monthly time series of the number of deaths due to dengue haemorrhagic fever (ICD-A91) in Brazil.
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Resumo
Modelos para dados de contagem temporalmente correlacionados têm sido estudados utilizando diversas
distribuições condicionais, como a Poisson, e com a inserção de diferentes estruturas de dependência. No
entanto, os fenômenos de contagem podem apresentar características como excesso de zeros e alta dispersão,
que devem ser levadas em consideração durante a modelagem e escolha de uma distribuição condicional. Este
trabalho tem como objetivo estudar modelos para séries de contagem utilizando três distribuições condicionais
zero-ajustadas com estruturas de dependência na forma ARMA(p, q), em uma perspectiva via inferência
Bayesiana. De forma geral, foi realizado um breve estudo de simulação a partir da análise Bayesiana proposta
e a série temporal do número de óbitos em decorrência de febre hemorrágica causada pelo vírus da dengue
(CID-A91) no Brasil foi analisada.
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Introduction

Count data are used and analysed in areas such as econ-
omy, epidemiology, public health and many other applied
areas (HASHIM; HASHIM; SHIKER, 2021; ZUO et al.,
2021). The modelling of these types of data are commonly
based on Generalized Linear Models (GLMs) introduced
by Nelder and Wedderburn (1972), with a certain predom-
inance of Poisson regression (GONÇALVES; BARRETO-
SOUZA, 2020).

However, the assumption of equidispersion arising
from the Poisson distribution is rarely satisfied (HILBE,
2014). This is because over dispersion is commonly
observed in count data (BARRETO-SOUZA, 2017),
resulting from extra population heterogeneity, the omis-
sion of important explanatory variables, the presence of
atypical observations (PAYNE et al., 2017) and an ex-
cess of zeros (BARRETO-SOUZA, 2017); high disper-
sion needs to be handled during modelling because it can
lead to inferential problems (PAYNE et al., 2017).

Regression models based on mixed Poisson distribu-
tions have become attractive for treating over dispersion by
inserting a latent random effect into the mean of the Pois-
son distribution (BARRETO-SOUZA, 2017). Models with
Negative binomial and Poisson inverse Gaussian distribu-
tions are examples of this approach (BARRETO-SOUZA,
2017; HILBE, 2014).

Excess zeros can still be observed in the applied ar-
eas (FENG, 2021), such as in disease monitoring, use of
health services and number of daily deaths from certain
causes (HASHIM; HASHIM; SHIKER, 2021; TAWIAH;
IDDRISU; ASOSEGA, 2021; YANG; ZAMBA; CAVA-
NAUGH, 2013), a fact that should not be ignored, since
it can negatively impact the inference, for example, gen-
erating spurious relationships (ALQAWBA; DIAWARA;
CHAGANTY, 2019; YANG; ZAMBA; CAVANAUGH,
2013).

For modelling count time series, Benjamin, Rigby and
Stasinopoulos (2003) proposed the Generalized Autore-
gressive Moving Average - GARMA(p, q) - class, based
on the GLM theory, inserting a dependence structure fol-
lowing the ARMA(p, q) process, which has been used
in models with Poisson, Binomial and Negative binomial
distributions.

The literature on counting time series considering
excess zeros is still sparse (YANG; ZAMBA; CAVA-
NAUGH, 2013) but is a topic of recent interest in
statistics (ALQAWBA; DIAWARA; CHAGANTY, 2019).

Yang, Zamba and Cavanaugh (2013), Alqawba, Diawara
and Chaganty (2019), Ghahramani and White (2020),
Tawiah, Iddrisu and Asosega (2021) are examples of
studies that have modelled count time series with many
zeros.

In the study by Yang, Zamba and Cavanaugh (2013),
the zero-inflated Poisson (ZIP) distribution was used by in-
corporating lags of the response variable in the linear pre-
dictor to handle the temporal correlation in syphilis data.
The Poisson, Negative binomial and Conway-Maxwell-
Poisson distributions were adopted by Alqawba, Di-
awara and Chaganty (2019), who supposed that the er-
rors of the regression follow a stationary ARMA(p, q)
process.

Ghahramani and White (2020) studied the ZIP and
zero-inflated Negative binomial (ZINB) models and de-
veloped a distribution-free approach when modelling the
time series of syphilis cases. Tawiah, Iddrisu and Asosega
(2021) analysed the COVID-19 mortality series using the
ZIP and ZINB distributions with the ARMA(1, 0) depen-
dence structure.

In this paper, we aim to study models for counting time
series with excess zeros using Poisson, Negative binomial
and Poisson inverse Gaussian zero-adjusted distributions,
which are alternatives to zero-inflated distributions. We
adopt the Bayesian approach, as in the study by Andrade,
Andrade and Ehlers (2015), when modelling series using
the GARMA(p, q) class.

Initially, we present the concept of zero-adjusted dis-
tributions and define models with the insertion of the
ARMA(p, q) dependence structure. Then, we perform
a simulation based on the proposed Bayesian analysis and
analyse the time series of mortality due to dengue haem-
orrhagic fever (ICD-A91), according to the 10th revision
of the International Classification of Diseases (ICD-10)
(WORLD HEALTH ORGANIZATION, 2004). We also
present some final remarks and suggestions for future
work.

Background on zero-adjusted and zero-inflated
distributions

When dealing with data with a high proportion of
zeros, zero-inflated and zero-altered distributions, also re-
ferred to as hurdle and adjusted distributions, are used
for modelling and inference (FENG, 2021; HASHIM;
HASHIM; SHIKER, 2021). According to Feng (2021),
there is a conceptual and parameter interpretation differ-
ence when considering zero-inflated or hurdle regression.
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In zero-inflated models, which were proposed by Lam-
bert (1992), it is assumed that the zeros come from two
processes. The first process is composed of situations with
structural zeros, and the second is composed of random ze-
ros, which are modelled by a count distribution such as the
Poisson distribution (FENG, 2021; HASHIM; HASHIM;
SHIKER, 2021). According to Feng (2021), the structure
of a zero-inflated model is given by:

P(Y = yi | θθθ) =

{
ν +(1−ν)p(yi = 0 | θθθ), yi = 0,

(1−ν)p(yi | θθθ), yi > 0,

which is formed by a degenerated distribution at zero and
a nontruncated count distribution, namely, p(yi | θθθ), with
parameter vector θθθ , where ν ∈ (0,1) is the probability of
structural zeros.

In a hurdle, a binomial model governs the binary
event when the response takes a zero or a positive value
(MULLAHY, 1986). If the event is positive, the barrier
is crossed, and the process is modelled by a conditional
distribution that is truncated at zero (MULLAHY, 1986).
According to Feng (2021), the general structure of a hurdle
model is given by:

P(Y = yi | θθθ) =

 ν , yi = 0,

(1−ν)
p(yi | θθθ)

1− p(yi = 0 | θθθ)
, yi > 0,

(1)

where ν is the probability of yi being zero, p(yi | θθθ) is the
probability function of a count distribution and θθθ is the
parameter vector of p(yi | θθθ).

In equation (1), the first structure fits the occurrence of
zeros with probability ν , and the other is responsible for
modelling when zeros do not occur. Note that in a hurdle,
the zeros are not differentiated. In fact, events that result in
zero are seen as coming from a structural source (ZUUR
et al., 2009).

There are several possibilities to specify the condi-
tional distribution of the positive values and the binary
event in a hurdle (MULLAHY, 1986). One of them is to
consider that a binary event is modelled by a binomial
distribution and the positive values follow a Poisson dis-
tribution, resulting in the zero-adjusted Poisson (ZAP)
model (HASHIM; HASHIM; SHIKER, 2021).

Additional topics, such as the analysis and specifi-
cation of the linear predictor in zero-inflated or hurdle
models, can be seen in Zuur et al. (2009) and Zuo et al.
(2021). For the analysis of count time series using zero-
altered models, we define the linear predictor inserting a
dependence structure below.

Zero-altered models for count time series

Suppose Y is an equally spaced time series indexed
at time t, t = {1, . . . ,n}. Define Ft−1 as the set of
previous information until t − 1, which is given by
Ft−1 = {y1,y2, . . . ,yt−1,µ1,µ2, . . . ,µt−1,xxx1,xxx2, . . . ,xxxt−1},
where xxxt is the parameter vector that contains r explana-
tory variables, xxxt = (xxxt1, . . . ,xxxtr)

⊤, under restriction that
r < n. Additionally, suppose βββ = (β1,β2, . . . ,βr)

⊤ is the
coefficient vector related to xxxt .

Let ΦΦΦp(B) = 1 − φ1B1 − . . . − φpBp and
ΘΘΘq(B) = 1 − θ1B1− . . .−θqBq be the autoregressive and
moving average polynomials of orders p and q, respecti-
vely. Additionally, let ΦΦΦP(Bs) = 1−Φ1Bs1 − . . .−ΦPBsP

and ΘΘΘQ(Bs) = 1 − Θ1Bs1 − . . . − ΘQBsQ be the sea-
sonal autoregressive and seasonal moving average
polynomials with orders P and Q, where B is the
backshift operator, Bdyt = yt−d , and s is the length of the
period.

In summary, we denote ΦΦΦ = (φ1, . . . ,φp;Φ1, . . . ,ΦP)
⊤

as the set of autoregressive parameters and
ΘΘΘ = (θ1, . . . ,θq;Θ1, . . . ,ΘQ)

⊤ as the set of moving
average parameters that compose the dependence
structure.

Zero-adjusted Poisson distribution

Supposing that yt | Ft−1 follows a zero-adjusted Pois-
son distribution ZAP(µt , ν), p(yt |Ft−1) can be expressed
as:

p(yt | Ft−1) = νI(yt=0)+

[
1−ν

1− e−µt

]
e−µt µ

yt
t

1
yt !

I(yt>0),

(2)

when yt ∈ N, Ω = {µt ,ν | µt > 0,0 < ν < 1}.
In equation (2), I(·) represents the indicator function,

and ν is the exact probability of the series being zero at
time t. Given the truncation of the distribution at zero, µt

is the conditional expectation in the situation where yt > 0
(RIGBY et al., 2019).

The conditional mean and variance of the ZAP(µt , ν)

distribution are given by E(yt | Ft−1) =
(1−ν)µt

1− e−µt
and

V(yt | Ft−1) =
(1−ν)µt

1− e−µt

[
1+µt −

(1−ν)µt

1− e−µt

]
, respecti-

vely (RIGBY et al., 2019).
E(yt | Ft−1) can be seen as a weighting of µt by

1−ν

1− e−µt
, which is the ratio of the complementary exact

probability that yt = 0 and the probability that yt > 0 from
a Poisson distribution with a mean of µt .
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Considering the logarithm link function, ensuring that
µt ⊆ Ω, the linear predictor based on the GARMA(p, q)
class written using the B operator is given by equation (3):

log(µt) =ΦΦΦp(B)ΦΦΦP(Bs)
[
xxx⊤t βββ − log(yt)

]
−ΘΘΘq(B)ΘΘΘQ(Bs) [log(yt)− log(µt)]

+ log
(

y2
t

µt

)
. (3)

It is necessary to consider a threshold (c) that guaran-
tees the existence of the link function at zero. A possibility
is to replace yt− j by y∗t− j = max(yt− j,c), c ∈ (0,1).

Denoting L(βββ , ΦΦΦ, ΘΘΘ, ν | Y ) as the approximated like-
lihood function of the ZAP(µt , ν) model conditioned to
m = max(p,q,sP,sQ) observations, we have:

L(βββ ,ΦΦΦ,ΘΘΘ,ν | Y )≈
n

∏
t=m+1

p(yt | Ft−1). (4)

Given the conditioning of the likelihood function to the
first m terms, we consider that the first terms of the error
are zero, as described in the studies of Benjamin, Rigby
and Stasinopoulos (2003), Rocha and Cribari-Neto (2009).

In the situation where yt > 0, the process is assumed
to be equidispersed and modelled by a Poisson distribu-
tion, i.e., E(yt | Ft−1) = V(yt | Ft−1) = µt . The following
models are over dispersion alternatives.

Zero-adjusted Negative binomial distribution

We assume that yt |Ft−1 follows a zero-adjusted Nega-
tive binomial distribution ZANBI(µt , σ , ν), with a condi-
tional density given by:

p(yt | Ft−1) = νI(yt=0)+
(1−ν)µt

[1− (1+µtσ)
−1
σ ]

×
Γ(yt +

1
σ
)

Γ( 1
σ
)Γ(yt +1)

(
σ µt

1+σ µt

)yt

×
(

1
1+σ µt

) 1
σ

I(yt>0), (5)

Ω = {µt , σ , ν | µt , σ > 0, 0 < ν < 1 } for yt ∈ N.
The conditional mean and variance are given by

E(yt | Ft−1) = (1−ν)µt[
1−(1+µt σ)

−1
σ

] and V(yt | Ft−1) =

(1−ν)µt[
1−(1+µt σ)

−1
σ

]
1+µt

1+σ − (1−ν)[
1−(1+µt σ)

−1
σ

]
, res-

pectively, where ν is the exact probability of the series
being equal to zero. The µt and σ parameters are the mean
and dispersion of the process in the situation where yt > 0,
respectively (RIGBY et al., 2019).

We adopt the same structure in the linear predictor
described by equation (3). However, the approximate like-
lihood function is written according to equation (6).

L(βββ ,ΦΦΦ,ΘΘΘ,ν ,σ | Y )≈
n

∏
t=m+1

p(yt | Ft−1). (6)

The assumptions that the first m error terms are zero fol-
low as detailed in the ZAP(µt , ν) model. Generally, the
process is governed by a truncation at zero and a Negative
binomial distribution with a mean of µt and dispersion of
σ in the condition where yt > 0.

Zero-adjusted Poisson inverse Gaussian distribution

Assuming that yt | Ft−1 follows a zero-adjusted Pois-
son inverse Gaussian distribution, ZAPIG(µt ,σ ,ν), the
conditional density function, is given by equation (7):

p(yt | Ft−1) = νI(yt=0)

+
1−ν

1− e
1
σ
−α

(
2α

π

) 1
2

µ
yt
t e

1
σ

(
Kyt− 1

2
(α)

)
× 1

(ασ)yt yt !
I(yt>0), (7)

Ω = {µt ,σ ,ν | µt ,σ > 0,0 < ν < 1} for yt ∈ N.

In equation (7), α2 =
1

σ2 +
2µt

σ
and Kλ (T ) =

1
2
∫

∞

0 x(λ−1) exp
{
−T

2 (x+ x−1)
}

dx, where K(·) is the

modified Bessel function of the third kind1. The condi-

tional mean and variance are E(yt |Ft−1) =
(1−ν)µt

1− e
1
σ
−α

and

V(yt | Ft−1) =
[

(1−ν)µt

1−e
1
σ −α

][
1+µt

(
1+σ − 1−ν

1−e
1
σ −α

)]
,

respectively.
It is important to note that ν is the exact probability

of the series being zero, and it is p(yt = 0 | Ft−1) = ν , ∀t,
as well as in the ZAP(µt , ν) and ZANBI(µt , σ , ν) models.
The µt and σ parameters are related to the mean and dis-
persion of the series in the situation where yt > 0 (RIGBY
et al., 2019).

We also considered the linear predictor shown in
equation (3), ensuring that µt ⊆ Ω. The approximated
likelihood function is analogous to equation (6) and the
assumptions that the first m error terms are zero follow as
detailed in the ZAP(µt , ν) model.

1 Modified Bessel functions are particular forms of Bessel functions,
which are solutions of the Bessel equation, being related to the
Poisson process and applied in the analysis of spherical distribu-
tions (KORENEV, 2002; ROBERT, 1990). For details, see Korenev
(2002).
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Bayesian analysis

We consider θθθ = (βββ ,ΦΦΦ,ΘΘΘ,ν)⊤ in the zero-adjusted
Poisson model and θθθ = (βββ ,ΦΦΦ,ΘΘΘ,ν ,σ )⊤ in the zero-
adjusted Negative binomial and zero-adjusted Poisson
inverse Gaussian models. In this way, the resulting poste-
rior, namely, π(θθθ |Y ), is proportional to L(θθθ |Y ) × π0(θθθ),
where L(θθθ | Y ) is the approximated likelihood function
and π0(θθθ) is the joint prior of θθθ .

We consider noninformative priors for θθθ in all models.
For the parameters associated with the explanatory varia-
bles, each component of βββ is normally distributed. It is
given as:

p(β j) ∝ exp

[
−1

2

(
β j −µ j

τ j

)2
]
,

where β j ∈ (−∞,∞), j = {1, . . . ,r}, and the hyperpara-
meters are µ j = 0 and τ j = 100. The same structure of
priors used for βββ is adopted for ΦΦΦ and ΘΘΘ.

For the parameter ν , we consider a uniform distribu-
tion on the interval (0, 1), and for the models that contain
a dispersion parameter, we use a Gamma(a, s) distribu-
tion with hyperparameters a = 1 and s = 100−1, with the
following density:

p(σ) =
σa−1

saΓ(a)
exp

(
−σ

s

)
, σ > 0.

Given the algebraic complexity to obtain closed forms
of π(θθθ | Y ), the inference can be performed using
Markov chain Monte Carlo (MCMC) methods, such as the
Metropolis-Hastings (MH) algorithm for drawing from the
joint posterior of each model (ANDRADE; ANDRADE;
EHLERS, 2015).

Predictive density

To make forecasts of Y over a horizon h, it is necessary
to define the predictive distribution, which is the distribu-
tion of yt+h conditioning to all parameters and previous
observations that compose the set Ft−1 (BROEMELING,
2019; SÁFADI; MORETTIN, 2003).

Combining the joint posterior π(θθθ |Y ) with the density
of the new observation, p(yt+h | θθθ , Ft+h−1), the predictive
density is given by:

p(yt+h | Ft+h−1) =
∫

θθθ∈Ω

p(yt+h | θθθ ,Ft+h−1)π(θθθ | Y )dθθθ .

There is no closed form in the considered models.
Nonetheless, we can perform a Monte Carlo approxi-
mation of the predictive, drawing N samples from θθθ i,

i = {1, . . . , N }, as follows:

p(yt+h | Ft+h−1)≈
1

N

N

∑
i=1

p(yt+h | θθθ
i,Ft+h−1).

Then, the expected value of yt+h is given by the following
expression:

E(yt+h) =
∫

yt+h∈Ω

yt+h p(yt+h | Ft+h−1)dyt+h.

The approximation of the expected value is performed
using the conditional mean, E(yt | Ft−1), of each distribu-
tion. For the zero-adjusted Poisson model:

ŷt+h ≈
1

N

N

∑
i=1

(1−θθθ i
4)µt+h(θθθ

i
1,θθθ

i
2,θθθ

i
3,Ft+h−1)

1− e−µt+h(θθθ
i
1,θθθ

i
2,θθθ

i
3,Ft+h−1)

.

Similarly, for the zero-adjusted Negative binomial model:

ŷt+h ≈
1

N

N

∑
i=1

(1−θθθ i
4)µt+h(θθθ

i
1,θθθ

i
2,θθθ

i
3,Ft+h−1){

1−
[
1+µt+h(θθθ

i
1,θθθ

i
2,θθθ

i
3,Ft+h−1)θθθ

i
5

]−1
θθθ i

5

} .

Considering the zero-adjusted Poisson inverse Gaussian
model, we have:

ŷt+h ≈
1

N

N

∑
i=1

(1−θθθ i
4)µt+h(θθθ

i
1,θθθ

i
2,θθθ

i
3,Ft+h−1)1− e

(
1

θθθ i
5
−α

) .

A simulation study

We carry out a simulation study considering the ZAP-
AR(1), ZANBI-AR(1) and ZAPIG-AR(1) models, which
are expressed as follows:

yt | Ft−1 ∼ZAP{µt ,ν}

yt | Ft−1 ∼ZANBI{µt ,ν ,σ}

yt | Ft−1 ∼ZAPIG{µt ,ν ,σ} ,

where log(µt) = (1 − φ1B1)[xxx⊤t βββ − log(yt)] + log(yt).
We evaluate the scenarios presented in Table 1, with
βββ = (β1)

⊤ and xxxt = (xxxt1)⊤, where xxxt1 = (1,1, . . . ,1)⊤.
We establish time series with 10% and 40% of counts
equal to zero and correlations of 0.30 and -0.80.
For models with dispersion parameter, we fix σ at 0.10.

Table 1 – Parameter settings for the ZAP-AR(1), ZANBI-
AR(1) and ZAPIG-AR(1) models.

Scenario n β1 φ1 ν σ

I 100 2.00 0.30 {0.10; 0.40} 0.10
II 100 2.00 -0.80 {0.10; 0.40} 0.10

Source: The authors.
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We used the MH algorithm for drawing from the
joint posterior, which is described in the appendix, with
the MHadaptive package from Chivers (2015), and each
model was replicated w = 1,000 times. The pseudoran-
dom series were generated with the gamlss.dist package
from Stasinopoulos and Rigby (2020) using the inverse
transformed method. The burn-in, thinness and number
of samples needed to obtain convergence to the stationary
distribution were defined in a pilot study.

We formally verified the convergence in each repli-
cated model using the HW (HEIDELBERGER; WELCH,
1983), G (GEWEKE, 1991) and the dependence factor (I)
(RAFTERY; LEWIS, 1992) diagnoses. For the HW, we
fixed α = 5%; the absolute value of G was compared
with the quantile Z1− α

2
, and we checked if I → 1. By

meeting these specifications, the process was considered
convergent.

Simulation results

Table 2 displays the simulation results of the first sce-
nario, where φ1 = 0.30. We observed that there was an
increase in the standard deviation of the parameter β1 with
an increase in the proportion of zeros (ν). The greatest
increase in the standard deviation was related to the inter-
cept of the ZAP-AR(1) model, which increased by 85.93%
in the case where ν = 0.40.

According to the scenario displayed in Table 2, we
verified that the mean and mode estimates of ν remain
identical up to the third decimal place. However, there
was a reduction in the CB and CE metrics of ν when the
proportion of zeros increased.

For models with dispersion parameter, better results
were obtained using the estimates based on the mode
compared with those using the posterior mean. We also
observed an increase in the standard deviation of σ when
increasing ν , mainly in the ZAPIG-AR(1) model, where
some details about the settings of the MH algorithm are
available in the Appendix, presented in the Additional

Simulation Results. Also, in the appendix, the simulation
results of the second scenario are displayed and the MH
settings are available. Similar results were obtained in
the second scenario when compared to the first scenario,
mainly when evaluating the dispersion parameter esti-
mates based on the posterior mode in the ZANBI-AR(1)
and ZAPIG-AR(1) models. The results of the evaluated
scenarios indicated good inference properties, which can
be verified in the CB and CE metrics. All the CE values
are approximately one, and great acceptance rates were
obtained using the MH algorithm.

Application: mortality from dengue haemor-
rhagic fever

We analysed the monthly mortality series due to
dengue haemorrhagic fever (ICD-A91) of children un-
der nine years old in Brazil. Our data were provided by
Brasil ([2022]) and covered the period from January 2013
to July 2020. The behaviour of the data over time is shown
in Figure 1(a), and the respective bar graph is presented in
Figure 1(b).

In the studied period, 136 deaths were reported, resul-
ting in an average of 1.53 deaths per month, with a median
equal to one. The proportion of months without occurrence
of deaths was 33.71%, estimated by p̂ = 30

89 , where 89 is
the number of months. Considering the test for excess
zeros proposed by Broek (1995), based on the Poisson
distribution, the data were zero inflated (p-value < 0.001).
The same result was found using the check_zeroinflation(·)
function from Lüdecke et al. (2021).

To model the series, we considered the models pre-
sented in equation (8), with βββ = β1 and xxx⊤t = (xxxt1)

⊤,
xxxt1 = (1,1, . . . ,1)⊤. We used the MH algorithm with a
burn-in period of 1,000 and thin = 15, resulting in a final
sample of 10,000.

yt | Ft−1 ∼ZAP{µt ,ν} (8)

yt | Ft−1 ∼ZANBI{µt ,ν ,σ}

yt | Ft−1 ∼ZAPIG{µt ,ν ,σ} ,

where log(µt) = (1− φ1B1)(1−Φ1B12)[β1 − log(yt)] +

log(yt).
Table 3 lists the estimation results for the models

expressed in equation (8), including the credibility in-
tervals and the deviance information criterion (DIC).
The Φ1 and β1 parameters were removed from the
ZANBI(µt , σ , ν) model because they were not signifi-
cant. The same situation occurred with the β1 parameter
of the ZAPIG(µt , σ , ν). We also presented the dependence
factor to evaluate the convergence of the chains.

The Box-Pierce (BOX; PIERCE, 1970) test indi-
cated that the residuals of the models presented in
Table 3 are noncorrelated, with p-values of 0.89, 0.11 and
0.90 for ZAP-SAR(1)(1)12, ZANBI-AR(1) and ZAPIG-
SAR(1)(1)12, respectively, evaluated up to lag 20.

The lowest DIC was obtained using the ZAP-
SAR(1)(1)12 model, and the process can be written ac-
cording to the following scheme:

yt | Ft−1 ∼ZAP
{

log(µt) = (1−0.381B1)(1−0.253B12)

×[1.062− log(yt)]+ log(yt),ν = 0.400} .
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Table 2 – Simulation results according to the first scenario, considering w = 1,000 replicates of each model.
Model n Parameter Real Mean Mode SD CB CE

ZAP-AR(1)

100
β1 2.000 1.998 1.995 0.064 0.025 1.000
φ1 0.300 0.308 0.305 0.053 0.140 1.012
ν 0.100 0.108 0.101 0.029 0.236 1.035

100
β1 2.000 2.004 1.996 0.119 0.046 1.000
φ1 0.300 0.306 0.304 0.045 0.117 1.007
ν 0.400 0.404 0.402 0.049 0.096 1.003

ZANBI-AR(1)

100

β1 2.000 2.004 1.997 0.090 0.036 1.000
φ1 0.300 0.313 0.309 0.057 0.154 1.024
ν 0.100 0.108 0.101 0.029 0.236 1.038
σ 0.100 0.124 0.108 0.047 0.404 1.117

100

β1 2.000 2.022 2.002 0.151 0.060 1.010
φ1 0.300 0.313 0.309 0.050 0.136 1.031
ν 0.400 0.395 0.393 0.047 0.095 1.005
σ 0.100 0.165 0.119 0.072 0.730 1.356

ZAPIG-AR(1)

100

β1 2.000 2.006 1.997 0.088 0.035 1.002
φ1 0.300 0.312 0.308 0.063 0.169 1.017
ν 0.100 0.107 0.100 0.029 0.233 1.027
σ 0.100 0.127 0.108 0.050 0.433 1.135

100

β1 2.000 2.035 2.003 0.158 0.065 1.024
φ1 0.300 0.311 0.306 0.054 0.145 1.021
ν 0.400 0.398 0.396 0.047 0.093 1.021
σ 0.100 0.182 0.126 0.095 0.879 1.319

Source: The authors.

Figure 1 – Data over time: (a) monthly number of deaths of individuals under nine years of age due to A91 in Brazil;
(b) bar graph of the data presented in (a).

(a) (b)

Source: The authors.

The estimate of ν indicates that the probability of nonoc-
currence of any death of individuals aged 0 to 9 years due
to A91 in a given month t is 40.00% and varies between
28.60% and 52.10% according to the credibility interval.
When considering 1 - ν , the exact probability of at least
one death is 60.00%.

The average number of deaths in a given month t, con-
ditioned to yt > 0, can be estimated using the parameter
µt , i.e., log(µt) = (1− 0.381B1)(1− 0.253B12)[1.062−
log(yt)]+ log(yt).

In Figure 2, we show the forecasts for June and July
2020, where the grey areas represent the regions of high

density at the 95% credibility level. The estimates point
to 2.05 deaths in June and 1.63 in July. Compared with
the real values of three and one death in June and July,
respectively, the best forecast was for the month of July.
Figure 2(c) also displays the fitted values and the forecasts
for June and July 2020, with the 95% credibility intervals.

Based on the predictive density, the probabi-
lity P(ŷJun = 3 | Ft−1) is 13.47%, with CI95% =

(10.50%;16.60%). For July, P(ŷJul = 1 | Ft−1) is 13.76%,
with CI95% = (7.00%;20.60%). In terms of accuracy, a
mean absolute percent error (MAPE) equal to 47.33% was
obtained using the ZAP-SAR(1)(1)12 model.
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Table 3 – Parameter estimates for the models defined in equation (8) and fit to the dengue data (A91) for children under
nine years old.

Model Parameter Mean SD HPD (95%) I DIC
Ll Lu

ZAP-SAR(1)(1)12

β1 1.062 0.330 0.420 1.726 1.350
φ1 0.381 0.139 0.124 0.663 1.100

569.030
Φ1 0.253 0.120 0.019 0.483 1.090
ν 0.400 0.060 0.286 0.521 1.050

ZANBI-AR(1)
φ1 0.478 0.143 0.193 0.753 1.080
ν 0.345 0.050 0.245 0.439 1.030 725.954

σ 0.957 0.433 0.248 1.825 1.010

ZAPIG-SAR(1)(1)12

φ1 0.446 0.173 0.121 0.800 1.170
Φ1 0.372 0.175 0.035 0.718 1.100

613.481
ν 0.372 0.054 0.266 0.476 1.050
σ 0.784 0.524 0.019 1.775 0.976

Source: The authors.

Figure 2 – Density of the expected number of deaths due to A91: (a) June; (b) July; (c) fitted values according to the
ZAP-SAR(1)(1)12 model.

(a) (b)

(c)

Source: The authors.

In Table 4, we show the probability of extreme values,
such as 8, 10 and 12, which is a form of analysis that
allows evaluating periods of outbreak and increase in
the number of deaths (YANG; ZAMBA; CAVANAUGH,
2013). According to these results, the probability that the
number of deaths is greater than or equal to 12 is 0.018%
in June and 0.001% in July 2020.

Table 4 – Probabilities of occurrence of atypical counts in
the months of June and July 2020 based on the predictive
density.

Month P(ŷt ≥8 | ·)P(ŷt ≥8 | ·)P(ŷt ≥8 | ·) P(ŷt ≥10| ·)P(ŷt ≥10| ·)P(ŷt ≥10| ·) P(ŷt ≥12| ·)P(ŷt ≥12| ·)P(ŷt ≥12| ·)
June 0.014 0.001 <0.001
July 0.003 <0.001 <0.001

Source: The authors.
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Conclusions

In this work, the Poisson, Negative binomial and, Pois-
son inverse Gaussian zero-adjusted distributions were stud-
ied for modelling count time series. A Bayesian analysis
was adopted, and its performance was evaluated using a
simulation study.

When analysing mortality due to dengue haemorrhagic
fever in Brazil, we verified the usefulness of the zero-
adjusted distributions, which allow considering character-
istics such as the excess of zeros and estimating the exact
probabilities that the process assumes the zero value at a
given instant of time.

These contributions allow the analysis of time series,
such as the number of disease cases in populations,
monitoring and predicting periods and probabilities of
outbreaks over time, as discussed in Yang, Zamba and
Cavanaugh (2013) and Sathish, Mukhopadhyay and Ti-
wari (2021).

Suggestions for future work are the study of higher
ARMA(p, q) orders, the increase in the proportion of
zeros and the implementation and comparison of other
algorithms for drawing from the joint posterior, such as
Hamiltonian Monte Carlo (HMC) algorithm (DUANE et

al., 1987).
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Appendices

Joint posteriors of the simulated models

This appendix presents the joint posterior of the sim-
ulated models. Considering the ZAP-AR(1) model, we
have:

π(θθθ | Y ) ∝

n

∏
t=m+1

{
νI(yt=0)+

[
1−ν

1− e−ν

]
e−µt µ

yt
t

yt !
I(yt>0)

}
× exp

{
− (β 2

1 +φ 2
1 )

200

}
,

where µt = exp{[1−φ1B1][β1 − log(yt)]+ log(yt)}.
For the ZANBI-AR(1) model, we have:

π(θθθ | Y ) ∝

n

∏
t=m+1

{
νI(yt=0)+

(1−ν)µt

[1− (1+µtσ)
−1
σ ]

×
Γ(yt +

1
σ
)

Γ( 1
σ
)Γ(yt +1)

(
σ µt

1+σ µt

)yt ( 1
1+σ µt

) 1
σ

×I(yt>0)
}{

exp
[
− (β 2

1 +φ 2
1 )

200
− σ

s

]
σa−1

saΓ(a)

}
,

where µt = exp{[1−φ1B1][β1 − log(yt)]+ log(yt)}.
For the ZAPIG-AR(1) model, we have:

π(θθθ | Y ) ∝

n

∏
t=m+1

{
νI(yt=0)+

[
1−ν

1− e
1
σ
−α

]

×
(

2α

π

) 1
2

µ
yt
t e

1
σ

(
Kyt− 1

2
(α)

) 1
(ασ)yt yt !

I(yt>0)

}

×
{

exp
[
− (β 2

1 +φ 2
1 )

200
− σ

s

]
σa−1

saΓ(a)

}
,

where µt = exp{[1−φ1B1][β1 − log(yt)]+ log(yt)}.

Joint posterior distributions applied to the dengue data

Considering the time series, the joint posterior of the
ZAP-SAR(1)(1)12 model is given by:

π(θθθ | Y ) ∝

n

∏
t=m+1

{
νI(yt=0)+

[
1−ν

1− e−ν

]
e−µt µ

yt
t

yt !
I(yt>0)

}
× exp

{
− (β 2

1 +φ 2
1 +Φ2

1)

200

}
,

where µt = exp{[1 − φ1B1][1 − Φ1B12][β1 − log(yt)] +

log(yt)}. Considering the ZANBI-AR(1) model, we have:

π(θθθ | Y ) ∝

n

∏
t=m+1

{
νI(yt=0)+

(1−ν)µt

[1− (1+µtσ)
−1
σ ]

×
Γ(yt +

1
σ
)

Γ( 1
σ
)Γ(yt +1)
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σ µt
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)yt ( 1
1+σ µt

) 1
σ

×I(yt>0)
}{

exp
[
− φ 2

1
200

− σ

s

]
σa−1

saΓ(a)

}
,

where µt = exp{[1−φ1B1][− log(yt)]+ log(yt)}. For the
ZAPIG-SAR(1)(1)12 model, we have:

π(θθθ | Y ) ∝

n

∏
t=m+1

{
νI(yt=0)+

[
1−ν

1− e
1
σ
−α

]

×
(

2α

π

) 1
2

µ
yt
t e

1
σ

(
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2
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) 1
(ασ)yt yt !

I(yt>0)

}

×
{

exp
[
− (φ 2

1 +Φ2
1)

200
− σ

s

]
σa−1

saΓ(a)

}
,

being µt = exp{[1 − φ1B1][1 − Φ1B12][− log(yt)] +

log(yt)}.

Additional simulation results

Table 5 displays the simulation results for the second
scenario. In Tables 6 and 7, we present the settings of the
MH algorithm and the convergence analysis.
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Table 5 – Second scenario simulation results based on w = 1,000 replicated models.

Model n Parameter Real Mean Mode SD CB CE

ZAP-AR(1)

100
β1 2.000 2.000 2.000 0.024 0.010 1.000
φ1 -0.800 -0.800 -0.800 0.012 0.012 1.000
ν 0.100 0.108 0.101 0.029 0.234 1.035

100
β1 2.000 1.999 1.998 0.042 0.017 1.000
φ1 -0.800 -0.801 -0.801 0.018 0.018 1.001
ν 0.400 0.400 0.398 0.048 0.096 1.000

ZANBI-AR(1)

100

β1 2.000 1.997 1.997 0.035 0.014 1.003
φ1 -0.800 -0.802 -0.801 0.029 0.029 1.002
ν 0.100 0.110 0.103 0.030 0.251 1.081
σ 0.100 0.113 0.102 0.032 0.267 1.052

100

β1 2.000 1.992 1.991 0.069 0.027 1.007
φ1 -0.800 -0.805 -0.803 0.034 0.033 1.008
ν 0.400 0.403 0.402 0.046 0.092 1.002
σ 0.100 0.113 0.101 0.030 0.251 1.098

ZAPIG-AR(1)

100

β1 2.000 1.997 1.996 0.036 0.014 1.003
φ1 -0.800 -0.804 -0.803 0.029 0.029 1.008
ν 0.100 0.108 0.101 0.029 0.234 1.037
σ 0.100 0.113 0.100 0.032 0.269 1.077

100

β1 2.000 1.997 1.996 0.067 0.026 1.001
φ1 -0.800 -0.804 -0.802 0.034 0.033 1.006
ν 0.400 0.402 0.400 0.048 0.095 1.000
σ 0.100 0.116 0.102 0.032 0.274 1.115

Source: The authors.

Table 6 – Settings used in MH and convergence analysis for the first scenario, where AC is the probability acceptance, I
is the mean of the dependence factor, G is the mean of the absolute value of G, and HW is the mean of the p-value of
HW test.

Model n Samples Burn-in Thin AC θθθ I G HW

ZAP-AR(1)

100 5,000 1,000 7 0.48
β1 1.24 0.00 0.50
φ1 1.21 0.05 0.51
ν 1.13 0.03 0.51

100 5,000 1,000 8 0.45
β1 1.22 0.02 0.50
φ1 1.23 0.02 0.50
ν 1.22 0.05 0.49

ZANBI-AR(1)

100 5,000 1,000 11 0.36

β1 1.20 0.04 0.49
φ1 1.19 0.04 0.47
ν 1.10 0.07 0.49
σ 1.08 0.04 0.50

100 6,000 1,000 11 0.34

β1 1.25 0.06 0.51
φ1 1.25 0.06 0.50
ν 1.24 0.06 0.49
σ 1.12 0.07 0.50

ZAPIG-AR(1)

100 5,000 1,000 11 0.36

β1 1.21 0.08 0.50
φ1 1.20 0.10 0.49
ν 1.12 0.13 0.48
σ 1.09 0.10 0.48

100 5,000 1,000 11 0.34

β1 1.21 0.05 0.50
φ1 1.26 0.10 0.50
ν 1.24 0.00 0.48
σ 1.13 0.04 0.51

Source: The authors.
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Table 7 – Settings used in MH and convergence analysis for the second scenario, where AC is the probability acceptance,
I is the mean of the dependence factor, G is the mean of the absolute value of G, and HW is the mean of the p-value of
HW test.

Model n Samples Burn-in Thin AC θθθ I G HW

ZAP-AR(1)

100 5,000 1,000 8 0.45
β1 1.25 0.08 0.50
φ1 1.25 0.07 0.50
ν 1.13 0.14 0.49

100 5,000 1,000 8 0.45
β1 1.24 0.13 0.49
φ1 1.26 0.13 0.49
ν 1.22 0.14 0.49

ZANBI-AR(1)

100 5,000 1,000 9 0.36

β1 1.26 0.06 0.51
φ1 1.30 0.08 0.50
ν 1.15 0.08 0.49
σ 1.12 0.06 0.50

100 5,000 1,000 10 0.36

β1 1.22 0.00 0.48
φ1 1.25 0.00 0.49
ν 1.20 0.03 0.49
σ 1.08 0.13 0.51

ZAPIG-AR(1)

100 6,000 1,000 12 0.35

β1 1.16 0.06 0.50
φ1 1.20 0.01 0.50
ν 1.07 0.09 0.50
σ 1.05 0.14 0.51

100 6,000 1,000 12 0.35

β1 1.17 0.07 0.49
φ1 1.20 0.05 0.50
ν 1.15 0.06 0.48
σ 1.05 0.16 0.50

Source: The authors.
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