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Two-step incremental procedure associated with the normal flow
technique applied to trusses

Procedimento incremental de dois passos associado à técnica de fluxo
normal aplicado a treliças

Luiz Antonio Farani de Souza1; Wilson Doná Junior2;
Everton Luis Consoni da Silva3

Abstract
To achieve the nonlinear structural behavior, there is a need to trace of their equilibrium path in the space
of load-displacement. Truss systems are commonly implemented in several structural systems, including
high-span bridges and bracing of the supporting structure of tall buildings. Our study adapts a two-step method
with cubic convergence into an incremental-iterative procedure to analyze the geometric nonlinear behavior
of trusses. The solution method is combined with the Linear Arc-Length path-following technique. To find
the approximate root of nonlinear equation system in the two-step method, two formulas are used. Structures
are discretized using the Positional Finite Element Method and all truss bars are assumed to remain linear
elastic. The correction of the nodal coordinates subincrement vector is performed using the Normal Flow
technique. A computational algorithm was implemented using the free program Scilab. Our numerical results
show that, when compared to the standard and modified Newton-Raphson algorithms, the new algorithm
decreases the number of iterations and the computing time in the nonlinear analysis of trusses. Equilibrium
paths with force and/or displacement limit points are obtained with good precision.

Keywords: Linear Arc-Length; positional formulation; geometric nonlinearity; Normal Flow technique.

Resumo
Para obter o comportamento não linear de uma estrutura, há a necessidade de traçar sua trajetória de equilíbrio
no espaço de carga-deslocamento. Os sistemas treliçados são comumente empregados em vários sistemas
estruturais, incluindo pontes com grandes vãos e contraventamento da estrutura po rtante de edifícios altos.
Este estudo adapta um método de dois passos com convergência cúbica em um procedimento incremental-
iterativo para analisar o comportamento não linear geométrico de treliças. Esse método é combinado com
a técnica de continuação Comprimento de Arco Linear. Duas fórmulas são usadas para encontrar a raiz
aproximada do sistema de equações não lineares. As estruturas são discretizadas por meio do Método
Posicional dos Elementos Finitos e assume-se que todas as barras de treliça permaneçam elásticas lineares.
A correção do vetor de subincremento de coordenadas nodais é realizada pela técnica de Fluxo Normal. Um
algoritmo computacional foi implementado utilizando o programa livre Scilab. Os resultados numéricos
mostram que, quando comparado com os algoritmos de Newton-Raphson Padrão e Modificado, o novo
algoritmo diminui o número de iterações e o tempo de processamento nas análises não lineares de treliças.
As trajetórias de equilíbrio com pontos limites de força e/ou de deslocamento são obtidas com boa precisão.

Palavras-chave: Comprimento de Arco Linear; formulação posicional; não linearidade geométrica; técnica
de Fluxo Normal.
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Introduction

Finding effective solutions for problems involving
large deformations of dead loads have been considered
a serious and difficult challenge from the numerical and
analytical perspectives. Several studies have sought for
schemes capable of achieving the nonlinear equilibrium
path in the load-displacement space (KOOHESTANI,
2013; LEON et al., 2011; TURCO et al., 2020), which re-
quires enough efficiency to cross the critical and buckling
points (REZAIEE-PAJAND; NASERIAN, 2015). Figure 1
shows the nonlinear response of a structural system in
which a given displacement component may either in-
crease or decrease along the path, including load limit
points 1 and 4, displacement limit points 2 and 3 and
the failure point 5. Load limit points occur when a lo-
cal maximum or minimum load is reached on the load-
displacement curve, embedding a horizontal tangent. Dis-
placement limit points occur at vertical tangents on the
solution curve (LEON et al., 2011).

The mathematical modeling of engineering structures
response can provide the nonlinear effects of different
sources, including geometric nonlinearities associated to
large displacements and strains, as well as nonlinear ma-
terial responses described by theories such as plasticity,
damage, and fracture (MUÑOZ; ROEHL, 2017).

Figure 1 – Critical points in nonlinear equilibrium paths.

Source: Adapted from Leon et al. (2011).

Considering that structures may experience changes
in their primary shape before reaching the final strengths,
accurately evaluating structures behavior in large displace-
ment cases require a geometrically nonlinear analysis
(MOHIT; SHARIFI; TAVAKOLI, 2020). In this scenario,
space truss is a structural element widely employed in
Structural Engineering (GRECO; FERREIRA, 2009) for
the construction of long-range bridge systems, domes, or

roofs of structures covering large unobstructed areas, or in
the reinforcement of structures (DEHGHANI et al., 2020;
THAI; KIM, 2009).

The Newton–Raphson method is one of the most
powerful and widely used techniques for solving non-
linear problems, so that most iterative algorithms adapted
for this end may be regarded as variations of this tech-
nique (SAFFARI; MANSOURI, 2011). By means of an
incremental-iterative procedure, this method provides the
solution of points in the equilibrium path, which may
diverge for a limit point due to the ill conditioning of
the tangent stiffness matrix, Jacobian matrix, or because
the established load level lacks a solution. To solve this
problem, the displacement control method was introduced.
However, as this strategy provides inaccurate answers for
structures with snap-back points, researchers have sug-
gested a more general method for nonlinear structural
analysis – the Arc-Length technique (SAFFARI et al.,
2013).

The literature present numerous approaches for the
nonlinear structural analysis of trusses – Saffari and Man-
souri (2011) suggested a two-point fourth-order conver-
gence method; Mahdavi et al. (2015) proposed an itera-
tive method free from second derivative originated from
modified Chebyshev and cubic spline’s schemes; Souza
et al. (2018) proposed new algorithms based on two-step
methods with cubic convergence combined with the Lin-
ear Arc-Length path-following technique; Mohit, Shar-
ifi and Tavakoli (2020) used six three-step fourth-order
convergence iterative schemes; Dehghani et al. (2020)
proposed an improved perturbation algorithm to refine
the classical methods in numerical computing techniques
such as the Newton–Raphson method; Souza, Castelani
and Shirabayashi (2021a) adapted the Newton-Raphson
and Potra-Pták algorithms by combining them with the
modified Newton-Raphson method by inserting a condi-
tion; and, finally, Souza et al. (2021) presented a new
algorithm to solve the system of nonlinear equations that
describes the static equilibrium of trusses with material
and geometric nonlinearities, adapting a three-step method
with fourth-order convergence.

Two-step methods, also called predictor–corrector
methods (NOOR; AHMAD; JAVEED, 2006), use two
formulas to find the approximate function’s root. Whereas
one formula predicts the root based on the initial estimate
(predictor), the second formula gives the correct approxi-
mation based on the predicted value (corrector).

Consider a nonlinear equation f (x) = 0 with a simple
root x∗, where f : D⊂ R→ R for an open interval D is a
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scalar function. Kou, Li and Wang (2006) presented a mod-
ified Newton’s method for solving nonlinear equations,
which has cubic convergence and requires two evaluations
of the function f (x) and one evaluation of its first deriva-
tive f ′(x). The iterative equations for this method are as
follows:

y(k+1) = x(k)+
f
(

x(k)
)

f ′
(
x(k)
) , (1)

x(k+1) = y(k+1)−
f
(

y(k+1)
)

f ′
(
x(k)
) , (2)

for k = 0,1,2, . . ., generating a sequence of iterations
which converges to x∗ ∈ D. If f (x) has first, second and
third derivatives in the interval D, then the method defined
by equations (1) and (2) converges cubically to x∗ in a
neighborhood of x∗. Our study adapts the two-step method
proposed by Kou, Li and Wang (2006) into an incremental-
iterative procedure to solve the nonlinear equations of the
structural problem, thus generating a new algorithm. The
solution method is combined with the Linear Arc-Length
path-following technique, which adds a constraint equa-
tion to the system for calculating the load factor.

Structures were discretized using the Positional Finite
Element formulation originally proposed by Coda and
Greco (2004). Conventionally, the formulation of the Fi-
nite Element Method for solid mechanics comprises the
displacement method, in which primary unknowns are
nodes displacements. Conversely, the unknowns within
the positional formulation are nodes positions. This formu-
lation adopts the Lagrangian description, which describes
the kinematics of deformation in terms of a coordinate
system, fixed in space.

We developed a computational algorithm, using the
free program Scilab, version 6.1.1 (SCILAB, 2021), ca-
pable of tracing the load-displacement paths of nonlinear
problems with multiple force and displacement points to
predict the large deflection behavior of plane and spatial
trusses. The truss bars are assumed to have linear elastic
behavior.

The nodal coordinate subincrement vector is cor-
rected in the iteration through two strategies: conventional
(CRISFIELD, 1991); and Normal Flow (MAXIMIANO;
SILVA; SILVEIRA, 2014; RAGON; GÜRDAL; WAT-
SON, 2002). The equilibrium between the internal and
external forces in the Normal Flow technique is obtained
by performing iterative corrections along of the normal di-
rection to the Davidenko curves (ALLGOWER; GEORG,
1980). This technique is used to accelerate the process of
obtaining the approximate solution and/or to overcome

the problems of convergence, which can occur at the limit
points of the structure equilibrium path.

Studies analyzing nonlinear truss have also applied the
positional formulation: Greco and Ferreira (2009) used the
logarithmic strain measure to obtain a consistent geomet-
ric nonlinear finite element formulation to deal with large
strains on space trusses; by comparing the positional for-
mulation of space trusses with the co-rotation formulation,
Greco et al. (2012) found results with good agreement;
Rabelo et al. (2018) developed a formulation to describe
the viscoelastic mechanical behavior of space trusses; and
Felipe et al. (2019) proposed the comprehensive ductile-
damage model for nonlinear analysis of truss structures.

Structural problem and solution method

The basic problem of nonlinear analysis is to find
the equilibrium configuration of a structure that is under
the action of an applied load. The system of nonlinear
equations that governs the static equilibrium of a structural
system with geometrically nonlinear behavior is given by
(MAXIMIANO; SILVA; SILVEIRA, 2014):

ggg(ddd,λ ) = FFF iiinnnttt (ddd)−λFFFrrr = 0, (3)

where ggg is the unbalanced force vector, FFF iiinnnttt is the inter-
nal force vector, evaluated as a function of the coordinate
vector at the nodal points of structure ddd, FFFrrr is a reference
vector characterizing the external load direction and λ

is the load parameter. The solution of the system given
in equation (3) is obtained by an incremental-iterative
scheme. For a sequence of the load parameter λ , a se-
quence of the respective increment of nodal coordinates ddd

is calculated.
The system has (n+1) unknowns, which are the vec-

tor d with n elements and the parameter λ , but only n

equations. Thus, the constraint equation c(ddd,λ ) = 0 is
added to the system.

By applying the standard Newton-Raphson method to
the system of equations in equation (3) and c(ddd,λ ) = 0
(LEON et al., 2011; SOUZA et al., 2018), we obtain the
equations (4)-(6) :

∂ggg(k)

∂ddd
δddd(k+1)+

∂ggg(k)

∂λ
δλ

(k+1) =−ggg(k), (4)

KKK(k)
δddd(k+1)−δλ

(k+1)FFFrrr =−ggg(k), (5)

(
∂c(k)

∂ddd

)T

δddd(k+1)+
∂c(k)

∂λ
δλ

(k+1) =−c(k), (6)
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with

ddd(k+1) = ddd(k)+δddd(k+1), (7)

λ
(k+1) = λ

(k)+δλ
(k+1), (8)

where KKK(k) =
∂FFF iiinnnttt

∂ddd
is the stiffness matrix, which is the

Jacobian matrix, and δλ (k) the load sub-increment. The
terms (k + 1) and k are used herein to refer to the cur-
rent and previous iterations, respectively. By isolating the
coordinate sub-increment δddd(k+1) in equation (4) and as-
suming that KKK(k) is invertible (LEON et al., 2011), we
obtain the equation (9):

δddd(k+1) = δddd(k+1)
ggg +δλ

(k+1)
δddd(k+1)

rrr , (9)

where

δddd(k+1)
g =−

[
KKK
(

ddd(k)
)]−1

ggg
(

ddd(k), λ
(k)
)
, (10)

δddd(k+1)
rrr =

[
KKK
(

ddd(k)
)]−1

FFFrrr. (11)

In equation (10), ggg
(

ddd(k),λ (k)
)

= FFF iiinnnttt

(
ddd(k)
)
−

λ (k)FFFrrr. The usage of equation (9) is referred to herein
as the conventional process for the nonlinear solution
methodology. In the Normal Flow technique, the equilib-
rium between the internal and external forces is obtained
by performing iterative corrections along of the normal di-
rection to the Davidenko curves (ALLGOWER; GEORG,
1980; RAGON; GÜRDAL; WATSON, 2002; MAXIMI-
ANO; SILVA; SILVEIRA, 2014). With this technique, the
expression used to obtain the nodal displacement correc-
tion δddd(k+1) is given by the equation (12):

δddd(k+1) = δddd(k+1)
ggg +δλ

(k+1)
δddd(k+1)

rrr −

(
δddd(k+1)

ggg +δλ
(k+1)

δddd(k+1)
rrr

)T
δddd(k+1)

rrr

δddd(k+1)
rrr

T
δddd(k+1)

rrr

δddd(k+1)
rrr . (12)

The increments of nodal coordinates (∆∆∆ddd) and load
(∆λ ) are determined by the equations (13) and (14), re-
spectively:

∆∆∆ddd(k+1) = ∆∆∆ddd(k)+δδδddd(k+1), (13)

∆λ
(k+1) = ∆λ

(k)+δλ
(k+1), (14)

By combining the solution with the Linear Arc-Length
path-following technique, we obtained the constraint equa-
tion c in iteration (k+1), given by:

c(k+1) = δddd(k+1)T
∆ddd(0) = 0. (15)

With the substitution of the sub-increment δddd(k+1) of
equation (9) in equation (15), we obtain the expression for
the load sub-increment δλ (k+1), given in equation (16),
for k >−1:

δλ
(k+1) =−

δddd(k+1)
ggg

T
∆ ddd(0)

δddd(k+1)
rrr

T
∆ ddd(0)

. (16)

Kou, Li and Wang (2006) modified the Newton-
Raphson method and developed a two-step method with
cubic convergence, which consists of two evaluations of
the function and requires only the calculation of first or-
der derivatives. To solve the structural problem given by
equation (3) and c(ddd,λ ) = 0, we adapted this method, ob-
taining the following new incremental-iterative scheme
with Normal Flow technique, equations (17)-(21):

yyy(k+1) = ddd(k)+δddd(k+1)
1 (17)

δddd(k+1)
1 = δλ

(k+1)
1 δddd(k+1)

rrr +δddd(k+1)
ggg −(

δddd(k+1)
ggg +δλ

(k+1)
1 δddd(k+1)

rrr

)T
δddd(k+1)

rrr

δddd(k+1)
rrr

T
δddd(k+1)

rrr

δddd(k+1)
rrr (18)

δddd(k+1)
2 = δλ

(k+1)
2 δddd(k+1)

rrr +δddd(k+1)
gggyyy −

(
δddd(k+1)

gggyyy +δλ
(k+1)
2 δddd(k+1)

rrr

)T
δddd(k+1)

rrr

δddd(k+1)
rrr

T
δddd(k+1)

rrr

δddd(k+1)
rrr (19)

ddd(k+1) = ddd(k)+δddd(k+1)
1 −δddd(k+1)

2 , (20)

λ
(k+1) = λ

(k)+δλ
(k+1)
2 , (21)

where δddd(k+1)
gggyyy =−

[
KKK
(

ddd(k)
)]−1

ggg
(

yyy(k+1),λ (k)
)

. Given
that the iteration cycle requires a single factoring at its

beginning, the explicit calculation of
[
KKK
(

ddd(k)
)]−1

is
avoided by solving the systems of linear equations via
LU factorization. The equation for the initial load incre-
ment, predicted solution, is given by equation (22), for
k =−1%:

∆λ
(0) =

∆l
||δuuurrr||

, (22)

where ∆l represents the Arc-Length increment, which
can be used as a control parameter in the current load
step (CRISFIELD, 1991), according to the expression by
equation (23) :
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∆l = 0
∆ l
(

Nd
tk

)0.5

, (23)

where 0∆ l is the arc length increment in the initial load
step, Nd is the number of iterations desired for the conver-
gence of the current iterative process and tk is the number
of iterations required for converging the previous load
step. Typical values for Nd may vary between 3 and 10
(CRISFIELD, 1991).

The end of the iterative process, correction of the pre-
dicted solution, indicates a new equilibrium position for
the structural system. Two convergence criteria are consid-
ered. The first criterion is calculated as a function of the
unbalanced load vector g and the reference load vector FFFrrr:

||ggg|| ≤ tol1.||FFFr||. (24)

The second criterion is written as a function of the
sub-increment vector of nodal coordinates δddd and the
increment vector of nodal coordinates ∆∆∆ddd:

||δddd|| ≤ tol2.||∆ddd||. (25)

In equations (24) and (25), ||.|| is the Euclidean norm
and tol1 and tol2 are the tolerances provided by the user.
The nodal displacement vector uuu(k+1) is calculated by
equation (26):

uuu(k+1) = ddd(k+1)− 0ddd, (26)

where ddd(k+1) is the nodal coordinate vector converged in
the current load step and 0ddd is the nodal coordinate vector
at the initial position, corresponding to the undeformed
configuration of the structure.

The proposed algorithm of the solution method is
shown in Algorithm, adapted from the method developed
by Kou, Li and Wang (2006) associated with the Lin-
ear Arc-Length path-following technique and the Normal
Flow strategy. Input parameters considered were: initial
arc length (0∆l); maximum number of iterations in each
step load (kmax); required number of iterations (Nd); tol-
erances (tol1 and tol2); load increment (∆P); maximum
number of load steps (LSmax); and the nodal coordinate
vector at the initial position (0ddd). In turn, output parame-
ters were: nodal coordinate vector (ddd); total load parameter
(λ ); total number of load steps (LS); total number of it-
erations (ktotal); nodal displacement vector (uuu); average
number of iterations (kav); and processing time in seconds
(t).

To consider the conventional process for calculating
the sub-increment vector of nodal coordinates according to

equation (9), line 23 is replaced by δδδddd1← δλ 1δdddrrr +δdddggg

and line 28, by δδδddd2 ← δλ 2δdddrrr + δdddgggyyy in the proposed
algorithm in Algorithm 1.

Algorithm 1: Solution method
Input: LSmax, kmax, ∆P, 0∆l, tol1, tol2, Nd, 0ddd
Output: ddd, uuu, LS, λ , ktotal , kav, t

1 begin
2 ddd←0ddd ∆∆∆ddd←000, λ←0, ktotal←0, ∆l←0∆l
3 aux1← tol1||FFFrrr||
4 tic() (starts a timer)

5 for LS←1, . . . ,LSmax do
6 Decomposition of KKK in matrices LLL and UUU

(LU factorization)
7 aux2← [[[LLL]]]−1FFFrrr

8 δδδdddrrr ← [[[UUU ]]]−1aux2

9 ∆λ (0)← ∆1
||δδδdddrrr||

10 if ∆∆∆dddT
δδδdddrrr < 0 then

11 ∆λ (0)←−∆λ (0)

12 end
13 ∆∆∆ddd(0)←∆λ (0)δδδdddrrr

14 ∆∆∆ddd←∆∆∆ddd(0)

15 ggg←(λ +∆λ )FFFrrr−FFF iiinnnttt(ddd +∆∆∆ddd)

16 for k← 1, . . . ,kmax do
17 Decomposition of KKK in matrices LLL and UUU

(LU factorization)
18 aux2← [[[LLL]]]−1FFFrrr

19 δδδdddrrr←[[[UUU ]]]−1 aux2

20 aux2← [[[LLL]]]−1ggg
21 δδδdddggg←[[[UUU ]]]−1 aux2

22 δλ1←−
(∆∆∆ddd(0)T

δδδdddggg)

(∆∆∆ddd(0)T
δδδdddrrr)

23 δδδddd1←δλ 1δdddrrr +δdddggg−
(
δdddggg +δλ 1δdddrrr

)T
δdddrrr

δdddrrr
T

δdddrrr
δdddrrr

24 ggg←(λ +∆λ +δλ1)FFFrrr−FFF iiinnnttt(ddd +∆∆∆ddd−δδδddd111)

25 aux2← [[[LLL]]]−1ggg
26 δδδdddgggyyy←[[[UUU ]]]−1 aux2

27 δλ2←−
(∆∆∆ddd(0)T

δδδdddggg)

(∆∆∆ddd(0)T
δδδdddrrr)

28 δδδddd2←δλ 2δdddrrr +δdddgggyyy−
(
δdddgggyyy +δλ 2δdddrrr

)T
δdddrrr

δdddrrr
T

δdddrrr
δdddrrr

29 ∆∆∆ddd←∆∆∆ddd−δδδddd1 +δδδddd2
30 ∆λ ← ∆λ +δλ2
31 ggg←(λ +∆λ )FFFrrr−FFF iiinnnttt(ddd +∆∆∆ddd)

32 if ||ggg||< aux1 or ||δδδddd2||< tol2||∆∆∆ddd|| then
33 Exit the loop
34 end
35 end

36 if k = kmax then
37 messagebox (‘Not Converged’)
38 Exit the loop
39 end
40 ddd← ddd +∆∆∆ddd
41 λ ← λ +∆λ

42 uuu← ddd− 0ddd

43 ∆l← 0∆l
(

Nd
k

)0.5

44 ktotal ← ktotal + k
45 end

46 kav←
ktotal

LS
47 t←toc() (reads the timer)
48 end
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Positional Finite Element Formulation

This section describes the 3D truss bar element us-
ing the Positional Finite Element formulation originally
proposed by Coda and Greco (2004). The bar element
has constant area A and transmits axial forces only. In its
initial configuration, the global nodal coordinates of the
truss member are defined as (X1, Y1, Z1) for node 1 and
(X2, Y2, Z2) for node 2. Moreover, its original length (L0)
is determined by:

L0 =

√
(X2−X1)

2 +(Y2−Y1)
2 +(Z2−Z1)

2. (27)

As for its current configuration, the global nodal coor-
dinates of the truss member are (x1, y1, z1) for node 1 and
(x2, y2, z2) for node 2, and its current length (L) is:

L =

√
(x2− x1)

2 +(y2− y1)
2 +(z2− z1)

2. (28)

Table 1 shows the equations of the internal force vector
FFFeeellleeemmm and stiffness matrix KKKeeellleeemmm for the 3D truss element
referring to the Engineering (εE ), Green-Lagrange (εG)
and Logarithmic (εL) strains. The matrix KKKeeellleeemmm is deter-
mined by equation (29) :

KKKeeellleeemmm = KKKMMM +KKKGGG, (29)

where KKKMMM is material stiffness matrix and KKKGGG is the geo-
metric stiffness matrix.

In the equations shown in Table 1, E is the longitudinal
modulus of elasticity and the vector mmm is given by equation
(30):

mmm =
[
dx dy dz −dx −dy −dz

]T
, (30)

where dx = x1− x2, dy = y1− y2 and dz = z1− z2.

The differential
∂mmm
∂xxx

is:

∂mmm
∂x

=

[
III3 −III3

−III3 III3

]
, (31)

where III3 is the three-order identity matrix.

Results and discussion

This section presents the numerical results of truss
problems found in the literature regarding the geometri-
cally nonlinear static analysis. Our algorithm was run on
an Intel Core i7 - 10510U CPU@1.80 GHz 2.30 GHz com-
puter with 8 GB of memory and equipped with the free

program Scilab, version 6.1.1 (SCILAB, 2021). The anal-
ysis ignores the weight of the structures. Mesh genera-
tion and results visualization are not computed within the
processing time. As our goal was to verify the effective-
ness of the proposed algorithm, the system of units of the
numerical examples were kept the same as the original
reference.

In the nonlinear analysis methodology, the
incremental-iterative procedure proposed with the
method of Kou, Li and Wang (2006) and that of Newton-
Raphson (RIKS, 1972; WEMPNER, 1971) are associated
with the Linear Arc-Length path-following technique.

Star dome truss

The star dome truss, shown in Figure 2, contains 24
finite elements and 13 nodes. Constants E = 1.0 kN/cm2

(= 1.0×104 kN/m2) and A = 1.0 cm2 (= 1.0×10−4 m2)
were adopted for each bar.

Figure 2 – Structural model of the star dome truss.

Source: The authors.

Figure 3 plots the center node equilibrium path of
the structural system obtained with the proposed method
(Normal Flow), evincing that the obtained results are in
line with the solution provided by Yaw (2011).

Figure 3 – Star dome truss: equilibrium path.

Source: The authors.
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Table 1 – Formulas of the internal force vector and stiffness matrix for strain measurements.
Strain εεε FFFeeellleeemmm KKKeeellleeemmm = KKKMMM +KKKGGG

KKKMMM KKKGGG

Engineering
L−L0

L0

EAεE

L
mmm

EA
L3 mmmmmmT EAεE

L
∂mmm
∂x

Green-Lagrange
L2−L0

2

2L0
2

EAεG

L0
mmm

EA
L0

3 mmmmmmT EAεG

L0

∂mmm
∂x

Logarithmic ln
(

L
L0

)
EAL0εL

L2 mmm
EAL0

L4 (1−2εL)mmmmmmT EAL0εL

L2
∂mmm
∂x

Source: The authors.

Figure 4 shows the deformed position of the truss for
LS= 80, indicating the bars that are in traction (blue color)
and in compression (red color).

Figure 4 – Star dome truss: deformed position.

Source: The authors.

The parameters considered for the solution methods
were: 0∆l = 0.5; Nd = 7; tol1 = tol2 = 1.0× 10−10;
kmax =150; and ∆P = 1.0 N, and Table 2 shows the
numerical results (LS, ktotal , kav and t). This analysis was
focused on the engineering strain.

Table 2 – Numerical results for star dome truss, number
of system unknowns = 40.

Algorithm LLLSSS kkktttoootttaaalll kkkaaavvv ttt(((sss)))

Proposed (conventional) 66 135 2.04 3.36

Proposed (normal flow) 80 238 2.97 5.27

NR (conventional) 79 236 2.98 4.46

NR (normal flow) 86 297 3.45 5.53

MNR (conventional) Not converged

MNR (normal flow) Not converged

Source: The authors.

Dome-shaped truss

Figure 5 shows the geometry, loading, and material
properties of the dimensionless dome-shaped truss, which
contains 25 nodes and 60 bar elements. For this analysis,
the Green-Lagrange strain was considered.

Figure 5 – Geometry, loading and material properties of
the dome-shaped truss.

Source: The authors.

Figure 6 shows the equilibrium path (vertical displace-
ment at node 25 versus load P), indicating a strong corre-
lation between the curve obtained with the algorithm and
the solution provided by Matias (2002).

Figure 6 – Dome-shaped truss: equilibrium path.

Source: The authors.

Figure 7 presents the truss deformed position for
LS = 102, obtained with the proposed algorithm
considering the Normal Flow technique.

The parameters considered for the solution methods
were: 0∆l = 4.0; Nd = 5; tol1 = tol2 = 1.0× 10−10;
kmax =150; and ∆P = 0.1, and Table 3 shows the
numerical results (LS, ktotal , kav and t).
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Figure 7 – Dome-shaped truss: deformed position.

Source: The authors.

Table 3 – Numerical results for dome-shaped truss, num-
ber of system unknowns = 76.

Algorithm LLLSSS kkktttoootttaaalll kkkaaavvv ttt(((sss)))

Proposed (conventional) 100 303 3.03 22.77

Proposed (normal flow) 102 309 3.02 24.12

NR (conventional) 112 431 3.84 25.71

NR (normal flow) 114 443 3.88 27.95

MNR (conventional) Not converged

MNR (normal flow) Not converged

Source: The authors.

Circular arch truss

The circular arch truss shown in Figure 8 contains 101
elements and 42 nodes. The bars have axial stiffness EA =

1.0×107 lb (∼= 4.4482×107 N) and the load P is applied
at the apex of the structure. This problem was proposed
by Crisfield (1991) and studied by Hrinda (2010), among
other authors.

Figure 8 – Structural model of the circular arch truss.

Source: The authors.

The out-of-plane motion has been constrained with
pin supports added to each end of the truss. As shown
in Figure 9, the equilibrium path of the structural system,
vertical displacement versus load P at the apex, is complex
and it has several limit points of force and displacement.

Figure 9 – Equilibrium path of the circular arch truss.

Source: The authors.

Our algorithm obtained satisfactory results for the equi-
librium points of the system, corroborating those re-
ported by Hrinda (2010). The analysis was focused on
the engineering strain, and the parameters considered for
the solution methods were 0∆l = 0.5; Nd = 6; tol1 =

tol2 = 1.0× 10−6; kmax = 150; and ∆P = 1.0× 106 lb
(∼= 4.4482×106 N). Table 4 shows the numerical results
(LS, ktotal , kav and t), and Figure 10 displays the arch
deformed shapes for the load steps LS = 0, 100, 200,
300, 400 and 697, obtained with the proposed algorithm
considering the Normal Flow technique.

Table 4 – Numerical results for circular arch truss, number
of system unknowns = 85.

Algorithm LLLSSS kkktttoootttaaalll kkkaaavvv ttt(((sss)))

Proposed (conventional) Not converged

Proposed (normal flow) 697 1126 1.61 98.34

NR (conventional) Not converged

NR (normal flow) 750 1382 1.84 99.22

MNR (conventional) Not converged

MNR (normal flow) Not converged

Source: The authors.
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Figure 10 – Deformed shapes of the circular arch truss.

Source: The authors.

Discussion of results

The structures analyzed in this article are character-
ized by a nonlinear behavior, in which equilibrium paths
exhibit force limit points, or maximum and minimum
points, and displacement limit points, where the tangent
at these points is vertical. Considering that structures may
become unstable once their limit points are reached, iden-
tifying these points is of great importance for engineering
designs.

When compared with standard and modified Newton-
Raphson methods, the incremental-iterative procedure pro-
posed in our study – adapted from the method developed
by Kou, Li and Wang (2006) – required a smaller number
of load steps and cumulative iterations for convergence to
the approximate solution, independently of the technique
used for the δδδddd(k+1)

i calculation.
Two systems of linear equations generated from the Fi-

nite Element Method, calculation of δddd(k+1)
rrr and δddd(k+1)

ggg ,
are solved in the standard Newton-Raphson, whereas
three systems are solved in our procedure, calculation of
δddd(k+1)

rrr ,δddd(k+1)
ggg and δddd(k+1)

gggyyy . Moreover, our procedure
also includes an additional update of the internal force
vector FFF iiinnnttt .

The solution convergence with the modified Newton-
Raphson was impaired in the numerical examples due to
numerical instabilities. As in this method the stiffness ma-
trix K is computed only at the beginning of each load step,
k = −1, remaining invariable along the iterative cycle,
nonlinear analyses can entail convergence problems. The
incremental and iterative scheme of the modified Newton-
Raphson method, considering the Normal Flow technique
for the calculation of δddd(k+1), is given by:

δddd(k+1) = δddd(k+1)
ggg +δλ

(k+1)
δddd(0)

rrr −(
δddd(k+1)

ggg +δλ
(k+1)

δddd(0)
rrr

)T
δddd(0)

rrr

δddd(0)
rrr

T
δddd(0)

rrr

δddd(0)
rrr , (32)

where

δddd(k+1)
ggg =−

[
KKK
(

ddd(0)
)]−1

ggg
(

ddd(k),λ (k)
)
, (33)

δddd(0)
rrr =

[
KKK
(

ddd(0)
)]−1

FFFrrr. (34)

Convergence using this method can be achieved by
decreasing the value of the initial arc length increment
(0∆l) and/or the number of iterations required (Nd).

With regard to the analysis of the circular arch truss,
the consideration of the Normal Flow technique guaran-
teed the convergence for the problem solution, with ob-
taining a highly nonlinear equilibrium path with several
limit points. Even doing additional tests with reducing
of the values of 0∆l and Nd for both solution methods,
proposed and NR, the conventional technique was not
able to obtain the complete solution. Non-convergence
occurs at the fourth displacement limit point, Figure 11,
for the proposed method and for the NR method, at the
third displacement limit point, Figure 12.

Figure 11 – Point of non-convergence on the path for the
proposed method.

Source: The authors.

Figure 12 – Point of non-convergence on the path for the
NR method.

Source: The authors.
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Despite ensuring convergence in all the examples stud-
ied here, the Normal Flow technique in the analysis of
space trusses (star dome truss and dome-shaped truss) can-
not reduce the total number of iterations (ktotal) compared
to the conventional method, as shown in Tables 2 and 3.

The sign of the initial load increment ∆λ (0) can be
either positive or negative. Determining the correct signal
is key for establishing sequence solutions (ddd, λ ) that allow
a continuous advance in the load-displacement response.
To verify the sign change of the load increment when
crossing limit points (lines 9 to 11 of the algorithm in Al-
gorithm), we adopted an easy-to-implement and suitable
technique proposed by Krenk and Hededal (1995).

The stiffness matrix KKK of the structural system is char-
acterized by a high sparsity degree. Figure 13 shows the
distribution of the non-null elements of the matrix KKK for
the 42-Member Space Truss, using Scilab’s sparse(K)
and PlotSparse(K) functions, where nnz is the number
of non-zero entries in the matrix. The sparsity degree of
this matrix is 83.72%. The numerical efficiency of the
proposed procedure may be enhanced by using algorithms
that store non-null coefficients present in the matrix and
perform operations between matrices and vectors with
these coefficients, thus avoiding redundant calculations
with null elements. The "sparse" function is used to build
a sparse matrix in the Scilab program, and only non-null
entries are stored.

Figure 13 – Distribution of non-zero elements of the stiff-
ness matrix.

Source: The authors.

Figure 14(a)-(b) shows the percentage reduction of the
total number of iterations of the new algorithm presented
in Algorithm in relation to the standard Newton–Raphson
method, using conventional and Normal Flow techniques,
respectively.

Figure 14 – Reduction percentage of iteration: (a) Con-
ventional technique and (b) Normal Flow technique.

(a)

(b)

Source: The authors.

Conclusion

This study proposed a new algorithm based on the
Positional Finite Element method to analyze the geomet-
rical nonlinearity of plane and spatial trusses. The sys-
tem of nonlinear equations was solved by adapting the
two-step method proposed by Kou, Li and Wang (2006)
and the Linear Arc-Length path-following technique into
an incremental-iterative procedure. After presenting the
iterative formulation, we developed a computational al-
gorithm using the free program Scilab. The numerical
examples reached satisfactory results in reducing com-
puting time, reducing the number of the iterations, and
obtaining sufficiently accurate results. As shown in trusses
load-displacement curves, our algorithm was able to iden-
tify and cross the force and displacement limit points,
thus being of practical interest for Structural Engineering.
Moreover, it can compete and excel the Newton–Raphson
method.

Acknowledgments
The authors thank the Federal Technological Univer-

sity of Paraná and the Graduate Program in Civil Engi-
neering - PCV of the State University of Maringá for their
support in the development of this research.

38
Semina: Ciênc. Ex. Tech., Londrina, v. 43, n. 1Esp, p. 29-40, Jan./Dez. 2022



Two-step incremental procedure associated with the normal flow technique applied to trusses

References

ALLGOWER, E. L.; GEORG, K. Homotopy methods for
approximating several solutions to nonlinear systems of
equations. In: FORSTER, W. (ed.). Numerical solution of

highly nonlinear problems. Amsterdam: North-Holland,
1980. p. 253-270.

CODA, H. B.; GRECO, M. A simple FEM formulation
for large deflection 2D frame analysis based on position
description. Computer methods in applied mechanics and

engineering, Amsterdam, v. 193, n. 33-35, p. 3541-3557,
2004.

CRISFIELD, M. A. Non-linear finite element analysis

of solids and structures. Chichester: John Wiley & Sons
Ltda, 1991. v. 1.

DEHGHANI, H.; MANSOURI, I.; FARZAMPOUR, A.;
HU, J. W. Improved homotopy perturbation method for
geometrically nonlinear analysis of space trusses. Applied

Sciences, [Tubingen], v. 10, n. 8, p. 2987, 2020.

FELIPE, T. R.; LEONEL, E. D.; HAACH, V. G.; BECK,
A. T. A comprehensive ductile damage model for 3D truss
structures. International Journal of Non-Linear Mechan-

ics, Amsterdam, v. 112, p. 13-24, 2019.

GRECO, M.; FERREIRA, I. P. Logarithmic strain mea-
sure applied to the nonlinear positional formulation for
space truss analysis. Finite elements in analysis and de-

sign, Amsterdam, v. 45, n. 10, p. 632-639, 2009.

GRECO, M.; MENIN, R. C. G.; FERREIRA, I. P.; BAR-
ROS, F. B. Comparison between two geometrical nonlin-
ear methods for truss analyses. Structural engineering and

mechanics: An international journal, New York, v. 41, n.
6, p. 735-750, 2012.

HRINDA, G. Snap-through instability patterns in truss
structures. In: AIAA/ASME/ASCE/AHS/ASC STRUC-
TURES, STRUCTURAL DYNAMICS, AND MATERI-
ALS CONFERENCE 51., 2010, Orlando. Proceesdings

[. . . ]. Reston: AIAA, 2010. p. 2611.

KOOHESTANI, K. A hybrid method for efficient solu-
tion of geometrically nonlinear structures. International

Journal of Solids and Structures, New York, v. 50, n. 1, p.
21-29, 2013.

KOU, J.; LI, Y.; WANG, X. A modification of Newton
method with third-order convergence. Applied Mathemat-

ics and Computation, New York, v. 181, n. 2, p. 1106-
1111, 2006.

KRENK, S.; HEDEDAL, O. A dual orthogonality proce-
dure for non-linear finite element equations. Computer

Methods in Applied Mechanics and Engineering, Amster-
dam, v. 123, n. 1-4, p. 95-107, 1995.

LEON, S. E.; PAULINO, G. H.; PEREIRA, A.,
MENEZES, I. F.; LAGES, E. N. A unified library of non-
linear solution schemes. Applied Mechanics Reviews, New
York, v. 64, n. 4, 2011.

MAHDAVI, S. H.; RAZAK, H. A.; SHOJAEE, S.; MAH-
DAVI, M. S. A comparative study on application of Cheby-
shev and spline methods for geometrically non-linear anal-
ysis of truss structures. International Journal of Mechani-

cal Sciences, New York, v. 101, p. 241-251, 2015.

MATIAS, W. T. El control variable de los desplazamientos
en el análisis no lineal elástico de estructuras de barras.
Revista internacional de métodos numéricos, Barcelona,
v. 18, n. 4, p. 549-572, 2002.

MAXIMIANO, D. P.; SILVA, A. R. D.; SILVEIRA, R.
A. M. Iterative strategies associated with the normal flow
technique on the nonlinear analysis of structural arches.
Rem: Revista Escola de Minas, Ouro Preto, v. 67, n. 2, p.
143-150, 2014.

MOHIT, M.; SHARIFI, Y.; TAVAKOLI, A. Geometrically
nonlinear analysis of space trusses using new iterative
techniques. Asian Journal of Civil Engineering, [London],
v. 21, n. 5, p. 785-795, 2020.

MUÑOZ, L. F. P.; ROEHL, D. A continuation method
with combined restrictions for nonlinear structure analysis.
Finite Elements in Analysis and Design, Amsterdam, v.
130, p. 53-64, 2017.

NOOR, M. A.; AHMAD, F.; JAVEED, S. Two-step itera-
tive methods for nonlinear equations. Applied mathemat-

ics and computation, New York, v. 181, n. 2, p. 1068-1075,
2006.

RABELO, J. M.; BECHO, J. S.; GRECO, M.; CIMINI
JR., C. A. Modeling the creep behavior of GRFP truss
structures with Positional Finite Element Method. Latin

American Journal of Solids and Structures, v. 15, n. 2, p.
1-18, 2018.

RAGON, S. A.; GÜRDAL, Z.; WATSON, L. T. A compar-
ison of three algorithms for tracing nonlinear equilibrium
paths of structural systems. International journal of solids

and structures, New York, v. 39, n. 3, p. 689-698, 2002.
39

Semina: Ciênc. Ex. Tech., Londrina, v. 43, n. 1Esp, p. 29-40, Jan./Dez. 2022



Souza, L. A. F..; Doná Junior, W.; Silva, E. L. C.

REZAIEE-PAJAND, M.; NASERIAN, R. Using residual
areas for geometrically nonlinear structural analysis.
Ocean Engineering, Elmsford, v. 105, p. 327-335, 2015.

RIKS, E. The application of newton’s method to the prob-
lem of elastic stability. Journal of Applied Mechanics,
New York, v. 39, p. 1060–1065, 1972.

SAFFARI, H.; MANSOURI, I. Non-linear analysis of
structures using two-point method. International Journal

of Non-Linear Mechanics, Amsterdam, v. 46, n. 6, p. 834-
840, 2011.

SAFFARI, H.; MIRZAI, N. M.; MANSOURI, I.;
BAGHERIPOUR, M. H. Efficient numerical method in
second-order inelastic analysis of space trusses. Journal

of computing in civil engineering, New York, v. 27, n. 2,
p. 129-138, 2013.

SCILAB. Version 6.1.1. France: ESI Group, 2021.

SOUZA, L. A. F.; CASTELANI, E. V.; SHIRABAYASHI,
W. V. I.; ALIANO FILHO, A.; MACHADO, R. D. Trusses
nonlinear problems solution with numerical methods of
cubic convergence order. TEMA, São Carlos, v. 19, p. 161-
179, 2018.

SOUZA, L. A. F.; CASTELANI, E. V.; SHIRABAYASHI,
W. V. I. Adaptation of the Newton-Raphson and Potra-Pták
methods for the solution of nonlinear systems. Semina:
Ciênc. Ex. Tech., Londrina, v. 42, n. 1, p. 63-74, Jan./Jun.
2021.

SOUZA, L. A. F.; SANTOS, D. F. D.; KAWAMOTO, R. Y.
M.; VANALLI, L. New fourth-order convergent algorithm
for analysis of trusses with material and geometric nonlin-
earities. The Journal of Strain Analysis for Engineering

Design, London, v. 57, n. 2, p. 104-115, 2021.

THAI, H. T.; KIM, S. E. Large deflection inelastic analysis
of space trusses using generalized displacement control
method. Journal of Constructional Steel Research, Lon-
don, v. 65, n. 10/11, p. 1987-1994, 2009.

TURCO, E.; BARCHIESI, E.; GIORGIO, I.;
DELL’ISOLA, F. A Lagrangian Hencky-type non-
linear model suitable for metamaterials design of
shearable and extensible slender deformable bodies
alternative to Timoshenko theory. International Journal

of Non-Linear Mechanics, Amsterdam, v. 123, p. 103481,
2020.

YAW L. L. 3D Co-rotational Truss Formulation. Walla
Walla: Walla Walla University, 2011.

WEMPNER, G. A. Discrete approximations related to
nonlinear theories of solids. International Journal of

Solids and Structures, New York, v. 7, n. 11, p. 1581-1599,
1971.

Received: May 2, 2022
Accepted: June 17, 2022

Published: June 26, 2022

40
Semina: Ciênc. Ex. Tech., Londrina, v. 43, n. 1Esp, p. 29-40, Jan./Dez. 2022


	Abstract
	Resumo
	

