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Numerical solutions for implicit differential equations with singularities

Soluções numéricas para equações diferenciais implícitas com
singularidades

Antonio Castelo1; Geovan Tavares2; Juliana Bertoco3

Abstract
In this paper we introduce a technique to deal with implicit differential equations exhibiting singularities.
Our approach is a geometrical one, we use the concept of contact structure on a manifold associated with
the differential equation. In this setting we prove an existence and uniqueness theorem. We also show how
it relates to known geometric results for this kind of equation. We also indicate how the method can be
implemented by using continuation methods techniques and the BDF (Backward Differentiation Formula).
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Resumo
Neste artigo apresentamos uma técnica para tratar com equações diferenciais implícitas exibindo singularida-
des. Nossa abordagem é geométrica e usamos o conceito de estrutura de contato em uma variedade associada
à equação diferencial. Neste contexto provamos um teorema de existência e unicidade. Também mostramos
como estas equações se relacionam com resultados geométricos conhecidos. Também indicamos como o
método pode ser implementado usando técnicas de métodos de continuação e métodos BDF (Fórmula de
Diferenciação Atrasada).
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Introduction

In this paper we consider the k-order implicit differen-
tial equation

F(X ,Y (X),Y ′(X), . . . ,Y (k)(X)) = 0, (1)

where F : Ω→ IRn is a sufficiently differentiable map from
the open set Ω ⊂ IR(k+1)n+1.

Implicit Differential Equations (IDE), also called
Differential-Algebraic Equations (DAE), have been the
subject of an increasing number of papers ranging from
numerical methods to theoretical aspects as well, applica-
tions. For general references on the subject see Brenan,
Campbell and Petzold (1989) for BDF based methods,
and Hairer and Wannes (1989) for Runge-Kutta methods.
They have been the most successful ones in dealing with
fixed index DAEs. Studies of boundary value problems
using collocations methods can be found in Ascher and
Petzold (1992).

From a geometric viewpoint (RHEINBOLDT, 1984),
devised an approach to locally reduce IDEs to ordinary
differential equations on manifolds. This approach was
explored later in Rabier and Rheinboldt (1991).

Concerning implicit ordinary differential equations
with singularities, Wasow (1965) presented asymptotic
expansions to study linear differential equations in
the complex domain, which are IDEs with singulari-
ties. For a single equation, Jepson and Spence (1984),
have combined geometric information with continua-
tion method techniques to understand singular points.
The general equation for the case of simple folds has
been treated in Rabier (1989) and bifurcation problems
for singular IDEs in semi-explicit form can be seen in
Sosen (1994).

Under the heading of contact structures the subject has
been pionereed by Darboux (1873) and revived by Thom
(1971). This approach has been further explored for the
case of a single equation by Davydov (1985) and Dara
(1975), by providing several normal forms to the equation.
For a general reference see Arnold (1988) and references
therein. In Freitas and Tavares (1991) and Feitas (1991) a
simplicial approach has been introduced to solve IDEs in
a contact structure environment.

Mainly in the 1990s, there was a lot of effort to develop
numerical methods and codes based on these numerical
methods to solve initial value problems for DAEs.

The main theories and numerical techniques can
be seen in books dedicated to solving initial value
problems of DAEs, as well as in more recent surveys.

Among them, we can highlight the books: Com-
puter Methods for Ordinary Differential Equations and
Differential-Algebraic Equations (ASCHER; PETZOLD,
1998), Numerical Solution of Initial-Value Problems
in Differential-Algebraic Equations (BRENAN; CAMP-
BELL; PETZOLD, 1996), Numerical Solving Ordinary
Differential Equations. II. Stiff and Differential-Algebraic
Problems (HAIRER; WANNER, 1996), Theoretical and
Numerical Analysis of Differential-Algebraic Equations
(RABIER; RHEINBOLDT, 2002), Differential-Algebraic
Equations Analysis and Numerical Solution (KUNKEL;
MEHRMANN, 2006) and Differential-Algebraic Systems:
Analytical Aspects and Circuit Applications (RIAZA,
2008).

The purpose of this paper is to present a new class of
solutions to initial value problems for DAEs that can be
more stable near some types of singularities and to present
a code, called GSDAE, that is efficient to solve DAEs
close to singularities.

The sections in this paper are as follows. In section
Basic Concepts we introduce the basic definitions, while
in section Existence and Uniqueness Theorems are the
main results of the paper: an existence and uniqueness
theorem for a generic class of fully implicit differential
equations. In section Singularities we identify the so-
lutions singularities. In section Numerical Method we
indicate an algorithm to solve the equation numerically;
in section Results we show the solution for a family of
implicit differential equations. Finally the section Con-
clusion we present the contributions of the paper and
conclusions.

Basic concepts

Definition 1. A map Y : I → IRn, I open interval, is

said to be a classical solution of equation (1) if Y ∈Ck(I )

and satisfies the equation (1).

Definition 2. The image of a map c : I → IR(k+1)n+1 is

said to be the general solution of equation (1) if c ∈C1(I)

and satisfies

F(c(s)) = 0
y1(s)x′(s)− y′0(s) = 0
y2(s)x′(s)− y′1(s) = 0

...

yk(s)x′(s)− y′k−1(s) = 0

(2)

for all s ∈ I, where c(s) = (x(s),y0(s),y1(s), . . . ,yk(s)).
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Implicit differential equations with singularities

Observe that if α : J → I is a C1-diffeomorfism and
c : I → IR(k+1)n+1 is of class C1 and satisfies (2) (c(I) is
a general solution of the equation (1)), then c ◦α : J →
IR(k+1)n+1 is also of class C1 and satisfies the equation (2)
((c◦α)(J) is a general solution of the equation (1)), but c

and c◦α have the same trace, that is c(I) = (c◦α)(J).

Lemma 1. Let be given a general solution of the equa-

tion (1) by the map c : I → IR(k+1)n+1. If x′(s) ̸= 0
in an interval I ⊂ I, then y0(s) = Y0(x(s)),y1(s) =
d
dxY0(x(s)), . . . , yk(s) = dk

dxk Y0(x(s)) on I and Y0 defined

in x(I ) is a classical solution of the equation (1).

Proof.
As x′(s) ̸= 0 in I ⊂ I, x(I ) is an interval and x is a

diffeomorfism from I into x(I ). Hence, Yi : x(I )→ IRn

with Yi(x(s)) = yi(s), i = 0,1, . . . ,k are C1 maps.
Then :

yi(s)x′(s) =y′i−1(s) =
di

dxi Y0(x(s))x′(s)⇒

yi(s) =
di

dxi Y0(x(s)) = Yi(x(s)), i = 1, . . . ,k.

Thus, Yi : x(I ) → IRn are Ck−i, i = 0,1, . . . ,k maps
and

F(x(s),Y0(x(s)),
d
dx

Y0(x(s)),
d2

dx2 Y0(x(s)), . . .

. . . ,
dk

dxk Y0(x(s))) =

= F(x(s),Y0(x(s)),Y1(x(s)),Y2(x(s)), . . . ,Yk(x(s))) =

= F(x(s),y0(s),y1(s),y2(s), . . . ,yk(s)) = 0.

Hence, Y0 is a classical solution of the equation (1) in
the set x(I ).

Definition 3. The initial value problem for equation (1)

is defined as:{
F(X ,Y (X),Y ′(X), . . . ,Y (k)(X)) = 0

Y (i)(x0) = ai, i = 0,1, . . . ,k,
(3)

where F(x0,a0,a1, . . . ,ak) = 0.

Definition 4. An ω-structure for the implicit differen-

tial equation (1) is a function ω : Ω → IRkn((k+1)n+1)

defined by

ω(x,y0,y1, . . . ,yk) =



ωk(x,y0,y1, . . . ,yk)

ωk−1(x,y0,y1, . . . ,yk)
...

ω2(x,y0,y1, . . . ,yk)

ω1(x,y0,y1, . . . ,yk)


=

=



yk 0 0 · · · 0 −In 0
yk−1 0 0 · · · −In 0 0

...
...

...
...

...
...

y2 0 −In · · · 0 0 0
y1 −In 0 · · · 0 0 0


.

With this ω-structure we can rewrite (2) in the form:{
F(c(s)) = 0
ω(c(s))c′(s) = 0

(4)

which we call a ω-system associated with equation (1).
The initial value problem for the differential system

(4), is then naturally defined as:
F(c(s)) = 0
ω(c(s))c′(s) = 0
c(0) = c0 = (x0,a0,a1, . . . ,ak),

(5)

with F(c0) = 0.
Differentiating the first equation in (5) with respect to

s and defining

A(c(s)) =

(
DF(c(s))

ω(c(s))

)
,

gives rise to the following initial value problem:

{
A(c(s))c′(s) = 0
c(0) = c0 = (x0,a0,a1, . . . ,ak),

(6)

with F(c0) = 0. We call (6) the differential system associ-
ated with equation (1).

Note that if k = 0, A(c(s)) = DF(c(s)). Also F

being of class C1 the two formulations above are
equivalent.

Existence and uniqueness theorems

In this section we use the concepts of ω-structure and
differential system introduced in the last section to prove
several existence and uniqueness theorems.

Theorem 1. If DF is Lipschitz in an open neighbour-

hood of c0 and A(c0) is of maximum rank, then there is

r > 0 such that the initial value problem (5) has a unique

solution on B = {u;∥ u− c0 ∥≤ r}.

Remark: The solution is unique in the sense that its trace
is unique.
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Proof.
Firstly we show that the equation (6) is equivalent to an

initial value problem for an ordinary differential equation
of the form :

{
c′(s) = τ(A(c(s)))

c(0) = c0,

and secondly we show that the equation (6) is equivalent
to equation (5).

As A(c0) has maximum rank, det(A(c0)At(c0)) ̸= 0.
But DF is a continuous function in an open neighbour-
hood U of c0, then det(A(u)At(u)) is also continuous in
U , hence there is an open set V ⊂ U of c0 such that
det(A(u)At(u)) ̸= 0 ( A(u) has maximum rank ) for all
u ∈V .

Let r > 0 be such that B = {u ∈ IR(k+1)n+1;
∥ u− c0 ∥≤ r} ⊂V .

As A(u) has maximum rank in B there is an unique
vector τ(A(u)) ∈ IRn+1 such that A(u)τ(A(u)) = 0,
∥ τ(A(u)) ∥= 1 and

det

(
A(u)

τ t(A(u))

)
> 0.

We shall show next that τ(A) is a locally Lipschitz
function with respect to A, for all A with maximum rank.

Let

f (A,τ) =

(
Aτ

(τ tτ −1)/2

)
and (A,τ),

A maximum rank, be the solution of f (A,τ) = 0. The
implicit function theorem implies that τ can be written as
a function of A, because

det( fτ(A,τ)) = det

(
A

τ t

)
̸= 0.

Furthermore

(
A

τ t

)−1

= (A+,τ) where A+ =

At(AAt)−1 is the Moore-Penrose inverse of A. Also A+(A)

is a continuous function of A.
Thus

τ
′(A) =− f−1

τ (A,τ) fA(A,τ) =

=−(A+,τ(A))



τ t(A) 0 · · · 0
0 τ t(A) · · · 0
...

...
. . .

...
0 0 · · · τ t(A)

0 0 · · · 0


is a continuous function of A.

It then follows that the initial value problem (6) is
equivalent, in the set B, to the system{

c′(s) = τ(A(c(s)))

c(0) = c0.
(7)

Since τ ′(A) is continuous, the set {A(v);v∈ B} is com-
pact and A(v) is Lipschitz in B, it follows that τ(A(v)) is
Lipschitz in B. Applying Picard theorem to equation (7)
we conclude that it has a unique solution defined in B.
Hence the equation (6) has also an unique solution in B,
in sense that the trace is unique.

In order to show that the equation (5) has a unique
solution in B, in sense that the trace is unique, one needs
to observe that every solution of the equation (6) is also
a solution of the equation (5) because DF(c(s))c′(s) = 0
implies that F(c(s)) is constant and as F(c0) = 0 we have
F(c(s)) = 0.

Corollary 1. If DF is Lipschitz in an open neighbour-

hood of (x0,a0,a1, . . . ,ak) and A(x0,a0,a1, . . . ,ak) has

maximum rank, then there is r > 0 such that the ini-

tial value problem (3) has a unique general solution in

B = {(X ,Y0, . . . ,Yk);∥ (Y,Y0, . . . ,Yk)− (x0,a0, . . . ,ak) ∥≤ r}.

Singularities

Definition 5. A point P0 is a singularity of the implicit

differential equation (1) if F(P0) = 0 and FY (k) is singular

at P0 but not in any neighborhood of P0.

Proposition 1. Let be given a general solution of equa-

tion (1) c : I → IRnk+1, c(s) = (x(s),y0(s), . . . ,yk(s)) with

c′(s0) ̸= 0, DF Lipchitz in a neighborhood of c(s0):

1) If x′(s0) = 0 then y′0(s0) = 0,. . .,y′k−1(s0) = 0,

y′k(s0) ̸= 0 and Fyk(c(s0)) is singular.

2) If A(c(s0)) is of maximal rank and Fyk(c(s0)) is sin-

gular then x′(s0) = 0, y′0(s0) = 0,. . .,y′k−1(s0) = 0,

y′k(s0) ̸= 0 and Fyk(c(s0)) has rank n−1.

Proof.
1) Suppose x′(s0) ̸= 0, and c a general solution of

equation (1). By the equation (2) we have y′0(s0) =

0,. . .,y′k−1(s0) = 0 but y′k(s0) ̸= 0 since c′(s0) ̸= 0.
Now

0 = Fx(c(s0))x′(s0)+Fy0(c(s0))y′0(s0)+ · · ·

· · ·+Fyk−1(c(s0))y′k−1(s0)+Fyk(c(s0))y′k(s0).

Thus Fyk(c(s0))y′k(s0) = 0, and Fyk(c(s0)) is
singular.
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2) Let P and Q be non singular matrices such
that

PFyk(c(s0))Q =

(
I 0
0 0

)
.

Let

Λ =


P

Q−1

. . .

Q−1

, Γ =


I

Q
. . .

Q

.

We have ΛA(c(s))ΓΓ−1c′(s) = 0. Thus B(c(s))d′(s) = 0,
where

B(c(s)) = ΛA(c(s))Γ =

=


PFx PFy0 Q · · · PFyk−1 Q PFyk Q

Q−1yk −I
...

Q−1y1 −I

=

=


PFx PFy0 Q · · · PFyk−1 Q

(
I 0
0 0

)
Q−1yk −I

...
Q−1y1 −I


and d′(s) = Γ−1c′(s).

Now for s= s0 the rank of B(c(s0)) is (k+1)n because
the rank of A(c(s0)) is maximal. Thus Fyk(c(s0)) has rank
n−1 and x′(s0) = 0,y′0(s0) = 0, . . . ,y′k−1(s0) = 0.

It follows from the last proposition that
x(s) = x(s0) + x′′(s0)

(s−s0)
2

2 + · · ·x(p)(s0)
(s−s0)

p

p! +

O((s − s0)
p+1). If x(i)(s0) = 0, i = 2, . . . , p − 1 and

x(p)(s0) ̸= 0, then the c(s) has a singularity of order p at
s0. If p = 2 then c(s) has a simple fold as a singularity.
By changing coordinates we can take x(s)− x(s0) = s2,
thus in the x,y0, . . . ,yk−1 domain we have two solu-
tions, one coming in and one going out of the point
(x(s0),y0(s0), . . . ,yk−1(s0)), which agrees with the result
of Rabier (1989).

Implicit differential equations with rank(Fyk)< n

If Fyk(c(s0)) is non singular then A(c(s0)) has maxi-
mum rank, for

(c(s0)) =
Fx(c(s0)) Fy0 (c(s0)) Fy1 (c(s0)) · · · Fyk−1 (c(s0)) Fyk (c(s0))

yk(s0) 0 0 · · · −I 0
...

...
...

...
...

y2(s0) 0 −I · · · 0 0
y1(s0) −I 0 · · · 0 0



Now, if Fyk(c(s0)) has rank n− 1, A(c(s0)) can still
have maximum rank since the vector


Fx(c(s0))

yk(s0)
...

y1(s0)


can recover the rank of A(c(s0)).

Proposition 2. If the rank of Fyk(c0) is less than or

equal to n − 1 in a neighborhood of c0,then there are

local changes of variables in the domain and in the

range of F, where we can write (1) in the following

form:

{
f (X ,W (X),Z(X), . . . ,W (k−1)(X),Z(k−1)(X),W (k)(X)) = 0

g(X ,W (X),Z(X), . . . ,W (k−1)(X),Z(k−1)(X)) = 0
(8)

where f : Ω → IRm, g : Ω → IRp are suficiently

differentiable maps defined in the open connected

set Ω ⊂ IR(k+1)m+kp+1 (n = m + p), with fW (k)

non-singular.

Proof.
It has been indicated in Brenan, Campbell and Petzold

(1989), but for the sake of competenness we repeat the
proof here. Suppose that the rank of FY (k) is m < n. We
can reorder both, equations and variables in (1), in such a
way that

FY (k) =

(
fW (k) fZ(k)

gW (k) gZ(k)

)
,

where Y = (W,Z), F = ( f ,g) and fW (k) is non singular
m×m matrix in a neighborhood of c0.

By the implicit function theorem, we can solve W (k)

with respect to X ,W,Z, . . . ,W (k−1), Z(k−1) in the equation
f = 0. By substituting W (k) in the equation g = 0, we have
a relation between W (k) and Z(k). The main observation
here is that Z(k) cannot be present in the equation g = 0
because if this is so the rank of FY (k) would be greater
than m. By the same argument Z(k) cannot be present in
the equation f = 0. Then we can rewrite equation (1) as
in the statement of the proposition.

For the equation (8), similar to previous definitions,
we can define classical and general solutions.

Definition 6. A map (W,Z) with W : I → IRm, Z :
I → IRp is said to be a classical solution of (8) if

W ∈ Ck and Z ∈ Ck−1 in I ⊂ IR and satisfies the

equation (8).
7
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Definition 7. The image of a map c : I → IR(k+1)m+kp+1

is said to be a general solution of equation (8) if c ∈C1 in

I ⊂ IR and satisfies

f (c(s)) = 0
g(c(s)) = 0
w1(s)x′(s)−w′

0(s) = 0
z1(s)x′(s)− z′0(s) = 0

...

wk−1(s)x′(s)−w′
k−2(s) = 0

zk−1(s)x′(s)− z′k−2(s) = 0
wk(s)x′(s)−w′

k−1(s) = 0

for all s ∈ I, where

c(s) = (x(s),w0(s),z0(s), . . . ,wk−1(s),zk−1(s),wk(s)).

The ω-structure is now defined by the
function ω : Ω → IRN and A : Ω → IRM ,
where N = (km+(k−1)p)((k+1)m+ kp+1)
and M = ((k+1)m+ kp)((k+1)m+ kp+1),
be defined as

ω(x,w0,z0, . . . ,wk−1,zk−1,wk) =

=



wk 0 0 0 0 · · · 0 0 −Im 0 0
zk−1 0 0 0 0 · · · 0 −Ip 0 0 0
wk−1 0 0 0 0 · · · −Im 0 0 0 0

...
...

...
...

...
...

...
...

...
...

z2 0 0 0 −Ip · · · 0 0 0 0 0
w2 0 0 −Im 0 · · · 0 0 0 0 0
z1 0 −Ip 0 0 · · · 0 0 0 0 0
w1 −Im 0 0 0 · · · 0 0 0 0 0


and

A(c(s)) =

 D f (c(s))

Dg(c(s))

ω(c(s))

 .

Then the following initial value problems
f (X ,W (X),Z(X), . . . ,W (k−1)(X),Z(k−1)(X),W (k)(X)) = 0

g(X ,W (X),Z(X), . . . ,W (k−1)(X),Z(k−1)(X)) = 0
W (i)(x0) = ai, i = 0,1, . . . ,k

Z(i)(x0) = bi, i = 0,1, . . . ,k−1,
(9)


f (c(s)) = 0
g(c(s)) = 0
ω(c(s))c′(s) = 0
c(0) = c0 = (x0,a0,b0, . . . ,ak−1,bk−1,ak),

(10)
and

A(c(s))c′(s) = 0
c(0) = c0 = (x0,a0,b0, . . . ,ak−1,bk−1,ak),

with f (c0) = 0 and g(c0) = 0, are respectively equivalent
to the equations (3), (5) and (6).

Lemma 2. Consider a general solution of (8) given

by c : I → IR(k+1)m+kp+1. If x′(s) ̸= 0 in an interval

I ⊂ I, then w0(s) = W0(x(s)),w1(s) = d
dxW0(x(s)), . . . ,

wk−1(s) = dk−1

dxk−1 W0(x(s)), wk(s) = dk

dxk W0(x(s)), z0(s) =

Z0(x(s)),z1(s)= d
dx Z0(x(s)), . . . , zk−1(s)= dk−1

dxk−1 Z0(x(s)),

in I and (W0,Z0) defined in x(I ) is a classical solution

of the equation (8).

Theorem 2. If D f and Dg are Lipschitz in an open neigh-

bourhood of c0 and A(c0) has maximum rank, then there

is r > 0 such that the initial value problem (10) has a

unique solution in B = {v;∥ v−c0 ∥≤ r} (unique solution

in the sense of unique trace).

Corollary 2. If D f and Dg are Lipschitz in an

open neighbourhood of (x0,a0,b0, . . . ,ak−1,bk−1,ak)

and A(x0,a0,b0, . . . ,ak−1,bk−1,ak) has maximum

rank, then there is r > 0 such that the initial

value problem (9) has a unique general solution in

B = {(X ,W0,Z0, . . . ,Wk−1,Zk−1,Wk);∥ (X ,W0,Z0, . . . ,

Wk−1,Zk−1,Wk)− (x0,a0,b0, . . . ,ak−1,bk−1,ak) ∥≤ r}.

The proofs of Lemma 2, Theorem 2 and Corollary 2
follow those of Lemma 1, Theorem 1 and Corollary 1
closely and will thus be omitted.

Definition 8. A point P0 is a singularity of the implicit

differential equation (8) if f (P0) = 0, g(P0) = 0 and

gZk−1 is singular at P0 but not in any neighborhood

of P0.

Proposition 3. Let be given a general solu-

tion of the equation (8) c : I → IR(k+1)m+kp+1,

c(s) = (x(s),w0(s),z0(s), . . . , wk−1(s),zk−1(s),wk(s))

with c′(s0) ̸= 0, D f and Dg Lipcshitz in a neighborhood

of c(s0):

1) If x′(s0) = 0 then w′
0(s0) = 0, z′0(s0) = 0, . . .,

w′
k−1(s0) = 0, z′k−1(s0) = 0, w′

k(s0) ̸= 0 and

gzk−1(c(s0)) is singular.

2) If A(c(s0)) is of maximal rank and gzk−1(c(s0)) is

singular then x′(s0) = 0, w′
0(s0) = 0, z′0(s0) = 0,

. . . =, w′
k−1(s0) = 0, z′k−1(s0) = 0, w′

k(s0) ̸= 0 and

gzk−1(c(s0)) has rank p−1.

Noting that if

(
A B

C 0

)
is of maximal rank and B is

nonsingular then C is of maximal rank, the proof of the
proposition follows in a similar manner to the one given
in Proposition 1.
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Examples

Example 1. Let{
X2 +(Y (X))2 = 1

Y (x0) = y0

where y0 > 0 and x2
0 + y2

0 = 1.

The classical solution of this equation is
Y (X) = (1−X2)

1
2 for −1 < X < 1 and {(−1,0),(1,0)}

is the set of singularities. The associated
ω-system is


y2

0(s)+ x2(s) = 1

x(0) = x0

y0(0) = y0

and the general solution is given by c(s) = (cos(s +

s0),sin(s+s0)), x0 = cos(s0) and y0 = sin(s0)), for −π <

s ≤ π . Since x′(−s0) = x′(π − s0) = 0 and c(0) = (x0,y0)

we have that c(s) = (X ,Y (X)) for −s0 < s < π − s0.
See Figure 1.

Figure 1 – Example 1: General and classical solutions.

Y

X

x

y

Source: The authors.

Example 2. Let
(Y ′(X))2 = Y (X)

Y (x0) = y0

Y ′(x0) = z0

where x0 > 0, y0 > 0, z0 > 0 and z2
0 = y0.

One of the classical solutions of this
equation is Y (X) = ((X − x0)/2 + y1/2

0 )2 for
X ∈ IR and the set of singularities is {(X ,0) ; X ∈ IR}.

The associated ω-system is



y2
1(s)− y0(s) = 0

y1(s)x′(s)− y′0(s) = 0
x(0) = x0

y0(0) = y0

y1(0) = z0

and one of the the general solution is given by

c(s) = (s+ x0,(s/2+ y1/2
0 )2,s/2+ y1/2

0 ),

for s ∈ IR. As x′(s) = 1 ̸= 0 we have that
c(s) = (X ,Y (X),Y ′(X)). See Figure 2.

Figure 2 – Example 2: General and classical solutions.

Y

X

x

y

z

Source: The authors.

Note that the assumption of maximum rank im-
posed on A(c0) is essential as can be seen from this
example.

In this example

A(c(s)) =

(
0 −1 2y1(s)

y1(s) −1 0

)

does not have maximum rank when y1(s) = 0 and if
c0 = (x0,0,0) then example has many general solu-
tions, two of then are given by c(s) = (s+ x0,0,0) and
c(s) = (s+ x0,s2/4,s/2).

Example 3. Let 
(Y ′(X))2 = X

Y (x0) = y0

Y ′(x0) = z0

where x0 > 0, y0 > 0, z0 > 0 and z2
0 = x0.
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The classical solution of this equation is
Y (X) = y0 + 2

3 (X
3/2 − x3/2

0 ) for X > 0 and
{(0,Y ); Y ∈ IR} is the set of singularities. The as-
sociated ω-system is

y2
1(s)− x(s) = 0

y1(s)x′(s)− y′0(s) = 0

x(0) = x0

y0(0) = y0

y1(0) = z0

and the general solution is given by
c(s) = ((s + x1/2

0 )2,y0 +
2
3 ((s + x1/2

0 )3 − x3/2
0 ),s + x1/2

0 )

for s ∈ IR. Again as x′(−x1/2
0 ) = 0 and c(0) = (x0,y0,z0)

we have that c(s) = (X ,Y (X),Y ′(X)) for s > −x1/2
0 . See

Figure 3.

Figure 3 – Example 3: General and classical solutions.

Y

X

x

y

z

Source: The authors.

In the example above

A(c(s)) =

(
−1 0 2y1(s)

y1(s) −1 0

)
has maximum rank even in the case that

Fy1(c(s)) = 2y1(s) = 0.

Numerical method

Numerical approaches for the solution of DAEs can
be divided into roughly two classes: direct discretizations
of the given system and methods which involve a reformu-
lation combined with a discretization.

The desire for the most direct discretization possible
arises because a redesign can be expensive and may re-
quire more user intervention. The reason for the popularity
of reformulation approaches is that, as it turns out, direct

discretizations are limited in their usefulness essentially
to special DAE systems.

Many DAEs encountered in practical applications are
index-1 or, if higher-index, can be expressed as a sim-
ple combination of Hessenberg systems. However, some
worse-case difficulties may occur. The most robust direct
applications of numerical ODE methods do not always
work as one might hope, even for these restricted classes
of problems.

Many codes emerged, mainly in the 90s, to solve initial
value problems for DAEs (classic solutions). Among them
we can mention the main codes:

• The code IDA is a part of the software
package called SUNDIALS (SUite of Nonlin-
ear and DIfferential/ALgebraic equation Solvers)
which was developed by Serban, Hindmarsh and
Cvodes (2005) at Lawrence Livermore National
Laboratory, USA.

• The code RADAU5 by Hairer and Wannes (1996) is
based on the 3-stage Radau collocation method.

• The code DASSL by Petzold (1982a) uses the BDF
formulas to solve general index-1 DAEs, see Brenan,
Campbell and Petzold (1996) for details.

• DAEPACK is a software library developed by
Tolsma, Barton and Daepack (2000) and his group
at MIT. DAEPACK is an acronym for Differential-
Algebraic Equation Package.

• MEXX by Luvbich et al. (1992).

• LIMEX by Deuflhard, Hairer and Zugck (1987).

• GELDA and GENDA by Kunkel, Mehrmann and
Weickert (1997) and Kunkel, Mehrmann and Seufer
(2002), respectively.

Our focus is the description of an algorithm using
continuation methods techniques combined with BDF
methods to solve initial value problems (general solutions)
for DAEs.

GSDAE is a code developed in C to obtain approxima-
tions of classic solutions (CSDAE routine) or general so-
lutions (GSDAE routine) of DAE of any order (including
order 0, which is a purely algebraic equation) in the form
of implicit or in the semi-implicit form. The source code
can be found at <https://github.com/antoniocastelofilho/
GSDAE-CODE>.
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Implicit differential equations with singularities

It uses the explicit Euler method defined as an
initializer, since c′(0) is not given as a condition initial,
and the BDF method.

The strategies and methods used in the GSDAE are
based on those of the DASSL (PETZOLD, 1982b) code
for prediction, correction, and size control of step and
order. Only when instability has detected the method and
restarted using the linear multiple-step method again be-
cause close to a singularity, the explicit Euler method
with step small provides a better approximation than the
predictor polynomial.

The strategy of integration with the BDF method is that
of fixed principal coefficients (BRENAN; CAMPBELL;
PETZOLD, 1989; JACKSON; STAKS-DAVIS, 1980),
which is an extension of the BDF method for variable
steps. The idea of the strategy of fixed main coefficients
and to apply the BDF method with step constant in the
polynomial that interpolates the solution in the last k steps
(k = 1, . . . ,5).

Below we describe the main strategies of the
GSDAE.

We will solve for the general solution of the equation
(5) by solving numerically the initial value problem is
given in (7).

Let the equation

r

∑
i=0

αicn−i −hβiτ(A(cn−i)) = 0. (11)

to evaluate τ we consider the QR-decomposition

At = Q

(
R

0t

)
. It gives τ(A) = ± z, where z is

the last column of the matrix Q, since ∥ z ∥= 1,

Az = (Rt 0)Qtz = (Rt 0)


0
...
0
1

= 0 and det

(
A

zt

)
=

det (At z) = detQ detR.
The computational cost of this decomposition is ap-

proximately 2
3 (n(k+1))3, which can be lowered, by look-

ing at the expression for ω , and writing

y1(s)τx − τy0 = 0 ⇒ τy0 = y1(s)τx

y2(s)τx − τy1 = 0 ⇒ τy1 = y2(s)τx
...

...
yk(s)τx − τyk−1 = 0 ⇒ τyk−1 = yk(s)τx

(12)
where τ = (τx,τy0 , . . . ,τyk).

Substituting in DF(c(s))τ = 0, we have

B(c(s))ψ =
(
Fx +Fy0y1 + · · ·+Fyk−1yk Fyk

)( τx

τyk

)
= 0.

Similarly we can obtain ψ =

(
τx

τyk

)
, using a QR-

decomposition for Bt with an approximate computational
cost 2

3 n3. Thus, we can use the relations in the equation
(12) to obtain τ .

This numerical scheme in the equation (11) can be
used as a predictor/initializer method.

For the corrector step a BDF method can be used in
equation (5):  F(cn) = 0

ω(cn)
ρcn

h
= 0

(13)

where ρcn = ∑
r
i=0 γicn−i, with γ0 = 1. To obtain cn, a

Newton type method for indeterminate systems is used;
for this the derivative of the equation (13) has to be ob-
tained and it has to be of maximal rank.

A modified Newton method for the equation (13) is
given by

ci+1
n = ci

n −DG+(c0
n)G(ci

n),

where

G(cn) =

 F(cn)

ω(cn)
ρcn

h

 .

By writing ρcn = cn +Cn, cn = (xn,y0,n, . . . ,yk,n) and
Cn = (Cxn ,Cy0,n , . . . ,Cyk,n), DG(cn) is given by

DG(cn) =

=


Fx Fy0 Fy1 Fy2 · · · Fyk−1 Fyk

y1,n −I xn +Cxn 0 · · · 0 0
y2,n 0 −I xn +Cxn · · · 0 0

...
...

...
. . .

. . .
...

...
yk−1,n 0 0 0 · · · xn +Cxn 0
yk,n 0 0 0 · · · −I xn +Cxn

 .

We have DG(cn) = A(cn)+E(cn), where

E(cn) =

=


0 0 0 0 · · · 0 0
0 0 xn +Cxn 0 · · · 0 0
0 0 0 xn +Cxn · · · 0 0
...

...
...

. . .
. . .

...
...

0 0 0 0 · · · xn +Cxn 0
0 0 0 0 · · · 0 xn +Cxn

 .

11
Semina: Ciênc. Ex. Tech., Londrina, v. 43, n. 1Esp, p. 3-16, Jan./Dez. 2022



Castelo, A.; Tavares, G.; Bertoco, J.

Since ρx(sn) = hx′(sn)+O(hr+1) for cn−i = c(sn−i),

i = 0,1, . . . ,r, we have ∥ E(c(sn)) ∥= O(h). If h is suffi-

ciently small such that

∥ A+(c(sn)) ∥∥ E(c(sn)) ∥< 1.

It follows that DG(c(sn)) is of maximal rank, see Allgo-
wer and Georg (1990).

To compute v = D+u, we can take a QR-

decomposition of Dt :

Dt = Q

(
R

0t

)
.

Thus

D+ = Dt(DtD)−1 = Q

(
R−t

0t

)
.

It follows

v = Q

(
w

0

)
,

where Rtw = u.

The computational cost for the modified Newton is
approximatelly 2

3 (n(k + 1))3 + j(n(k + 1))2, where j is
the number of iterations.

The computational cost can be optimized looking
again into the expression for ω , since ω(cn)

ρcn

h
= 0 is

written as

y1,n(xn +Cxn)−(y0,n +Cy0,n) = 0 ⇒

⇒ y0,n = y1,n(xn +Cxn)−Cy0,n

y2,n(xn +Cxn)−(y1,n +Cy1,n) = 0 ⇒

⇒ y1,n = y2,n(xn +Cxn)−Cy1,n

...

yk,n(xn +Cxn)−(yk−1,n +Cyk−1,n) = 0 ⇒

⇒ yk−1,n = yk,n(xn +Cxn)−Cyk−1,n

or

yi,n = yk,n(xn +Cxn)
k−i −∑

k−1−i
j=0 Cyi+ j,n(xn +Cxn)

j,

i = 0,1, . . . ,k−1.
(14)

Thus, from the first equation in (13) we have

H(xn,yk,n) =

= F(xn,y0,n, . . . ,yk−1,n,yk,n) = F(xn,yk,n(xn +Cxn)
k−

−
k−1

∑
j=0

Cy j,n(xn +Cxn)
j, . . . ,yk,n(xn +Cxn)

−Cyk−1,n ,yk,n) = 0.

To compute cn we solve H(xn,yk,n) = 0, with a com-
putational cost given approximately by 2

3 n3 + jn2, where
j is the number of iterations in the modified Newton’s
method. From this we obtain cn using the relations given
in the equation (14).

Results

Let a family of implicit differential equation


λY ′2 +Y 2 +X2 = 1
Y (x0) = y0

Y ′(x0) = z0.

This family for λ = 0 is a purely algebraic equation and
for λ ̸= 0, these DAE contain transverse singularities at
y′ = 0.

Case 1: Let λ = 0.0, x0 = 1.0, y0 = 0.0 e z0 = 0.0.
We have a purely algebraic equation. The GSDAE
code is able to solve this type of equation. Results for
the plans s× x and x× y are shown in the Figures 4(a)
and(b) respectively.

Figure 4 – Case 1: (a) s× x plane, (b) x× y plane

(a)

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
s

-1.0

-0.5

0.0

0.5

1.0

x

λ = 0.0

(b)

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

λ = 0.0

Source: The authors.
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Case 2: Let λ =−1.0, x0 = 1.0, y0 = 0.0 and z0 = 0.0.
The results for the plans s× x, x× y, x× y′ and y× y′,
are shown in Figure 5 items (a)-(d) respectively. Item
(b) shows the point where a transversal singularity
occurs (red circle).

Figure 5 – Case 2: (a) displays the plan s× x; (b) shows
the x× y plan, in (c) we have the x× y′ plan and in (d) the
y× y′ plan.

(a)

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
s

1.0

1.5

2.0

2.5

x

λ  = −1.0

(b)

1.0 1.5 2.0 2.5
x

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

y

λ = −1.0

Singularity

(c)

1.0 1.5 2.0 2.5
x

-4.0

-2.0

0.0

2.0

4.0

y
’

λ = −1.0

(d)

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
y

-4.0

-2.0

0.0

2.0

4.0

y
’

λ = −1.0

Source: The authors.

Case 3: Let λ = 1.0, x0 = 1.0, y0 = 0.0 and z0 = 0.0
be. The results of this simulation are shown in items
(a)-(d) of Figure 6 for the same planes as in Case 2.
Note that transversal singularities are highlighted in
item (b) (red circles).

Figure 6 – Case 3: (a) displays the plan s×x and in (b) we
have the plan x× y and in the item (c) we have the plans
x× y. In (d) we have, the plan y× y′.

(a)

-3.0 -1.5 0.0 1.5 3.5
s

-0.3

0.0

0.3

0.6

0.9

x

λ = 1.0

(b)

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

λ = 1.0

Singularities

(c)

-1.0 -0.5 0.0 0.5 1.5
x

-1.0

-0.5

0.0

0.5

1.5

y
’ 

-1.0 -0.5 0.0 0.5 1.5

-1.0

-0.5

0.0

0.5

1.5 λ = 1.0

(d)

-1.0 -0.5 0.0 0.5 1.5
y

-1.0

-0.5

0.0

0.5

1.5

y
’ 

-1.0 -0.5 0.0 0.5 1.5

-1.0

-0.5

0.0

0.5

1.5 λ = 1.0

Source: The authors.
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Case 4: Let λ = 1.0, x0 = 0.0, y0 = 0.0 and z0 =−1.0.
The plans s× x, x× y, y× y′ and x× y′ are shown in
items (a)-(d) in Figure 7. Details with the singularities
are shown in the item (b) (red circles). In the Figure 8
is show the magnification region of singularities to the
plane x× y′.

Figure 7 – Case 4: Figures (a)− (d) show the plans s×x,
x× y, y× y′ and x× y′, respectively.

(a)

-3.0 -1.5 0.0 1.5 3.0
s

-1.0

-0.5

0.0

0.5

1.0

x

λ = 1.0

(b)

-1.0 -0.5 0.0 0.5 1.0
x

-1.0

-0.5

0.0

0.5

1.0

y

λ = 1.0

Singularities

(c)

-1.0 -0.5 0.0 0.5 1.5
y

-1.0

-0.5

0.0

0.5

1.5

y
’ 

-1.0 -0.5 0.0 0.5 1.5

-1.0

-0.5

0.0

0.5

1.5 λ = 1.0

(d)

-1.0 -0.5 0.0 0.5 1.5
x

-1.0

-0.5

0.0

0.5

1.5

y
’ 

-1.0 -0.5 0.0 0.5 1.5

-1.0

-0.5

0.0

0.5

1.5 λ = 1.0

Source: The authors.

Figure 8 – Case 4: Zooming the plane x× y′ around the
non-transverse singularity.

λ = 1.0

Source: The authors.

Conclusion

This work presents the solution of implicit differential
equations with singularities. After presenting the basic
concepts, we define the main theorems and show their
proof. Some examples of classical differential equations
with singularities were presented. In the section on imple-
mentation, we present the GSDAE code developed in C
language that obtains approximations of the solutions for
both classical and general solutions. Also, in the imple-
mentation section, we provide the link with the code and a
manual for using the program, containing examples of its
use. Finally, the results section shows four cases and their
respective solutions for a family of implicit differential
equations.

We believe that this work contributes to implicit dif-
ferential equations and numerical methods; since the
code provided is simple to use but very useful to solve
differential-algebraic equations.
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