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Inversion of velocity models using genetic algorithm method with
sigmoidal parameterization

Inversão de campos de velocidade usando o algoritmo genético com
parametrização sigmoidal

Juarez dos Santos Azevedo1; Lucas Farias Palma2

Abstract
A seismic traveltime inversion method is proposed for building smooth velocity models using traveltime
observed on irregular surface. Model parameterization in this study is described by a piecewise constant
velocity field on a rectangular grid parameterized by sigmodal functions, which is beneficial for the description
of irregular surface with high degree of approximation. The velocity field is defined in the rectangular grid
which is used for the description of velocity distribution everywhere in the model sigmoidal interpolation. In
addition, we use the simple Genetic Algorithm for the inversion procedure. Through this global scope inversion
method, we provide high-resolution estimates of the model parameter and ensure that the results obtained
are in accordance with the actual data. Our method is validated with synthetic examples of heterogeneous
isotropic media and compared to Simulating Annealing. The inverted velocity models and approximate
ray paths obtained coincide well with the trajectories simulated using the seismic ray tracing in synthetic
heterogeneous isotropic media.

Keywords: seismic Inversion; genetic algorithm; ray tracing; sigmoidal functions; velocity field
parameterization.

Resumo
Um método de inversão do tempo de trânsito sísmico é proposto para a estimativa de modelos de velocidades
suaves usando o tempo de trânsito observado em superfícies irregulares. A parametrização do modelo neste
estudo é descrita por um conjunto de blocos baseado na parametrização por funções sigmoidais de campos
de velocidades descontínuos, o que é benéfico para a descrição de superfícies irregulares com alto grau de
aproximação. O campo de velocidade é definido na forma de malha retangular que é usado para a descrição
da distribuição de velocidades em toda a interpolação sigmoidal do modelo. Além disso, usamos o simples
Algoritmo Genético (escopo global) para o procedimento de inversão. Por meio desse método de inversão,
fornecemos estimativas de alta resolução dos parâmetros do modelo e garantimos que os resultados obtidos
estejam de acordo com os dados reais. Nosso método é validado com exemplos sintéticos de meios isotrópicos
heterogêneos e comparados com o Simulating Annealing. Os modelos de velocidade invertida e as trajetórias
aproximadas dos raios obtidos coincidem bem com trajetórias simuladas em meios isotrópicos heterogêneos
sintéticos.

Palavras-chave: Inversão sísmica; algoritmo genético; traçamento de raios; funções sigmoidais; parametriza-
ção de campos de velocidades.
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Introduction

The imaging of subsurface structures to obtain in-
formation on stratigraphic features and structures in
geological fields requires the determination of the
field of propagation velocities of the seismic waves
at each subsurface position. Obtaining this velocity
field has been constantly researched in the applied geo-
physical and represents a crucial part of techniques,
such as: seismic tomography (BOZDAĞ; TRAMPERT;
TROMP, 2011; CERQUEIRA; FIGUEIRÓ; CUNHA,
2016; RAWLINSON et al., 2014), seismic migration
(MENKE, 2012), full waveform inversion (DATTA; SEN,
2016; JIN; CAO; YIN, 2020; SAJEVA et al., 2016),
ray tracing (HANYGA; SEREDYŃSKA, 2020), and
among others (ELY; MALCOLM; POLIANNIKOV, 2018;
MOLLEHUARA-CANALES et al., 2021; STUART;
MINKOFF; PEREIRA, 2019).

The main goal of this paper is to combine a ge-
netic algorithm (GA) with a nonlinear inversion scheme
using a sigmoidal parameterization to develop velocity
fields through ray tracing. By joining GA global scheme
and ray tracing, we intend to (i) estimate a good ini-
tial model of the velocity field by inversion and (ii)
understand the dependence of GA with sigmoidal pa-
rameterization. Both techniques has been widespread
in literature (DOCHERTY et al., 1997; FERREIRA;
PORSANI; OLIVEIRA, 2003; REZAIE, 2020; SAM-
BRIDGE; DRIJKONINGEN, 1992) and will be used
to determine the velocity field coefficients given by the
sigmoidal parameterization making this work a novelty.
This methodology is useful since it can be applied to
any set of traveltimes where forward modeling is ef-
fective, regardless of the model geometry or data set
to be used. Recently the forward problem of discon-
tinuous velocity fields by sigmoidal parameterization
was used by Oliveira et al. (2021). This strategy al-
lows sharp variations of the velocity model without ne-
glecting continuity, besides it does not need domain
decomposition.

The parameterization of the model performed here
is done using rectangular elements. Regardless of mesh
type, this kind of parameterization has good adjusta-
bility in the discontinuous model since its approxi-
mation strongly depends on the sigmoidal parameter,
which requires no additional computational cost, espe-
cially for complex models whose difficulty in repre-
senting the discontinuity with a fine mesh is inherent.

To use the inversion methodology, we first obtain the ob-
served synthetic data through the forward problem and
then the inversion is performed in order to obtain a model
as close as possible to the target model.

In forward problem, the work consisted of the arti-
ficial generation of synthetic profiles of traveltimes. To
this end, we calculate the traveltimes of the first arrival
of compressional waves from a source and record them
on strategically positioned surface receivers. To obtain
these times, seismic ray tracing was used, computationally
simulating the propagation of waves in an isotropic and
heterogeneous geological environment represented by the
parameterized velocity fields. In this case, the ray trajec-
tories through the model are traced with a take-off angle
uniformly distributed in a given interval from a single
surface source. Traveltimes are calculated on such ray
trajectories.

In the inverse problem, we use the genetic algorithm
to estimate the parameters of the models that best suit
the synthetic data of traveltime, i.e, that minimize the
difference between the observed synthetic data and the
computed data in the current models of the iterative pro-
cess. Also at this stage, the quality of the results and the
application of the inversion method itself were analyzed
and discussed.

Here is an outline of the paper. First section, we intro-
duce parameterization by sigmoidal functions. In second
section, we present a brief summary of the theoreti-
cal foundations of ray tracing and the calculation of
traveltimes. The third section describes the implemen-
tation of the GA, while in the last section we dis-
cuss the results from three numerical examples, com-
paring them with the Simulated Annealing method
(SEN; STOFFA, 2013).

Model parameterization

In order to parameterize the velocity field, we describe
a seismic model as an aggregate of arbitrarily shaped cells
separated by smoothed interfaces. These cells are provided
with different geologic attributes, and their structure is
interpolated through sigmoidal functions. The velocities
between different interfaces are pieced together by a series
of the sigmodal functions involving rectangular cells
can be used to simulate the field on a complicated velocity
distribution of a n-dimensional media.

In this sense, following the notation of Oliveira et al.
(2021) we approximate the one-dimensional velocity field
v(z) as follows:

18
Semina: Ciênc. Ex. Tech., Londrina, v. 43, n. 1Esp, p. 17-28, Jan./Dez. 2022



Inversion of velocity models using genetic algorithm method with sigmoidal parameterization
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∑
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1
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and a represents the parameter that controls the transition
between plateaus, which may be smooth or sharp if a is
small or large, respectively.

We can make an extension of equation (1) in
rectangular domain [0,Lx] × [0,Lz] with grid points
(xm,zn) = (mhx,nhz), 0≤ m≤ Nx and 0≤ n≤ Nz as fol-
low:
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The above expansion can be approximated as:
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(4)

where (x,z) ∈ [xm,xm+1]× [zn,zn+1] and the summation
limits may be modified to guarantee 0≤ m+ i≤ Nx and
0≤ n+ j ≤ Nz.

Note that the parameterization involving rectangular
meshes is very flexible for modeling the interfaces.
Beyond that, each of the blocks is treated as a ho-
mogeneous medium in which the raypath is a straight
line.

Ray tracing in heterogeneous models

According to Fermat’s Principle (ČERVENÝ, 2001),
the trajectory from source A to receiver B on two-
dimensional is considered to traversed by the wave is
such that the traveltime of the wave propagation is a
minimum. This traveltime through of the velocity model
V can be calculated using the line integral equation
given by

TAB =
∫

lAB

1
V (l)

dl (5)

where V (l) is the (unknown) local velocity along
(the unknown) actual ray path lAB between A and
B, which is calculated numerically by the following
equation:

TAB =
N

∑
i=0

∆Ti =
N

∑
i=0

1
Vi
∥xi+1−xi∥2 (6)

such that Vi represents the wave velocity at position
xi = (xi,zi). Therefore, traveltime is a linear combination
of reciprocal of velocity.

The ray tracing method derives from the particular
solution of the following system of ray equations:

dx
ds

=
1
|p|

p,

dp
ds

= ∇⃗

(
1

v(x)

)
,

dT
ds

=
1

v(x)
,

(7)

where x(s) denotes the position of the ray trajectory, while
p(s) represents the slowness vector parameterized by the
arc length s along the ray. The vector is tangent to the
path of the ray at the point in isotropic media and or-
thogonal to the wavefront, satisfying the eikonal equation
|p|2 = 1/v2(x). We can rewrite equation (7) in matricial
form as

dy
ds

= f(s,y), (8)

where y = [x,p,T ] and f = [p/|p|,−(1/v2)∇v,1/v]. We
discretize equation (8) using the fourth-order Runge-Kutta
method with step length ∆s, i.e., we consider y(n∆s)≈ yn,
where

yn+1 = yn +
1
6
(k1 +2k2 +2k3 +k4), (9)



k1 = ∆sf(sn,yn),

k2 = ∆sf(sn +
1
2 ∆s,yn +

1
2 k1),

k3 = ∆sf(sn +
1
2 ∆s,yn +

1
2 k2),

k4 = ∆sf(sn +∆s,yn +k3).

(10)

After implementing and applying equation (10) over
a parameterized velocity field, a polygonal trajectory is
obtained that describes the path of the seismic ray. Within
the iterative procedure of the Runge-Kutta method, the
slowness vector, satisfying the eikonal equation, is always
updated during the generation of segments, piece by piece,
of the seismic trace. This same trace begins at x0 with
a prescribed take-off direction, which defines the initial
slowness p0, and set T0 = 0. The path of the ray tends
to bend as it encounters velocity variations, so that when
starting from the source located on the surface, it travels a
path in the subsurface and finds the receivers.
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Traveltimes inversion procedure

In order to introduce seismic inversion in the traveltime
calculation, we first consider a model vector m written as

m = (m1,m2,m3, . . . ,mL)
T , (11)

and vector dobs = (d1,d2,d3, . . . ,dK)
T , associated with the

following expression

e(m) = dobs−g(m) = dobs−dcal .

Vectors dobs and dcal are the observed and calculated data
on model m, defined as

dobs = (Tobs(θ1),Tobs(θ2), . . . ,Tobs(θNr))
T ,

dcal(m) = (T [m](θ1),T [m](θ2), . . . ,T [m](θNr))
T ,
(12)

where Tobs(θi) and T [m](θi) are the observed and cal-
culated traveltime respectively, for the ray with take-off
angle θi, while Nr is the number of rays that reach the
surface in both cases. In order to compare the calculated
data with the observed data we use the objective function
defined in L2-norm by

Mis f it(m) =

[
1
Nr

Nr

∑
i=1

[(
T [m](θi)−Tobs(θi)

Tobs(θi)

)2

+

(
x(θi)− xobs(θi)

xobs(θi)

)2
]]1/2

.

(13)

The values that minimize equation (13) are computed
using the genetic algorithm.

Overview of genetic algorithms

We are particularly interested in optimizing the objec-
tive function Mis f it defined by equation (13) aiming to ob-
tain the velocity field m. In this case, an initial population
is generated considering the limits of each parameter to
be studied in the model. These parameters are usually
encoded in binary strings, where each bit corresponds to
a "gene" and each individual pattern in the population is
described by its bit sequence or "chromosome". Conven-
tionally, the chromosomes in an GA have a fixed length
or scale. So when all bits are zero, the minimum value
of the parameter is assumed, and when all bits are 1, the
maximum value is assumed.

When GA optimization is initialized by random choice
of parameters, the initial models with binary coding are
then progressively optimized, maximizing the fitness func-
tion using the three biological evolutionary processes of

selection, crossover and mutation until the best model ad-
justment is obtained. One of the characteristics of GA is its
ability to work on a population of models simultaneously.

In "selection", the parameters are chosen according
to their objective function values. In this step, we use the
criterion of stochastic universal sampling (SUS) to select
potentially useful parameters for recombination. Then,
the crossover process is performed, where the selected
models are paired and information is exchanged between
each individual pair based on a probability. The crossover
process was employed by the scattered technique, which
consists of creating a random binary vector and selecting
the genes where the digit 1 is from the first parent, and
the genes where the digit 0 is from the second parent,
and combining the genes to form a child. Finally, the
"mutation" procedure adds noise from a Gaussian distri-
bution with mean 0 to each entry of the parent vector to
all parameters with low probability. The mutation helps
to randomly change the position within the binary chain
with some probability, preventing premature convergence.
The mutation probability must be very low, otherwise the
current good models will likely be destroyed. At the end of
the mutation stage, the proposed new generations are ac-
cepted or rejected based on the Metropolis-Hastings rule,
which is followed by the next cycle of genetic operations
until some convergence measure is satisfied (HAJIAN;
STYLES, 2018; SAMBRIDGE; MOSEGAARD, 2002).
In Algorithm 1 we present a brief summary of the GA
scheme in rectangular domain.

Below, we describe some advantages and disadvan-
tages of the genetic algorithm:

Advantages:

1. The GA does not use local information, so it is not
necessarily locked into local optima like gradient
method.

2. Its performance is not affected by discontinuities
in the function or its derivatives. The GA does
not use derivative information in its evolution, so
it does not need information from the gradients
of the objective function surface to perform the
search. This makes it very suitable for functions with
discontinuities or for which we cannot calculate the
derivative;

3. It is easy to implement and provides greater flexibility
in dealing with the model problem;

Disadvantages:

1. Requires a large number of samples.
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Algorithm 1: GA scheme
Input:
Initialize chain by sampling from prior m(0) = (m(0)

1 , . . . ,m(0)
L )T ∼U(0,1) and crossover probability pc;

m← [v−1,−1, . . . ,vNx,Nz ];

for k ∈ {1, . . . ,N} do
Gn(t)← G0,n

√
yl(t);

va(x,z)← ∑
Nz
n=−1 ∑

Nx
m=−1 vm,nφa

(
x
hx
−m

)
φa

(
z
hz
−n

)
;

m← [v−1,−1, . . . ,vNx,Nz ];

Propose:
One random vector θ

a,
u∼U(0,1);
if u≤ pc then

select two individuals m,m′ from θ
a ;

m(i)← Crossover(m,m′);
if m(i) /∈ {m,m′} then evaluate f (m(i)) else infer f (m(i)) from parent;

else
select an individual m from θ

a;
m(i)←Mutation(m);
if m(i) ̸= m then evaluate f (m(i)) else infer f (m(i)) from parent;

end
end

Numerical experiments

The parameterization given by equation (4) will
now serve as input data to the ray tracing algorithm.
We compute the reference solution from the ray tracing
procedure for discontinuous velocity models according to
Červený (2001). The construction of a synthetic arrival is
implemented by decompose the velocity field into subdo-
mains such that the velocity is smooth within each subdo-
main, performing a ray tracing along which traveltime is
calculated, until the ray strikes an interface. These steps
are carried out until the stopping criterion is satisfied. In
addition, we impose transmission conditions when the
incidence angle at an interface is below the critical angle
and reflection conditions otherwise.

The dimensions of the domain are fixed in Lx = 9.4 km
and Lz = 3.0 km for all examples. In the examples below,
the rays depart from x0 = [x0,z0] with take-off angle θ

with respect to the z-axis, i.e., p0 = [sin(θ),cos(θ)]/v0

(see Figure 1).
According to Oliveira et al. (2021) we will consider

the slope a = 100 to represent the velocity fields in the
sigmoidal parameterization.

Finally, we need to choose a priori bounds
[mmin

i , mmax
i ] in Algorithm 1 from the disturbance of the

parameters of model m. Here we stipulate the bounds
for the velocity field m(0) ∈ [0.8m,1.2m] where m

Figure 1 – Direction of the take-off angles in two dimen-
sions

Source: Červený (2001).

is reference value from the velocity field. The initial
population m(0) is generated randomly. The algorithm
computes the next generation of the samples using the
fitness of the individuals in the current generation. As
stopping criteria the GA is applied when it reaches the
maximum number of generations MG. In this case, the
number of samples N used in the models presented de-
pends on the number of parameters K according to the
following equation:

N =

100+47 · (MG−1) K < 10,

400+190 · (MG−1) K ≥ 10.
(14)

The present procedure was applied using the MATLAB®

Optimization Toolbox. Additional parameters were left as
MATLAB default values.
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In all our synthetic experiments, the forward responses
obtained by the GA method are compared with the
Simulated Annealing (SA) which is also a probabilistic
technique for approximating the global optimum of a func-
tion (SEN; STOFFA, 2013). The SA is based on the physi-
cal process of heating a material whose temperature slowly
drops to reduce the error, improving the approximation
of the model. At each iteration of the SA, a new model is
randomly generated. In this case, the initial temperature is
T0 = 100 and the maximum number of iterations was fixed
as the same as the number of iterations of the GA. Here
the number of models tested by temperature is 10. Since

∆E = f (m̃(k))− f (m(k)),

we update the model

m(k)← m̃(k)

if ∆E ≤ 0 or if ∆E > 0 and P = exp [−∆E/Ti]> r, where
r is uniformly distributed (r ∼U [0,1]).

Horizontally layered model (M1)

Let us consider the elementary one-dimensional model
from Oliveira et al. (2021) of three horizontal layers
of thickness L = 0.75 km and velocities v1 = 2.0 km/s,
v2 = 2.5 km/s, and v3 = 3.0 km/s with a single surface
source at the origin as target model. The velocity below
the third layer is v4 = 4.0 km/s. In this inversion experi-
ment we will try to estimate these four velocity parameters
considering MG = 100. In this experiment according to the
stopping criterion on number of parameters, N = 4,753
samples were generated.

The arrival reflection locations x(i) and traveltimes T (i)

(i = 1,2,3) for an arbitrary take-off angle θ are defined by

x(i) = 2L
i

∑
k=1

tanθk, T (i) = 2L
i

∑
k=1

secθk

vk
, (15)

where θ1 = θ and θi = sin−1((vi/vi−1)sinθi−1) for
i = 2,3.

In Figure 2, we compare the ray paths of the in-
verted model using sigmoidal parameterization with
reference solution, Figure 2(a), obtained from the dis-
continuous representation of the velocity field. An ini-
tial model was randomly generated in Figure 2(b).
In addition, we evaluated the performance of GA and SA.
In Figures 2(c)-(d) we can see that both methods have a
similar plots and were able to successfully characterize
the target model. The synthetic profiles of traveltime
for an arbitrary take-off angle (continuous lines) and for
the rays (dots) can be viewed through Figures 3(a)-(b).

Figure 2 – Reference solutions (a), initial model
(b), inverted model by GA (c) and SA (d) methods
for the horizontally layered model (M1) with paths
of 40 rays with take-off angles uniformly distributed
in [0◦,90◦[.

(a)

(b)

(c)

(d)

Source: The authors.
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The inversion by sigmoidal functions has been able to
detect with good approach the traveltime related to reflec-
tions from horizontal interfaces in both methods. However,
GA had a slight advantage in approaching the traveltimes.
In Figure 3(c) we plot the misfit between the inverted
models and the target model M1. We can infer that the re-
sults present an acceptable fit due to its low relative error.
Table 1 presents the minimum misfit and CPU times for
each method.

Figure 3 – Comparison between reference traveltime
(Ref) for the horizontally layered model (M1), with the
ones found by sigmoidal approximations through the
inverted model (Inv) obtained by GA (a) and SA (b)
methods considering traveltimes of 200 rays. Plot of the
misfit as a function of iteration number are illustrated
in (c).

(a)

(b)

(c)

Source: The authors.

Table 1 – Misfit and CPU time for model M1 considering
GA and SA methods.

a Method Misfit CPU (in seconds)

100
GA 0.0335 4.8560×103

SA 0.0375 4.6685×103

Source: The authors.

High-velocity intrusion model (M2)

The next synthetic test, we consider a representation of
a laterally heterogeneous velocity field over a rectangular
grid with 3×4 cells whose velocities vary from 1.5 km/s to
5.0 km/s, see Figures 4(a)-(b), to test the existing intrusion
model against the new inversion model. According to the
mesh size, this gives us 12 sigmoidal parameters to invert.

Figure 4 – A piecewise constant velocity model of a high-
velocity intrusion model (M2): 3D view (a) and the grid
(b) defined by 3×4 cells.

(a)

(b)

Source: The authors.

The ray paths in the velocity field and arrival times
along with the initial model are plotted in Figure 5.
In this case the arrangement consist of a single surface
source located at xs = 4.65 km with take-off angle θ

uniformly distributed in [−45◦,45◦]. In these figures we
draw 40 rays to illustrate the ray trajectories through
the model.
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Figure 5 – Reference solutions (a), initial model (b),
inverted model by GA (c) and SA (d) methods for a
high-velocity intrusion model (M2) with paths of 40 rays.
In pictures, the source point is located at (4.65 km, 0
km) and the take-off angles are uniformly distributed
in [−45◦,45◦].

(a)

(b)

(c)

(d)

Source: The authors.

In the following, we compare ray paths obtained
from GA and SA, Figures 5(c)-(d), with the target so-
lution given by Figure 5(a). Due to the number of
parameters, let us take MG = 100 in GA. Both in-
verse models obtained for the sigmoidal parameteriza-
tion described the intrusion region reasonably well and
approached the target velocities with some accuracy.
However, the GA has an advantage because it better
characterizes the regions that suffer from the change in
velocity. For the two methods under study, approximately
N = 19,210 realizations of data sets were generated.

On the other hand, in Figures 6(a)-(b) we employ 200
rays with take-off angles uniformly distributed in the same
interval to compute traveltimes. We also use the misfit in
this example for the purpose of comparing the inverted
model obtained by GA and SA, plotted in Figure 6(c).
Although the result of the inversion was not optimal, the
traveltimes had a good approximation in most of the GA
model, keeping the error below 5%, while the traveltimes
defined by the SA model had a slight deviation from the
target traveltimes. Also note that the SA has a higher
misfit among the number of tests with error ≈ 10%. In ad-
dition, Table 2 summarizes the superiority of GA over
SA. The result presented by misfit had a lower value
in the GA method despite a slight gain in CPU time
in the SA method.

Table 2 – Misfit and CPU time for model M2 considering
GA and SA methods.

a Method Misfit CPU (in seconds)

100
GA 0.0431 9.4728×104

SA 0.0962 8.4422×104

Source: The authors.

Sedimentary sequence model (M3)

The following synthetic test considers a representation
of a laterally heterogeneous velocity field over a
rectangular grid with 12×12 cells whose velocities vary
from 1.5 km/s to 5.0 km/s and are assumed constant
within each of these cells, see Figures 7(a)-(b). According
to the mesh size, this gives us 144 sigmoidal param-
eters to invert. Unlike the M1 and M2 models, the ar-
rangement consist of ten sources, uniformly spaced with
take-off angle θ uniformly distributed in [−45◦,45◦]
and 200 receivers equally spaced totaling 200 recorded
traveltimes per source, uniformly spaced, and we take
MG = 300. In both methods, N = 57,210 models were
generated.
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Figure 6 – Comparison between reference traveltimes
(Ref) for a high-velocity intrusion model (M2), with the
ones found by sigmoidal approximations through the
inverted model (Inv) obtained by GA (a) and SA (b)
methods considering traveltimes of 200 rays. Plot of the
misfit as a function of iteration number are illustrated
in (c).

(a)

(b)

(c)

Source: The authors.

The ray paths in the target velocity field and arrival
times are plotted in Figure 8(a).

Similar to the M2 model, in order to compare these
results with the SA, we proposed an initial velocity field
model for both methods, see Figure 8(b). As shown in
Figures 8(c)-(d), the models obtained by the inversion are
not sufficiently close to the reference model, but certain
characteristics can already be noticed in the GA, such as:
the dip of the layers, the growth of velocities with the

Figure 7 – A piecewise constant velocity model of a
sedimentary sequence slope (Model M3): 3D view (a) and
the grid (b) defined by 12×12 cells.

(a)

(b)

Source: The authors.

depth and the permanence of these within the established
range, unlike the SA that did not characterize these details
in the velocity model.

In Figures 9(a)-(b) we only plot traveltimes from two
sources for better visualization. Due to the inaccuracy of
the velocity field in some cells, the traveltimes computed
by the inversion using the GA did not have a close approx-
imation, see Figure 9(a). This result is confirmed in the
misfit values as observed and compared with the SA in
Table 3 and Figure 9(c).

Table 3 – Misfit and CPU time for model M3 considering
GA and SA methods.

a Method Misfit CPU (in seconds)

100
GA 0.8338 6.9754×105

SA 1.7357 6.6334×105

Source: The authors.
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Figure 8 – Reference solutions (a), initial model (b),
inverted model by GA (c) and SA (d) methods for a
high-velocity intrusion model (M3) with paths of 10 rays
per source. In pictures, the source point are uniformly
spaced and the take-off angles are uniformly distributed
in [−45◦,45◦].

(a)

(b)

(c)

(d)

Source: The authors.

Figure 9 – Comparison between reference traveltimes
(Ref) for a high-velocity intrusion model (M3), with the
ones found by sigmoidal approximations through the in-
verted model (Inv) obtained by GA (a) and SA (b) methods
considering traveltimes of 200 rays. Here we plot the
traveltimes from two sources located in [2.1,0.0] and
[7.3,0.0]. Plot of the misfit as a function of iteration num-
ber are illustrated in (c).

(a)

(b)

(c)

Source: The authors.

Discussion and conclusion

The genetic algorithm proved to be effective in
generating velocity fields that remained within the ve-
locity ranges corresponding to the original models and
approached reasonably well.
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During the inversion process, even with the increase
in parameters, the adopted methodology did not require a
high computational cost. In addition, the results of the pa-
rameterized velocity fields remained reasonably close.The
experiments with the M1 model generated very good re-
sults, both quantitatively and qualitatively. The higher
quality of these results, compared to the other experiments,
is probably due to the low number of parameters involved
in the direct modeling step. Note that the observed changes
regarding the number of parameters have an effect on
the calculation of traveltimes. This is observed in the
experiments given by the models M2 and M3. The inverse
M2 model was able to reproduce the traveltime curve with
some accuracy in relation to the target solution, which
did not happen with the M3 model. Due to the increase in
the number of parameters in the M3 model, we consider
to increase the number of sources and generations MG

to better characterize the velocity field in the inversion.
Note that the SA algorithm was not able to clearly capture
distinct regions of the velocity field, while in the GA we
had a better identification. In short, GA showed better per-
formance in all experiments compared with SA. Despite
the natural increase in misfit with the number of parame-
ters, the results provided by GA can be good candidates
for initial models to be used by local search or hybrid
methods.
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