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Max-Min fairness-based resource allocation in massive MIMO systems

Alocação de recursos baseada em imparcialidade Max-Min para
sistemas MIMO massivos

Marcelo Henrique Jeronymo1; Taufik Abrão2

Abstract
This work deals with power and spectrum allocation approaches for massive MIMO (M-MIMO) systems. An
analysis is made to verify the efficiency of the solutions provided by schemes used for the spectral and energy
efficiency (SE-EE) trade-off problem in massive antenna-based wireless communication systems. We first
introduce the Geometry Based Stochastic Model (GBSM) channel model (One-ring model), describing the
behavior of a uniform linear array of antennas (ULA) arrangement, revealing how the channel parameters
affect the channel capacity. We also show that under this model, the SE still increases without boundary
when the massive number of base-station (BS) antennas M increases, provided that pilot contamination is
substantially mitigated or eliminated but when the number of users equipment (UEs) K increases with a fixed
number of antennas in the BS, there is a increasing limitation from the combiners in mitigating the inter-user
interference, making decoding difficult. The downlink (DL) M-MIMO scenario is analyzed, by introducing
the generalized power allocation problem and derived the max-min fairness scheme from it. We propose a
procedure to solve the max-min problem and made conclusions about the algorithmic solution in terms of
complexity and respective EE and SE performance.

Keywords: Massive MIMO; resource allocation; energy efficiency; spectral efficiency; Max-min fairness.

Resumo
Este trabalho trata de abordagens de alocação de potência e espectro para sistemas múltiplas entradas e
múltiplas saídas massivo (M-MIMO). É feita uma análise para verificar a eficiência das soluções fornecidas
pelos esquemas usados para o problema de trade-off espectral e de eficiência energética (SE-EE) em sistemas
de comunicação sem fio baseados em antenas massivas. Primeiro apresentamos o modelo de canal estocástico
baseado em geometria (GBSM), descrevendo o comportamento de um arranjo linear uniforme de antenas
(ULA), e mostramos como os parâmetros do canal afetam a capacidade do canal. Também mostramos que,
sob este modelo, o SE ainda aumenta sem limites quando o número M de antenas de estação base (BS)
aumenta, desde que a contaminação do piloto seja substancialmente mitigada ou eliminada, mas quando o
número K de usuários (UEs) aumenta com um número fixo de antenas na BS, há uma limitação crescente dos
combinadores em mitigar a interferência inter-usuário, dificultando a decodificação. O cenário de downlink
(DL) é analisado, introduzindo o problema generalizado de alocação de energia e derivando o esquema de
max-min a partir dele. Propomos um procedimento para resolver o problema max-min e interpretamos a
solução algorítmica em termos de complexidade e respectivo desempenho EE e SE.

Palavras-chave: Potência; espectro; MIMO massivo; alocação de potência; justiça Max-Min; modelo de
canal estocástico geométrico.
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Introduction

With such a high growth rate of connected devices
each year, fifth-generation (5G) wireless communication
systems must provide coverage and capacity for all of
these devices, while improving the user experience and
traffic rates. For this reason, communication systems of
multiple transmitting and receiving antennas (MIMO -
multiple input multiple output) have become quite popu-
lar due to the many benefits they can achieve, including
diversity of transmission and high data rates. To match
these requirements resources such as spectrum and power
need be allocated in a suitable and reliable way, since such
resources are quite limited.

The concept of extra large MIMO (XL-MIMO)
arises through the implementation of large physical ar-

rays, that is, a system implemented through numerous
antennas, where it can be applied in places of large in-
frastructures such as airports, stadiums, etc. This fea-
ture is similar that found in M-MIMO systems. How-
ever, there are some peculiar characteristics, which dif-
fer from M-MIMO systems, including the channel non-
stationary in addition to the concept of visibility region

(VR). Such characteristics become evident when analyz-
ing how the transmission is carried out when there is
an array of antennas not only with a larger number of
antennas compared to M-MIMO but with an antenna spac-
ing greater than usual. Studies show that assumptions
as flat wave model used in M-MIMO are not feasible
when there is a scattering in the physical size of the array,
requiring the implementation of spherical wave models
(BJORNSON et al., 2019; JENG-SHIANN; INGRAM,
2005; PAYAMI; TUFVESSON, 2012; ZHOU ZHOU;
FANG; CHEN, 2015)

Elaborating further on the key feature associated to
XL-MIMO, the visibility region (VR) is a physical region
of the array in which most (or all) of the signal strength
is concentrated; such separation of parts of the array oc-
curs due to obstacles, trees, constructions, etc., hindering
the signal propagation. Finally, spatial non-stationary

channel in wireless systems is when the visibility of a
UE is dynamic, which changes according to the intrinsic
movement of users. Studies show how these phenomena
impact on the signal processing tasks, such as the spherical
wave modeling and the impact on linear receivers perfor-
mance (ALI; CARVALHO; HEATH, 2019; CARVALHO
et al., 2020). In general, M-MIMO system modeling as-
sume spatial stationary for the most practical channel
scenarios.

In the context of the wireless system, one fundamen-
tal design that should be considered is the effect of pilot
contamination on the performance of M-MIMO and extra-
large (XL) MIMO systems. In Sanguinetti, Bjornson and
Hoydis (2020) the authors demonstrate that the appropri-
ate exploration of the spatial correlation propagation and
by using suitable signal processing schemes that elimi-
nate interference one can eliminate the upper bounds on
capacity, and consequently eliminate the upper bound on
spectral efficiency (SE).

The resource allocation (RA) approach, including
power allocation in downlink (DL) or uplink (UL) trans-
missions. Today there are many power allocation schemes
available in the literature, such as Max-min fairness, Max-

sum SE and Max-product SINR. The idea is to maximize
a utility function subject to a constraint, which can be
one of the three schemes mentioned above. Hence there
are studies investigating how to improve the algorithm’s
performance used to solve such RA problems, since it is
necessary to attain quickly convergence before UE’s loca-
tion changes. Notice that even a problem with posynomial
complexity (which the usual approach schemes deployed
currently) can take longer to solve in such small channel
coherence interval.

A novel power allocation algorithm to maximize the
spectral efficiency (SE) and energy efficiency (EE) of
MIMO broadcast channels under individual quality of ser-
vice (QoS) constraints is devised in Kwon et al. (2020).
To address the impact of delay outage, effective capacity
(EC), i.e., the maximum constant arrival rate satisfying
statistical delay-QoS constraint is considered. Using such
a performance metric, effective-EE and EC are formulated
as a bi-objective optimization power allocation problem
with QoS constraints. Salh et al. (2019) considers a low-
complexity energy efficiency scheme aiming to allocate
transmit power in downlink (DL) direction based on New-
ton optimization method and Lagrange decomposition.
This algorithm was used to provide the optimal EE for
massive MIMO systems. Besides, in Li et al. (2019) the au-
thors propose an iterative algorithm that solves the power
allocation problem in conjunction with antenna selection.
The algorithm is based in Lagrangian dual problem used
in a single cell M-MIMO scenario. The proposed scheme
outperforms existing schemes.

The contributions of the paper are threefold. First, we
formulate and discuss suitable resource allocation prob-
lems for M-MIMO systems operating under linear combin-
ers/precoding. Second, we propose an effective Max-min-
based algorithm solution for power allocation problems
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in M-MIMO systems. Third, the effectiveness of the al-
gorithmic solution in terms of performance-complexity
trade-off is extensively confirmed by numerical results.

The remainder of this paper is organized as follows.
The second section describes the adopted M-MIMO sys-
tem model. The third section discusses three power al-
location schemes for M-MIMO systems considering DL
transmissions. The fourth section presents a numerical
results analysis demonstrating the efficiency and effec-
tiveness of the proposed PA solutions. The last section
concludes the paper.

M-MIMO system model

An M-MIMO communication system can be defined
as a network of base stations (BS) and users or user equip-

ment (UE) with a L amount of cells. Each BS is equipped
with M antennas and is responsible for covering a cell
with K UEs (BJORNSON; HOYDIS; SANGUINETTI,
2017). Some important features includes: a) Use of the
Space-Division Multiple Access method (SDMA), allow-
ing to manage several UEs in the same time-frequency
resources; b) The BS contains more antennas than UEs
in its respective cell, with a proportion of M/K ≥ 4 for
better performance when using SDMA, with M ≥ 64, al-
though some authors use the canonical way of defining a
M-MIMO network with M/K ≥ 1 (BJORNSON; HOY-
DIS; SANGUINETTI, 2017); c) Operates with TDD (
Time-Division Duplex) protocol for data transmission and
reception; d) Linear processing for data recovery with
M-MMSE estimator/receiver.

The concept of Massive MIMO applies when the num-
ber of BS antennas grows beyond 64, separated by at
least by the carrier wavelength λ/2. In such configuration,
one can see two fundamental properties of M-MIMO,
namely channel hardening and favorable propagation,
respectively, defined as (BJORNSON; HOYDIS; SAN-
GUINETTI, 2017);

||h j
jk||

2

E{||h j
jk||2}

→ 1 (channel hardenning)

(h j
li)

Hh j
jk√

E{||h j
li||2}E{||h

j
jk||2}}

→ 0 (favorable propagation)

almost surely as M→ ∞. In other words, channel harden-
ning is a property that allows the channel to approach a de-

terministic channel, as can be proved that V
{

||h j
jk||

2

E{||h j
jk||2}

}
goes to 0, and favorable propagation means that two UEs
with h j

li and h j
jk channels, will become orthogonal, as the

numerator (h j
jk)

Hh j
jk goes to 0 and ( · )H is the conjugate

transpose operation.

UL and DL communication

There are two types of transmission, Uplink (UL)
and Downlink (DL), the first refers to the transmission
of data from the UEs to the BS, the second refers to the
transmission from the BS to the UEs of the cell. Let’s
consider a single-cell system; in the UL transmission, the
BS antennas captures the received signal represented by a
vector, given in equation (1):

y =
K

∑
k=1

hksk +n, (1)

where y ∈ CM , the sk ∼ C N (0, pk) is the signal sent
by the kth UE with pk being the power transmitted, and
hk representing the channel response which models the
path between the kth UE and the BS in the cell. The
channel response is modeled according to the type of
propagation and the existence of line-of-sight (LoS) or not
(NLoS). Herein we assume the following NLoS model,
equation (2):

h j
lk ∼ C N (0M,R j

lk). (2)

For the DL communication direction, in j-th cell the
BS first applies a precoding vector wi, to the signal, and
transmits the signal over M antennas as in beams, repre-
sented by equation (3):

x =
K

∑
i=1

wiςi, (3)

where w jk ∈ CM is the precoding vector, determining
the spatial direction of transmission. This vector provides
the spacial user separability, satisfying the normalization
E{∥w jk∥2} = 1. Besides, ςi ∼ C N (0,ρi) is the mod-
ulated signal that is transmitted by the BS for the ith
UE with ρi being the average power transmitted by it,
such that E{∥wiςi∥2}= ρi (BJORNSON; HOYDIS; SAN-
GUINETTI, 2017).

The received signal at the k UE in cell j can
be represented by three terms: desired signal, interfer-
ence, and noise, as:

yk =
L

∑
l=1

(hk)
Hx+nk

= (hk)
Hwkςk

︸ ︷︷ ︸
Desired signal

+
K

∑
i=1
i̸=k

(hk)
Hwiςi

︸ ︷︷ ︸
Interference from the cell

+ nk

where nk ∼ C N (0,σ2
DL) is the downlink independent

noise with variance σ2
DL.
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TDD protocol

In this protocol, UL and DL transmissions are con-
tained in blocks in the Time × Frequency plane, a co-
herence block. Where T is the period of time where the
channel response can be considered constant over time and
B is the bandwidth which the channel can be considered
constant over frequency.

The product bandwidth-symbol period τc = B · T is
described by the quantity of the number of data symbols
possible to be transmitted inside a coherence block.

Channel model for M-MIMO systems

To make an analysis of M-MIMO systems, it is impor-
tant to represent how the medium between the UEs and the
BS of a cell behaves. First, we introduce the GBSM model,

Geometry Based Stochastic Model. The complexity of the
model is higher than CBSM models, Correlation Based

Stochastic Model, but can describe much better the behav-
ior of the system (OLIVERAS MARTINEZ; EGGERS;
CARVALHO, 2016; ZHENG; OU; YIN, 2014). In this
work, we use a 2D-GBSM model, namely One-ring to de-
scribe the behavior of a uniform linear array of antennas
(ULA). The channel response is expressed by eqaution (4)

hk→NC(0M,Rk), Npath→ ∞ (4)

where Npath denotes the multiple components of k UE in
cell l to BS j and the channel correlation matrix is defined
as:

[Rk]m,n = β

∫
e2πdH (m−n)sin(ϕ̄) f (ϕ̄)dϕ̄, ϕ̄ = ϕ+∆, (5)

∆ is the angle of spread given in radians, f(ϕ̄) is the PDF
( probability density function) of ϕ̄ , β is the large-scale
pathloss coefficient, being modeled as:

βk = ϒre f −10α log10

(
dk

1km

)
[dB]

ϒre f =−148 [dB]

For the One-Ring channel model we consider the
spread angle ∆ to be a uniform distribution expressed by
equation (6)

∆∼U (−δ ,δ ), with f (∆) =
1

2δ
, (6)

where f (∆) denotes the PDF of ∆. The parameter δ is
related to the standard deviation of the spread angle, i.e.,
σ∆ = 0.577 ·δ . Using equation (5) with (6) we have

[R]m,n =
β

2∆

∫
∆

−∆

e2πdH (m−n)sin(ϕ+δ )dδ . (7)

Using equation (7), one can generate a channel re-
sponse vector by evaluating equation (8)

hk = R
1
2
k e, (8)

where vector e ∼NC(0M, IM). This expression is known
by Karhunen-Loeve expansion (BJORNSON; HOYDIS;
SANGUINETTI, 2017).

Combiners

To extract data from a UE, the BS needs to efficiently
estimate the channel response (hk), this can be done by
using the minimum mean-squared error (MMSE) channel
estimator from which an estimated channel response ĥk is
generated. In this paper we assume perfect channel esti-
mation, or simply put: ĥk = hk, and aiming to make each
equation more compact, we use V = [v1 v2 · · · vK] where
each column represents the combiner from cell to kth UE.

1) Maximum-ratio combiner (MRC): The combiner
MR aims to maximize the received SNR by multiplying
the received signal by the channel matrix defined as in
equation (9)

VMR = ĤH
(9)

2) Zero forcing (ZF) combiner: The goal of ZF com-
bining scheme is to eliminate the interference caused by
other UEs in the same cell. The expression to compute the
ZF detector is given by equation (10)

VZF = Ĥ((Ĥ)HĤ)−1, (10)

3) M-MMSE combiner: The M-MMSE combination
scheme is more efficient than the previous one, due to the
fact that it takes into account the interference not only
between UEs of the same cell, but also outside it, however,
such efficiency requires greater computational complexity.
The expression to compute the M-MMSE detector is given
by equation (11)

VM-MMSE =

(
ĤP(Ĥ)H +

K

∑
i=1

piCi +σ
2
ULIM

)−1

, (11)

where P = diag(p1, p2, · · · , pK) is the power diagonal
matrix where each element (in the main diagonal) is the
power transmitted from each UE.

Spectral Efficiency

The spectral efficiency (SE) is a measure of the aver-
age number of bits of information per complex-valued
sample that it can be reliably transmit over the chan-
nel (BJORNSON; HOYDIS; SANGUINETTI, 2017).
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An ergodic lower bound for the system SE can be evalu-
ated as in equation (12)

SEUL,DL
k =

τu,d

τc
log2

(
1+SINRUL,DL

k

)
, (12)

where τu,d is the samples used in UL or DL transmission.
Considering the UL transmission, the effective SINR can
be expressed as equation (13)

SINRUL
k =

pkak

∑
K
i=1 pibki− pkak +σ2

ULE{||vk||2}
, (13)

where ak = |E{vH
k hk}|2 and bki = E{|vH

k hi|2}.
Now considering the DL transmission, an ergodic

lower bound for the SEDL
jk can be evaluated by deploy-

ing the following effective SINR, equation (14)

SINRDL
k =

ρkak

∑
K
i=1 ρibki−ρkak +σ2

DL

, (14)

where ak = |E{wH
k hk}|2 and bik = E{|wH

i hk|2}, and then
evaluating, equation (12), with τu,d = τd . The same applies
for UL.

The SINRUL
jk in equation (13) defines the lower bound

for the capacity of kth UE in the jth cell. As expected,
it depends on h jk, which is a random variable. We apply
the expectation as indicated in equation (13) across differ-
ent coherence blocks. Indeed, one can evaluate the SE by
taking the mean value of log2

(
1+SINRUL

jk

)
using numer-

ical Monte Carlo simulation (MCS) method, where the
SINRUL

jk is evaluated at each channel realization in each
coherence block.

Energy Efficiency

Energy Efficiency (EE) is a metric of efficiency in wire-
less and greed wireless communications that computes
the number of bits that a system can reliably transmit per
unit of energy (BJORNSON; HOYDIS; SANGUINETTI,
2017), and defined by equation (15)

ηEE =
ηSE

PRF +PCIRC
, (15)

where

ηSE = B
K

∑
k=1

SEUL
k +SEDL

k , (16)

PRF =
(τp + τu)

τc

K

∑
k=1

1
µUE,k

pk +
τd

τc

1
µBS

K

∑
k=1

ρk, (17)

PCIRC = PFIX +M ·PBS. (18)

The ηSE parameter in equation (15) is associated to the
system throughput; the PRF is the effective transmitted RF

power by the base-station, with each µUE,K and µBS being
the efficiency of the power amplifier (PA), taking values in
between µ ∈ [0;1]. Finally, the PCIRC is the circuit power

consumption of the system, splitted in a fixed parcel and
another associated per BS antenna consumption (PBS).

Power allocation strategies

In this section we discuss the three most used schemes
for power allocation to the UEs in DL transmissions. As
stated before, our objective is to maximize a certain utility
function defined as in equation (19)

U(SEDL
11 , ...,SEDL

LKL
) =


a) ∑

L
j=1 ∑

K j
k=1 SE jk or

b) min j,kSE jk or

c) ∏
L
j=1 ∏

K j
k=1 SINR jk

(19)

Such utility functions in equation (19) can be identi-
fied as: a) Max-sum SE; b) Max-min fairness; c) Max-prod

SINR.
The goal is optimize a specific utility function U sub-

ject to the power budget and formulated as in equation (20)

maximize
ρ11≥0,...,ρLKL≥0

U(SEDL
11 , ...,SEDL

LKL
); (20)

subject to
K j

∑
k=1

ρ jk ≤ PDL
MAX, j = 1, ...,L,

where PDL
MAX is the available power available at the BS.

Hence, the constraint in equation (20) represents the total
power transmitted by BS j serving K j UEs.

Each utility function gives a different result in between
the maximum SE and fairness performance.The Max-min

SE scheme tries to establish all UEs to almost equal SE,
making the most fairness scheme, but lacks throughput
in the network since UEs with better channel conditions
to improve SE will be neglected to make the UEs with
poor channel conditions get a higher SE. On the other
hand, the Max-sum SE power allocation scheme searches
for the maximum throughput with a cost in fairness; in
this scheme, some UEs may have close to zero SE, con-
sequently impacting UEs with poor channel conditions.
Finally, the Max-prod SINR scheme is somewhat a bal-
ance in between these previous schemes, seeking to find a
good system throughput and good fairness simultaneously,
since under such PA scheme the SINR of all users is multi-
plied together. Besides, under this PA scheme, one cannot
afford to hold UEs with low SINR, otherwise it will affect
negatively the attempt to maximize the utility function.
Also, since the Max-prod scheme is derived from Max-
sum SE, by neglecting the 1 inside the log function and
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using log proprieties, this manipulation leads to a higher
SE for the weakest UEs (BJORNSON et al., 2019). Many
optimization methods can be used to effectively solve the
optimization problem. A detailed analysis on the general-
ized convex optimization problems is given in Boyd and
Vandenberghe (2004).

Solving the Max-min fairness PA problem in M-MIMO

To solve the Max-min fairness power allocation prob-
lem in M-MIMO systems, we need to change the optimiza-
tion statement to one we can work with. By reformulating
the original Max-min fairness subproblem b) in equa-
tion (19), results:

γ
⋆ = maximize

ρ1≥0,...,ρK≥0,γ≥0
γ

s.t.
K

∑
k=1

ρk ≤ PDL, (21)

SINRk ≥ γ, k = 1, ...,K

where γ⋆ is the optimal SINR found as the result of
maximizing the minimum SINR, γ . To solve equation
(21), one can split the optimization problem in two sub-
problems, the first one consists in optimizing γ . We ap-
proach this using a bisection method by halving the
search space each iteration and making γ a fixed pa-
rameter while solving the second sub-problem, that con-
sists in finding a feasible power vector ρ that satisfies
the power budget constraint in equation (21). Besides,
each power-candidate vector results in a set of SINR
that must satisfies the second constraint in equation (21).
The Algorithm 1 describes how to approach the problem
computationally.

Algorithm 1 Bisection algorithm

1: procedure MAXMINFAIRNESS(ai,bik, PDL
max, ε , σ2

DL)
2: γlower← 0
3: γupper←min

(
PDL

maxai
σ2

DL

)
,∀i ∈ 1, . . . ,K

4: ρ⋆← 0
5: while γupper− γlower > ε do
6: γcand.← (γlower + γupper)/2
7: ▷ Search for a solution using (21) restrictions
8: if Feasible then
9: γlower← γcand.

10: ρ⋆← ρsol.
11: else
12: γupper← γcand.

13: return ρ⋆

First we begin by initializing γlower and γupper, where

the min
(

PDL
maxai

σ2
DL

)
, ∀i represents the minimum SINR

among all users under maximum power allocated and no
interference. These variables define the lower and upper
bounds, respectively, in the search region that the algo-
rithm will search a feasible solution; besides, the initial
solution vector ρ⋆ = 0 is defined. After that, the bound-
aries for difference of the upper and lower SINR is reduced
in each new iteration; the iterations stop when these SINR
difference becomes less than ε . Line 6 defines the middle
point between the two extremes and try to establish the
new minimum SINR solution to be used in problem (21),
i.e., find new power vector solution ρ , line 7 of the Algo-
rithm 1. The algorithm used for this is provided by CVX-
OPT library (ANDERSEN; DAHL; VANDENBERGHE,
2021), assuming that for each bisection step the resulting
sub-problem is convex. Since the nature of the problem
is linear, we used a cone linear programming algorithm
based on Nesterov-Todd scaling (ANDERSEN; DAHL;
VANDENBERGHE, 2021). If a solution is found, and
it is feasible, then the lower SINR boundary is updated
as the middle point γcand. previously computed; on the
other hand, if the solution is not found or the problem is
infeasible, we simply update the γupper bound with the
middle point γcand . The iterations stops when the two
values γlower and γupper are sufficiently close together;
hence, under such condition, the current power vector so-
lution is the output optimal power solution, ρ⋆. Notice
that line 7 in the Algorithm 1 represents the sub-problem
two where does not need an objective function, only a fea-
sible solution (one that satisfies all the constraints given)
and can be solved, for instance, by using interior-points
methods.

Numerical results

In this section, numerical analyses on which parameter
values influence the correlated M-MIMO channel capacity
and energy efficiency are discussed. We evaluates the SE
in the UL and DL correlated M-MIMO channels, as well
as the EE-SE tradeoff in M-MIMO. Besides, it is demon-
strated numerically that when the number of antennas at
the BS increases, the spectral efficiency in the uplink in-
creases without boundary if in massive MIMO the pilot
contamination could be substantially mitigated or even
eliminated by using the MMSE combiner.

Uplink SE in M-MIMO

In this simulation we show that when the antennas
at the BS increases, given a fixed value for UEs, the SE
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increases without bound when using M-MMSE combin-
ing scheme. We also show that with a fixed number of
antennas in the BS, there is so much UEs that the BS can
support without decreasing the SE due to too much inter-
ference, in that sense if we are able to conjecture a optimal
number of UEs for each cell, we can allocate the users
in a multicell scenario accordingly with the number of
antennas that each cell has in its BS so we can maximize
the sum SE of the overall system. For this subsection, the
parameter values adopted in the simulations are depicted
in Table 1. The sum-SE results with varying number of
BS antennas M are depicted in Figure 1. While results
for the sum-SE vs number of UEs (K) are represented in
Figure 2.

Table 1 – Adopted Parameters for SE analyses

Parameter Figure 1 Figure 2 Figure 3

∆ U (−δ ◦,δ ◦) U (−δ ◦,δ ◦) U (−δ ◦,δ ◦)

δ ◦ 15 [15;30;45] 45

AoA U (− π

2 ,
π

2 ) U (− π

2 ,
π

2 ) U (− π

2 ,
π

2 )

M [10:10:100] 64 64

K 16 [10:10:60] 16

realizations 100 100 100

τc 200 200 200

τp 16 K 16

τu 92 100 - K/2 92

p jk (W ) 1 0.1 0.1

PDL
max (mW ) – – 100 ·K
σ2 (W ) 1 1 1

Source: The authors.

The SE behavior of system equipped with M-MMSE,
ZF and MR combiners in UL transmission when the num-
ber of BS antennas M increases is analyzed in Figure 1.
The SE using M-MMSE and ZF combiners in this sce-
nario grows without bounds. This is not the case when
using MR combiner, which can be seen that the SE grows
much slower and does not attain substantial gain benefit
(array gain) when the number of BS antennas increases.

For the M-MMSE combiner in Figure 2 one can no-
tice that increasing the number of UEs K, the sum-SE
grows until near K ≈ 40 users then it starts to decrease
with a slow slope. However, for the ZF combiner, such
sum-SE growth almost like the M-MMSE combining,
as expected, but the maximum is attained for K ≈ 25
users; after that, the M-MIMO system equiped with
ZF combiner starts to decay fast, and at a point where
50 ≤ K ≤ 60 (near to full system loading L = K

M → 1),
the curve is below the sum-SE using the MR combiner.

Figure 1 – SE as a function of the number of BS
antennas, M.

Source: The authors.

Finally, the MR combiner presents the worst sum-SE re-
sults, except when K ≥ 50 users. This is because in ZF
definition, the combiner aims to minimize noise and the
interference of UEs, but when the interference becomes
to much to be mitigated, i.e., in case of full system load-
ing or even when operating under over-crowed scenarios
(L > 1), the ZF combiner does not have the capacity to
extract information from the signal since already it used
its full capacity to mitigate interference.

Figure 2 – UL sum-SE as a function of the number of
UEs, K and fixed number of BS antennas, M = 64.

M-MMSE(|∆| ≤ 15o) ZF(|∆| ≤ 15o) MR(|∆| ≤ 15o)

M-MMSE(|∆| ≤ 30o) ZF(|∆| ≤ 30o) MR(|∆| ≤ 30o)
M-MMSE(|∆| ≤ 45o) ZF(|∆| ≤ 45o) MR(|∆| ≤ 45o)

Source: The authors.

Downlink SE in M-MIMO

In this subsection the effects of using an optimiza-
tion approach to provide power allocation of trans-
mit signal at BS is analysed. By optimizing equa-
tion (21) for each precoder and ploting the DL
sum-SE behavior allow us to get further insights.
We do this using CVXOPT library for Python 3. Due the
convexity of the problems, and using the formulation in
equation (21), one can find a feasible solution given the
power constraints with PDL

max = 100 ·K = 1600 [mW].
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Figure 3 confirms that using Max-min power alloca-
tion strategy reduces the sum-rate and overall SE com-
pared to the equal power approach (EPA), as indicated in
black lines. Indeed, when using max-min power alloca-
tion scheme, one can confirm the effectiveness in terms of
increasing the minimum rate attained by any user in the
system, being the CDF for the SE more abrupt in compar-
ison with the equal power strategy (EPA). By plotting the
CDF of multiples measurements of the SE in Figure 3, one
can see that by using a power allocation scheme we can
guarantee that all UEs will have at least a minimal amount
of SE (improving the fairness) and using the same power
as before, but at a cost of reducing the power being trans-
mitted to UEs with good conditions. Hence decreasing the
SE per user, and sum-rate, but increasing substantially the
overall EE.

Figure 3 – Cumulative distribution function (CDF) for the
DL per user SE: Pr(SEDL

k ≤ SE0) under system loading
L = 0.25.

Source: The authors.

EE-SE tradeoff in M-MIMO

Let’s consider the impact of power allocation scheme
in the EE and SE improvement when using specifically the
Max-min fairness procedure. By using both transmission
directions (UL and DL), one can compute the system EE.
Figure 4 depicts the system EE vs SE under different com-
biner/precoding influences. The parameter values adopted
in these simulations are depicted in Table 2.

Each point in Figure 4 represents an increasing in
the number of BS antennas, with step of 10 in the range:
M ∈ 10 : 10 : 100 antennas at BS. One can see that ei-
ther M-MMSE or ZF can perform well in terms of EE-SE
when M ≈ 30 to ≈ 40 antennas; once again, MR com-
biner/precoding does not have a sufficient benefit for using
as much as available number of antennas to improve sub-
stantially either EE or SE, despite its advantage of reduced
complexity among the techniques considered.

Table 2 – Adopted Parameters for EE-SE trade-off
analysis

Parameter Figure 4 Parameter Figure 4

∆ U (−δ ◦,δ ◦) p jk (W ) 1

δ ◦ π

4 PDL
max (W ) 1.6

AoA U (− π

2 ,
π

2 ) PFIX (W ) 1

M [10:10:100] PBS (W ) 0.5

K 16 B (MHz) 1

Realizations 100 µUE,k 0.4

τc 200 µBS 0.6

τp 16 σ2 (W ) 1

τu 92 ε 0.005

Source: The authors.

Figure 4 – System EE versus SE, where each point repre-
sents a different number of antennas, M.

Source: The authors.

Complexity analysis

Let’s consider the impact of using the proposed algo-
rithm to solve optimization problem posed in equation
(21). The parameter values deployed in this simulation
setup are summarized in Table 3, while Figure 5 depicts
the numerical results obtained by varying K users and
M antennas, and measuring the execution time for each
realization and taking the mean value from it.

Table 3 – Adopted parameters for complexity analysis.
other parameter values are the same of Table 2

Parameter Figure 5 Parameter Figure 5

M [10:10:70] p jk (W ) 0.1

K [10:10:60] PDL
max (W ) 0.1 ·K

τp K ε 0.01

τu 100− K
2 σ2 (W ) 1

Source: The authors.

From Figure 5, one can infer that the time execution
detection performance under MR and MMSE combin-
ers are quite similar in terms of a linear growth in both
dimensions K and M, including typical massive MIMO
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scenarios for M and K, sharing approximately the same ex-
ecution time. While using ZF combiner, the system attain
the least amount of execution time to perform detection,
ranging from 0 to 0.10 seconds (on average) but it does
not growth linearly, since when K = M one can observe
the well-known singularity in the ZF detection behavior,
attaining the lowest execution time, but it does not mean
a valid solution; instead, for each iteration the cone pro-
gramming algorithm return unfeasible solutions, and if
most iterations are impractical, the algorithm converges
faster but the solution found is not valid or as good as
compared to MMSE combiner in the same full loading
condition (M = K).

Figure 5 – Execution time for MIMO system under vari-
able number of users and BS antennas, by using MR, ZF
and MMSE combiners.

(a)

(b)

(c)

Source: The authors.

Conclusions

By using ZF or M-MMSE combiners and under certain
system and channel conditions, the system SE in UL of
massive MIMO systems can be increased without limits,
as revealed by Figure 1, but performance degradation
arises when the number of users K grows with a fixed
number of BS antennas M, i.e., when system loading
L increases. While the system SE grows under ZF and
M-MMSE combiners/precoders at the same rate, it is not
the same when the number of users’ connections K grows.
Indeed, numerical results (Figure 2) reveal that the system
SE using ZF combiner under massive MIMO system starts
to decrease very early, i.e., for L ≥ 0.47, and fast in
contrast to M-MMSE, in which continues to increase and
eventually decay with the number of users, but slowly.
Since MR combiner is a simple strategy for this problem,
it does not take advantage of the increasing number of
antennas in the BS, neither can do much as the number of
users K increases.

When using Max-min fairness power allocation strat-
egy, the numerical results in Figure 3 show an improve-
ment in individual SEs, in the sense of improving the
system fairness, but consequently reducing its sum-rate
(system SE). Its seen by comparison that using EPA the
system achieves more SE but with a cost of drop out
several UEs, disconnecting such users from the system
whatsoever.

The EE-SE trade-off analysis (Figure 4) revealed that
each combiner/precoding reaches a different optimum
(maximum) EE-SE point of operation with different num-
ber of antennas M, and again, as expected, in terms of
performance, MMSE combiner/precoding leads, followed
by ZF and MR at last with a very low system EE.

Finally, the time computational complexity of the pro-
posed Max-min fairness PA allocation under the bisection

procedure (Algorithm 1) and in under-loading L ≤ 1 sce-
narios have revealed that the MMSE and MR result in a
similar time complexity as opposed to the ZF combiner
in which has faster convergence but worst performance
under full-loading K = M scenarios.
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