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Abstract
In this paper we adapt the Newton-Raphson and Potra-Pták algorithms by combining them with the modified
Newton-Raphson method by inserting a condition. Problems of systems of sparse nonlinear equations are
solved the algorithms implemented in Matlab® environment. In addition, the methods are adapted and applied
to space trusses problems with geometric nonlinear behavior. Structures are discretized by the Finite Element
Positional Method, and nonlinear responses are obtained in an incremental and iterative process using the
Linear Arc-Length path-following technique. For the studied problems, the proposed algorithms had good
computational performance reaching the solution with shorter processing time and fewer iterations until
convergence to a given tolerance, when compared to the standard algorithms of the Newton-Raphson and
Potra-Pták methods.
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Resumo
Neste artigo é feita uma adaptação nos algoritmos dos métodos de Newton-Raphson e de Potra-Pták,
combinando-os com o método de Newton-Raphson modificado, por meio da inserção de uma condição.
Problemas de sistemas de equações não lineares esparsos são solucionados com os algoritmos implementados
em ambiente Matlab®. Em adição, os métodos são adaptados e aplicados em problemas de treliças espaciais
com comportamento não linear geométrico. As estruturas são discretizadas por meio do Método Posicional
de Elementos Finitos, e as respostas não lineares são obtidas num processo incremental e iterativo, utilizando
a técnica de continuação Comprimento de Arco Linear. Para os problemas estudados, os algoritmos propostos
tiveram bom desempenho computacional alcançando a solução com menor tempo de processamento e menor
número de iterações até a convergência para uma dada tolerância, se comparados aos algoritmos padrões dos
métodos de Newton-Raphson e de Potra-Pták.
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Introduction

Many problems in Applied Mathematics and Engi-
neering are reduced to finding a nonlinear equations sys-
tem solution F(x) = 0, and require the development of
an iterative method (KIM; CHUN, 2010). The solution
of this system is usually difficult to find (AL-TOWAIQ;
ABU HOUR, 2017). In the past thirty years or more, with
the development of increasingly efficient and fast digital
computers, the investigation of nonlinear problems and nu-
merical methods to solve them has increased dramatically
(SOUZA; ALVAREZ; LOBAO, 2017).

Newton’s iterative method, also known as Newton-
Raphson method, with quadratic convergence order, is
probably the most well-known and its algorithm is
the most widely used (WEERAKOON; FERNANDO,
2000; KIM; CHUN, 2010; MUHAMMAD; MAMAT;
WAZIRI, 2013). Various other iterative methods have
been developed to find the approximate solution of
these systems, such as Quasi Newton methods (KAN-
WAR; SHARMA, 2005; AL-TOWAIQ; ABU HOUR,
2017), Chebyshev-Halley family methods (GUTIER-
REZ; HERNÁNDEZ, 1997), Jarratt’s method (JARRATT,
1969), Potra-Pták’s method (POTRA; PTÁK, 1983),
Weerakoon and Fernando’s method (WEERAKOON;
FERNANDO, 2000), Midpoint method (FRONTINI;
SORMANI, 2003) among others. It is considered to solve
the system of nonlinear equations (KANWAR; KUMAR;
BEHL, 2013; FAN; YUAN, 2014):

F(x) = 0, (1)

where F : Rn → Rn is a continuously differentiable
function, where F = ( f1(x), f2(x), . . . , fn(x))T and
x = (x1,x2, . . . ,xn)

T .
The iterative methods for the system solution given in

equation (1) are of type x(k+1) = Φ(x(k)) and provide a
sequence of vectors {x(k)}∞

(k=0), where the superscript k is
the iteration and x(k) is the approximation of the solution
in the kth iteration. From an initial estimate x(0), this se-
quence may diverge or converge towards a ith root x(∗,i) of
the system (GRAU-SÁNCHEZ; NOGUERA; GUTIÉR-
REZ, 2010).

In this paper, we adapt the Newton-Raphson (NR) and
Potra-Pták (PP) algorithms by combining them with the
modified Newton-Raphson Method (MNR) by inserting a
condition. The idea of this modification is: as long as the
imposed condition is not satisfied, the sequence of vectors
x(k) is generated through the iterative process of NR or PP
methods; when the approximate solution is close enough

to the root x(∗,i) (in other words, a condition is satisfied),
then subsequent iterations are obtained with the MNR
method, until the convergence criteria is satisfied for a
given tolerance.

To validate the algorithms of NR and PP hybrid
methods developed here, some numerical tests of sparse
nonlinear equations system problems were performed with
the Matlab® software support (MATLAB, 2015), verify-
ing the computational performance of both. The numerical
results obtained in the simulations are compared with al-
gorithms of NR and PP standard methods.

In addition, as an application of the algorithms,
problems with spatial trusses and geometric nonlinear
behavior are solved. The NR and PP hybrid methods are
adapted to the structural problem in an incremental and
iterative procedure, associating them with the Linear Arc-
Length path-following technique and the Finite Element
Positional Method.

Different approaches for nonlinear structural analysis
of trusses were proposed. Saffari; Mansouri (2011) sug-
gested a two-point method with fourth-order conver-
gence. Mahdavi et al. (2015) proposed an iterative method
free from second derivative originated from modified
Chebyshev and cubic spline’s schemes. Souza et al. (2018)
proposed new algorithms based on two-step methods with
cubic convergence order and combined with the Linear
Arc-Length path-following technique. Mohit; Sharifi;
Tavakoli (2020) proposed three-step iterative techniques,
with fourth-order convergence, for solving nonlinear equa-
tions used for geometrically nonlinear analysis of space
truss. Dehghani et al. (2020) proposed an improved pertur-
bation algorithm to refine the classical methods in numeri-
cal computing techniques such as the Newton–Raphson
method.

Iterative methods for nonlinear equation system
solution

The Newton-Raphson method is described by the equa-
tions (KANWAR; KUMAR; BEHL, 2013):

x(k) = x(k−1)+dx(k), (2)

dx(k) =−[F′(x(k−1))]−1F(x(k−1)), (3)

for all k = 1,2, . . ., being F′(x(k−1)) the Jacobian matrix
of F in x(k−1). If F′(x(k−1)) is not singular in the so-
lution, the Newton method convergence is quadratic
(WEERAKOON; FERNANDO, 2000). In its implemen-
tation, the explicit calculation of [F′(x(k−1))]−1 can be
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avoided solving F′(x(k−1))dx(k) =−F(x(k−1)) by a direct
method, LU factorization, for example, or an iterative
method, Conjugate Gradient, for example, and then a new
approximation x(k) is obtained with the addition of dx(k)

and x(k−1) (SOUZA et al., 2018).
Potra; Pták (1983) developed a two-step method based

on the Newton method, consisting of two evaluations of
the given vector F and requiring only one evaluation of
the Jacobian matrix F′ at each iteration, with cubic conver-
gence and a higher efficiency index than Newton’s method.
The Potra-Pták method is given by the following equations
(SOLEYMANI; SHARMA; TOHIDI, 2012):

y(k) = x(k−1)+dx(k), (4)

x(k) = x(k−1)+dx(k)+dy(k), (5)

dx(k) =−[F′(x(k−1))]−1F(x(k−1)), (6)

dy(k) =−[F′(x(k−1))]−1F(y(k−1)). (7)

Algorithm 1: The Newton-Raphson hybrid method.

1 begin
2 k← 0
3 error← 1
4 met← 0
5 Calculate F′(x(0)) and F(x(0))
6 Decompose the matrix F′(x(0)) in the triangular

matrices L and U
7 y(0)← [L]−1F(x(0))
8 dx(1)←−[U]−1y(0)

9 while k < kmax do
10 k← k+1
11 x(k)← x(k−1)+dx(k)

12 Calculate F(x(k))
13 error←‖ F(x(k)) ‖
14 if error < tol then
15 Out x(k)
16 Loop’s out
17 end

18 if met = 0 then
19 if ‖ F(x(k)) ‖≤ min(η tol,‖ dx(k) ‖) then
20 met← 1
21 end
22 end

23 if met = 0 then
24 Calculate F′(x(k))
25 Decompose the matrix F′(x(k)) in the

triangular matrices L and U
26 end
27 y(k)← [L]−1F(x(k))
28 dx(k+1)←−[U]−1y(k)

29 end
30 end

In the Potra-Pták method the same Jacobian matrix
is used to solve the linear equation systems generated
at each iteration; thus, these systems can be solved via
decomposition (eg LU factorization), since a single fac-
torization at the beginning of the iteration is required.
The algorithmic versions of Newton-Raphson and Potra-
Pták standard methods are presented in Souza (2015).
Algorithms 1 and 2 show the algorithms of NR and PP
hybrid methods, respectively, with the LU factorization
method.

The input data in Algorithms 1 and 2 are: function
F(x(k−1)); Jacobian matrix F′(x(k−1)); initial approach
x(0); maximum number of iterations kmax; tolerance tol;
and constant η . The algorithm outputs are: approximate
solution x(k); and number of iterations to convergence k.
In the algorithms of the NR and PP hybrid methods, it
is observed the insertion of the condition ‖ F(x(k)) ‖≤
min(η tol,‖ dx(k) ‖), being η > 1 the input constant, see
line 19 of Algorithm 1 and line 24 of Algorithm 2.

Algorithm 2: The Potra-Pták hybrid method.
1 begin
2 k← 0
3 error← 1
4 met← 0
5 Calculate F′(x(0)) and F(x(0))
6 Decompose the matrix F′(x(0)) in the triangular matrices

L and U
7 y(0)← [L]−1F(x(0))
8 dx(1)←−[U]−1y(0)

9 while k < kmax do
10 k← k+1
11 x(k)← x(k−1)+dx(k)

12 if met = 0 then
13 Calculate F(x(k))
14 y(k)← [L]−1F(x(k))
15 dy(k)←−[U]−1y(k)

x(k)← x(k−1)+dx(k)+dy(k)
16 end
17 Calculate F(x(k))
18 error = ‖ F(x(k)) ‖
19 if error < tol then
20 Output x(k)
21 Loop’s output
22 end

23 if met = 0 then
24 if ‖ F(x(k)) ‖≤ min(η tol,‖ dx ‖) then
25 met← 1
26 end
27 end

28 if met = 0 then
29 Calculate F′(x(k))
30 Decompose the matrix F′(x(k)) in the triangular

matrices L and U
31 end
32 y(k)← [L]−1F(x(k))
33 dx(k+1)←−[U]−1y(k)

34 end
35 end
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When approaching the solution of F(x(k)) = 0, or
equivalent ‖ F(x(k)) ‖< tol, we have that the derivatives
of F will not undergo major changes. Thus, the cost of
new assessments close to the solution becomes unneces-
sary. We fixed, in our proposal, the linear approximation
of F(x(k)) close to x(k) when ‖ F(x(k)) ‖< η tol.

In other words, if ‖ F(x(k)) ‖< η tol, it means that
we are close to meeting the condition ‖ F(x(k)) ‖< tol,
and we stop evaluating the derivatives of F and fix the last
Jacobian matrix to solve the remaining linear systems until
the condition ‖ F(x(k)) ‖< tol. Since it is not possible to
accurately determine the meaning of near or far from the
solution, the parameter η is a heuristic parameter.

Thereby, when the condition ‖ F(x(k)) ‖≤
min ‖ (η tol,‖ dx(k) ‖) is satisfied, the iterations
become the modified Newton-Raphson method, instead
of the Newton-Raphson or Potra-Pták method and, in this
case, a single system of linear equations is solved and
only the vector F is updated, since the Jacobian matrix F′

is kept constant in the iterative cycle.

Numerical examples
The algorithms developed in this paper were imple-

mented in the Matlab® software, version 8.6 R2015b
(MATLAB, 2015), and the computer simulations were
realized in the Core i7 - 3537U computer with 8GB RAM
Memory. In this section, numerical tests of nonlinear equa-
tion systems are presented to validate the proposed al-
gorithms. Then, the algorithms are adapted to the struc-
tural problem and are applied to solve three spatial truss
problems with geometric nonlinear behavior: circular
dome; trussed beam; and circular truss.

Systems of sparse nonlinear equations

If the stopping criteria is satisfied ‖ F(x(k)) ‖< tol,
so the approximate solution x(k) is taken as the root of
the system given in equation (1). The systems of sparse
nonlinear equations with η ≥ 1000 variables studied are
described in Table 1. The methods are compared based on
the following parameters: processing time in seconds (t);
total number of iterations to convergence to the system
solution (ktotal) and the Euclidean norm of the vector ‖ F ‖.

For the calculation of the processing time, it was
used the stopwatch timer functions tic and toc. The tic
function records the current time, and the toc function
uses the recorded value to calculate the elapsed time.
The program was run three times for each simulation
and, then, the processing time was calculated using the
average of the values.

Table 1 – Systems of sparse nonlinear equations.

Nonlinear equations system

Problem 1* fi = cos(xi)−1 = 0, i = 1,2, ...,n

x* = [0 0 0 ... 0]T

x(0) = [0.5 0.5 0.5 ... 0.5]T

tol = 1.0×10−15

Problem 2* fi = exp(xi)−1 = 0, i = 1,2, ...,n

x∗ = [0 0 0] ... 0]T

x(0) = [0.5 0.5 0.5 ... 0.5]T

tol = 1.0×10−15

Problem 3 fi = exp(xi)+ xix2
i+1− x3

i+1−1 = 0,

i = 1,2, ...,n−1

fn = exp(x1)+ x2
n−1 = 0

x∗ = [0 0 ... 0]T

x(0) = [5 5 ... 5]T

tol = 1.0×10−15

Problem 4* fi = exp(xi+1)+ x2
i −1 = 0,

i = 1,2, ...,n−1

fn = exp(xi+1)+ x2
1−1 = 0

x* = [0 0 ... 0]T

x(0) = [2 2 ... 2]T

tol = 1.0×10−15

*In Darvishi; Shin (2011)
Source: The authors.

The methods considered for the analysis are: Newton-
Raphson method, Potra-Pták method, Newton-Raphson
hybrid method, Algorithm 1, and Potra-Pták hybrid
method, Algorithm 2. Numerical results are presented
in the Table 2, where n is the number of equations and
nz is the number of non-null elements of the Jacobian
matrix F′.

It is observed that Algorithm 2 reached the solution
with a shorter processing time compared to the other
methods. In the simulations, a constant η was adopted
as same value as n. Although the total number of itera-
tions until the convergence to the solution to be equal to or
greater in simulations compared to the standard Potra-Pták
method, the hybrid Potra-Pták method was more efficient
in processing time.

Application in spatial trusses with nonlinearity geometric

problems

The nonlinear equations system that governs the
static equilibrium of a structure with geometric
nonlinear behavior (REZAIEE-PAJAND et al., 2014;
MAXIMIANO et al., 2014; SOUZA et al., 2017;
SOUZA et al., 2018) is given by:

g = λFr−Fint(d) = 0, (8)
66
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Table 2 – Numerical results of the systems of sparse nonlinear equations.

Solution method ktotal ‖ F ‖ t(s)
Problem 1

n = 10000
nz = 10000

Algorithm 2 (hybrid PP)
Algorithm 1 (hybrid NR)

Newton-Raphson
Potra-Pták

101
97
26
19

0
0
0
0

9.51
13.91
16.63
12.03

Problem 2

n = 15000
nz = 15000

Algorithm 2 (hybrid PP)
Algorithm 1 (hybrid NR)

Newton-Raphson
Potra-Pták

4
6
6
4

0
0
0
0

4.07
7.03
8.41
5.42

Problem 3

n = 10000
nz = 20000

Algorithm 2 (hybrid PP)
Algorithm 1 (hybrid NR)

Newton-Raphson
Potra-Pták

350
314
28
20

8.88×10−16

8.88×10−16

4.44×10−16

2.22×10−16

10.66
14.07
17.27
12.12

Problem 4

n = 10000
nz = 20000

Algorithm 2 (hybrid PP)
Algorithm 1 (hybrid NR)

Newton-Raphson
Potra-Pták

7
9
9
6

0
0
0
0

3.78
6.05
6.95
4.52

Source: The authors.

where g is the vector of unbalanced forces, Fint is the
vector of internal forces, evaluated as a function of
the coordinate vector at the nodal points of structure
d, and λ is the load parameter responsible for scaling
the reference vector Fr. The equation (8) is the system
with (n + 1) variables, being n nodal coordinates (d)
and one load parameter (λ ), but only n equations. So,
a constraint equation is added to the system, given by
(LEON et al., 2011):

c(d,λ ) = 0. (9)

The structural problem, equations (8) and (9), is solved
incrementally and iteratively: for each load step, there is a
nonlinear system of equations to be solved, in other words,
LS systems are solved. Applying the Newton-Raphson
method to the system, the following structural problem
appears (BATHE, 2006; SOUZA, 2015):

K(k−1)
δd(k) = g(k) = λ

(k)Fr−Fint(d(k−1)), (10)

K(k−1) =
δg(k−1)

δd
is the representative stiffness matrix of

the structural system. The total load parameter (λ ) and
the nodal coordinate vector (d) in a load step t +∆t and
iteration k are updated by, respectively

λ
(k) = λ

(k−1)+δλ
(k), (11)

d(k) = d(k−1)+δd(k). (12)

Combining the equations (10) and (11), the expression
appears in δd(k) (CRISFIELD, 1991):

δd(k) = δd(k)
g +δλ

(k)
δd(k)

r , (13)

where δλ (k) is the sub-increment of the load parameter
that must be evaluated over the iterative cycle, and δd(k)

g

and δd(k)
r are obtained, respectively, by:

δd(k)
g = [K(k−1)]−1g(k−1), (14)

δd(k)
r = [K(k−1)]−1Fr. (15)

The load parameter increments (∆λ ) and the nodal
coordinates vector (∆d) in the load step t+∆t and iteration
k are evaluated by, respectively:

∆λ
(k) = ∆λ

(k−1)+δλ
(k), (16)

∆d(k) = ∆d(k−1)+δd(k). (17)

The sub-increment of load δλ (k) is evaluated at each
iteration in the incremental process by the path-following
technique proposed by (RIKS, 1972, 1979). The equation
for determining the correction of δλ (k) is:

δλ
(k) =−∆d(0)T

δd(k)
g

∆d(0)T
δd(k)

r

. (18)
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The algorithms adapted to the structural problem, as-
sociated with the Linear Arc-Length technique, referring
to the hybrid Newton-Raphson and Portra-Pták methods
are described in Algorithms 3 and 4, respectively. The al-
gorithms of the standard Newton-Raphson and Pótra-Pták
methods are presented in Souza et al. (2018).

Algorithm 3: Hybrid Newton-Raphson method
adapted to the structural problem.
1 begin
2 ∆d← 0,λ ← 0
3 for LS← 1, ...,LSmax do
4 met← 0
5 Calculate the stiffness matrix K
6 Decompose the matrix K in the triangular

matrices L and U
7 y← [L]−1Fr(∆P)
8 δdr← [U]−1y
9 ∆λ ← ∆l/ ‖ δdr ‖

10 if ∆dT
δdr < 0 then

11 ∆λ ←−∆λ

12 end
13 ∆d(0)← ∆λδdr

14 ∆d← ∆d(0)

15 g← (λ +∆λ )Fr(∆P)−Fint(d+∆d)

16 for k← 1, ...,kmax do
17 y← [L]−1g
18 δdg← [U]−1y
19 δλ ←−(∆d(0)T

δdg)/(∆d(0)T
δdr)

20 δd← δdg +δλδdr
21 ∆d← ∆d+δd
22 ∆λ ← ∆λ +δλ

23 g← (λ +∆λ )Fr(∆P)−Fint(d+∆d)

24 if ‖ g ‖≤ tol ‖ Fr(∆P) ‖ then
25 Finish the execution of for
26 end

27 if met = 0 then
28 if error ≤ min(η tol,‖ δd/∆d ‖)

then
29 met← 1
30 end
31 end

32 if met = 0 then
33 Calculate K(d+∆d)
34 Decompose the matrix K in the

triangular matrices L and U
35 y← [L]−1Fr

36 δdr← [U]−1y
37 end
38 d← d+∆d
39 λ ← λ +∆λ

40 ∆l←0 ∆l(Nd/k)0.5

41 end
42 end
43 end

The input data in Algorithms 3 and 4 are: initial Arc-
Length (0∆l); maximum number of iterations in each
load step (kmax); number of desired iterations in each

Algorithm 4: Hybrid Potra-Pták method adapted
to the structural problem.
1 begin
2 ∆d← 0,λ ← 0

3 for LS← 1, ...,LSmax do
4 met← 0
5 Calculate the stiffness matrix K
6 Decompose the matrix K in the triangular

matrices L and U
7 y← [L]−1Fr(∆P)
8 δdr← [U]−1y
9 ∆λ ← ∆l/ ‖ δdr ‖

10 if ∆dT
δdr < 0 then

11 ∆λ ←−∆λ

12 end
13 ∆d(0)← ∆λδdr

14 ∆d← ∆d(0)

15 g← (λ +∆λ )Fr(∆P)−Fint(d+∆d)

16 for k← 1, ...,kmax do
17 y← [L]−1g
18 δdg← [U]−1y
19 δλ1←−(∆d(0)T

δdg)/∆d(0)T
δdr

20 δd1← δdg +δλ1δdr
21 ∆d← ∆d+δd1
22 ∆λ ← ∆λ +δλ1

23 if met = 0 then
24 g← (λ +∆λ )Fr(∆P)−Fint(d+∆d)
25 y← [L]−1g
26 δyg← [U]−1y
27 δλ2←−(∆d(0)T )δyg/(∆d(0)T δdr)

28 δd2← δyg +δλ2δdr

29 ∆d← ∆d+δd2
30 ∆λ ← ∆λ +δλ2
31 end
32 g← (λ +∆λ )Fr(∆P)−Fint(d+∆d)

33 if ‖ g ‖≤ tol ‖ Fr(∆P) ‖ then
34 Finish the execution of for
35 end

36 if met = 0 then
37 if error ≤ min(η tol,‖ δd1/∆d ‖)

then
38 met← 1
39 end
40 end

41 if met = 0 then
42 Calculate K(d+∆d)
43 Decompose the matrix K in the

triangular matrices L and U
44 y← [L]−1Fr

45 δdr← [U]−1y
46 end
47 end
48 d← d+∆d
49 λ ← λ +∆λ

50 ∆l←0 ∆l(Nd/k)0.5

51 end
52 end

load step (Nd); tolerance (tol); load incremental (∆P);
maximum number of load steps (LSmax); and constant η .
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The algorithm outputs are: nodal coordinate vector (d);
total load parameter (λ ); total number of load steps (LS);
total number of accumulated iterations until the conver-
gence to the solution (ktotal); and nodal displacement
vector (u).

The spatial trusses are discretized through the Fi-
nite Element Positional Method. Originally developed by
Coda (2003), this formulation is an alternative approach
to nonlinear problems, and considers nodal positions as
nonlinear system variables instead of the displacements
(CODA; GRECO, 2004). The implemented algorithms
are computationally evaluated according to the following
parameters: processing time in seconds (t); total number
of load steps (LS) and accumulated iterations (ktotal); and
average number of iterations per load step (kav).

Circular dome with 168 bars and 73 nodes

Figures 1a) and 1b) shows a circular dome whose bars
have the dimensionless axial stiffness EA =1.0 × 104.
At the base of the truss there are pinned type supports
and at the top of the truss a vertical load of intensity P is
applied. It has 73 nodes, 168 bars and 219 nodal coordi-
nates. The parameters considered in the simulations are:
initial Arc-Length 0∆l = 6.0; maximum number of itera-
tions in each cycle kmax = 100; number of desired iterations
Nd = 3; tolerance tol = 1.0 × 10−10; load incremental
∆P = 100; and η =1000. The numerical results LS, ktotal ,
kav and t are shown in Table 3 for simulations with the
Newton-Raphson, Hybrid Newton-Raphson, Potra-Pták
and Hybrid Potra-Pták solution methods.

Figure 1 – Circular dome.

a) Top view.

b) Lateral view.
Source: Adapted from Papadrakakis (1981).

Table 3 – Numerical results for the circular dome, number
of unknowns: 219 nodal coordinates and force parameter.

Solution method LS ktotal kav t(s)
Newton-Raphson 16 56 3.50 0.75

Hybrid Newton-Raphson
(Algorithm 3) 16 56 3.50 0.69

Potra-Pták 14 36 2.57 0.61
Hybrid Potra-Pták

(Algorithm 4) 14 37 2.64 0.54

Source: The authors.

The graph relating the vertical displacement and the
load P at the top of the truss, equilibrium path, is shown in
Figure 2a). This curve represents the nonlinear response
of the structure. Each point on the path, marker, represents
a static equilibrium configuration of the structure. This
figure shows the presence of two load limit points in the
path, characterized by horizontal tangents, parallel to the
axis of displacements. The first limit point represents the
maximum load P that the structure can support before
snap-through. At intermediate positions, the load P de-
creases and reverses signal twice while the displacement
continues to increase. When the snap-through effect ends
at the second point, the structure begins to support addi-
tional load values. Good agreement is observed between
the results obtained with the hybrid Potra-Pták method
(FORDE; STIEMER, 1987; PAPADRAKAKIS, 1981).

Figure 2b) shows the distribution map of the non-
null elements of the stiffness matrix K, obtained with
the Matlab® spy function. It is observed that this matrix
is sparse, whose non-null elements appear on the main
diagonal and in parallel diagonals, with sparse degree
94.43 %, number of null elements/total number of
elements.

Large matrices require large storage space, and even
though there are computers with the largest memory ca-
pacity today, it is usually not enough to store the square
matrix. To make matrix storage and operations less expen-
sive, you can use techniques based on storing non-zero
values, such as CSC, Compressed Sparse Row, and CSR,
Compressed Sparse Row (ANTUNES FILHO; XAVIER,
2013). In the program developed in Matlab® environment
the sparse function was used, which stores the non-null
elements of the original matrix, disregarding the elements
equal to zero.

Figure 3 shows the undeformed (before loading) and
deformed dome configurations, corresponding to LS = 14,
pointing to the bars that are tractioned (black color) and
compressed (red color), obtained with the method Hybrid
Potra-Pták.
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Figure 2 – Circular dome.

a) Equilibrium path.

b) Distribution map of the non-null
elements of the stiffness matrix K, where
nz is the total number of non-null elements.

Source: The authors.

Figure 3 – Undeformed and deformed circular dome
configurations, with the indication of the tractioned (black
color) and compressed (red color) bars.

Source: The authors.

Space trussed beam with 566 bars and 164 nodes

Let the space trussed beam shown in Figure 4 be
10.0 m long, 1.0 m high and 0.25 m deep. For all bars
the cross-sectional area 0.01 m2 and modulus of elasticity
E =205.0 GPa were considered. The end nodes are
restricted in x, y and z directions. The truss is requested
by loads of intensity P at the indicated nodes, as shown
in Figure 4. The structure has 164 nodes, 566 bars and
492 nodal coordinates. The parameters considered in the
simulations are: 0∆l = 0.5; kmax = 100; Nd = 3; tol = 1.0
× 10−6; ∆P = 100 N; and η = 10. The numerical results
LS, ktotal , kav and t are shown in Table 4.

Figure 4 – Structural scheme of the space trussed beam.

Source: The authors.

Table 4 – Numerical results for the trussed beam, number of
unknowns: 492 nodal coordinates and one force parameter.

Solution method LS ktotal kav t(s)
Newton-Raphson 81 280 3.45 17.73

Hybrid Newton-Raphson
(Algorithm 3) 81 280 3.45 17.49

Potra-Pták 73 218 2.98 15.74
Hybrid Potra-Pták

(Algorithm 4) 72 195 2.70 13.76

Source: The authors.

Figure 5 shows the undeformed and deformed trussed
beam configurations obtained in the last equilibrium con-
figuration, LS =72, with the hybrid Potra-Pták method.
The graph relating the vertical displacement at node 21
and the force P is shown in Figure 6a). Figure 6b) shows
the distribution map of the non-null elements of the stiff-
ness matrix K, with a sparsity degree of 95.41 %.

Figure 5 – Structural scheme of the space trussed beam.

Source: The authors.

Space circular truss with 210 bars and 90 nodes

Figure 7 shows a circular spatial truss with 90 nodes,
210 elements and 270 nodal coordinates. At the top of
the structure, height z = 4.4641 m, vertical loads are
applied to nodes of intensity 0.1 P, negative z direction;
and at dimension z = 3.4641 m, vertical loads P, nega-
tive z direction, and horizontal loads 0.1 P, negative y

direction, are applied to the indicated nodes. The base
nodes, dimension z = 0 m, are constrained in the x, y

and z directions, pinned type support. The modulus of
elasticity E and the cross-sectional area A of the bars are
210 × 106 kPa and 0.1 m2, respectively. In the simula-
tions the parameters are considered: 0∆l = 7.0 × 10−4;
Kmax = 150; Nd = 4; tol = 1.0 × 10−7; ∆P =1.0 kN;
and η = 10.
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Figure 6 – Trussed beam.

a) Equilibrium path

.

b) Distribution map of non-null elements of
the stiffness matrix K, where nz is the total
number of non-null elements.

Source: The authors.

Figure 7 – Structural scheme of the circular spatial truss.

a) 3D view.

b) Plan view.

Source: The authors.

Table 5 presents the numerical results LS, ktotal , kav

and t, for simulations with the implemented solution
methods.

Table 5 – Numerical results for the circular truss, number
of unknowns: 270 nodal coordinates and one force
parameter.

Solution method LS ktotal kav t(s)
Newton-Raphson 150 603 4.02 6.22

Hybrid Newton-Raphson
(Algorithm 3) 150 603 4.02 5.77

Potra-Pták 127 375 2.95 4.97
Hybrid Potra-Pták

(Algorithm 4) 127 373 2.93 4.76

Source: The authors.

Figure 8 shows the deformed spatial circular truss
reffering to the last equilibrium configuration, LS =127,
with the indication of the tractioned and compressed
bars.

Figure 8 – Deformed configuration of the circular truss,
indicating the traction bars (black color) and compressed
bars (red color).

Source: The authors.

The equilibrium path, vertical displacement curve at
node 60 versus load P, is shown in Figure 9a); the distribu-
tion map of the non-zero elements of the stiffness matrix
K is illustrated in Figure 9b).

Figure 9a) shows the presence of two limit points in
the path. The first point is a load limit point whose tan-
gent is parallel to the axis of displacements; the second
is a limit point of displacement, and is characterized
by a tangent parallel to the axis of loads. An equi-
librium configuration can be stable or unstable. Stable
configurations occur with increasing load and displace-
ment; unstable configurations may occur with decreasing
load and increasing displacement, or decreasing load and
displacement.

The constant curves η versus time t and η versus total
number of iterations per load step are showns in Figures
10a) and 10b), respectively, obtained with the hybrid Potra-
Pták method, Algorithm 4. It is observed that by varying
the value of η the processing time also changes; the best
result achieved is for η = 40, whose processing time t

is 4.40 s.
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Figure 9 – Circular truss.

a) Equilibrium path.

b) Distribution map of non-null elements of
the stiffness matrix K.

Source: The authors.

Figure 10 – Simulations of the circular spatial truss with
Algorithm 4.

a) Curve η versus time t.

b) Curve η versus total number of iterations
per load step.

Source: The authors.

Conclusion

A modification of the Newton-Raphson and Potra-
Pták algorithms was proposed by inserting a condition,
associating them with the modified Newton-Raphson
method. The presented numerical examples demonstrated
computational efficiency and implemented algorithms pre-
cision, obtaining the solution of the studied problems with
a shorter processing time, according to Tables 2-5.
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