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Time series forecasting using ARIMA for modeling of glioma growth
in response to radiotherapy

Previsão com séries temporais usando ARIMA para modelagem de
crescimento de glioma em resposta à radioterapia

Larissa Miguez da Silva1; Gustavo Benitez Alvarez2; Eliane da Silva Christo3;
Vanessa da Silva Garcia4; Gerardo Amado Pelén Sierra5

Abstract
In present days, the growing number of people suffering from cancer has been a major cause for concern
worldwide. Glioblastoma in particular, are primary tumors in glial cells located in the central nervous system.
Because of this sensitive location, mathematical models have been studied and developed as alternative
tools for analyzing tumor growth rates, assisting on the decision-making process for treatment dosage,
without exposing the patient’s life. This paper presents two time series models to estimate the growth rate of
glioblastoma in response to ionizing radiotherapy treatment. The results obtained indicate that the proposed
time series methods attain predictions with a Mean Absolute Percentual Error (MAPE) of approximately
1% to 4%, and simulations show that the Autoregressive Integrated Moving Average (ARIMA) method
surpasses the Holt method based on the Mean Square Error (MSE) and MAPE values obtained. Furthermore,
the results show that the time series method is applicable to data from two different mathematical models for
glioblastoma growth.
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Resumo
Atualmente, o crescente número de pessoas que sofrem de câncer tem sido um grande motivo de preocupação
em todo o mundo. Os glioblastomas, em particular, são tumores primários em células gliais localizadas no
sistema nervoso central. Por conta dessa localização sensível, modelos matemáticos têm sido estudados e
desenvolvidos como ferramentas alternativas para análise das taxas de crescimento tumoral, auxiliando na
tomada de decisão quanto à dosagem do tratamento, sem expor a vida do paciente. Este artigo apresenta
dois modelos de séries temporais para estimar a taxa de crescimento do glioblastoma em resposta ao
tratamento com radioterapia ionizante. Os resultados obtidos indicam que os métodos de séries temporais
propostos obtém previsões com Mean Absolute Percentual Error (MAPE) de aproximadamente 1% e 4%, e
as simulações mostram que o método ARIMA supera o método de Holt com base no Mean Square Error
(MSE) e MAPE. Além disso, os resultados mostram que o método das séries temporais é aplicável a dados
de dois modelos matemáticos diferentes para o crescimento de glioblastoma.
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Introduction

On the present world stage, concern with cancer
illnesses has intensified due to its undeniable growth ten-
dency. Globally it is estimated that the number of peo-
ple suffering from cancer has increased to 18.1 million
new cases and 9.6 million deaths in 2018 (IARC, 2018).
Growth on this index is due to several factors, including
population growth and/or aging, as well as the popula-
tion’s life style changes, social and economic development
(IARC, 2018; INCA, 2018; CANCER INSTITUTE NSW,
2018).

There are more than one hundred types of cancer,
which originate from different parts of the human body.
Particularly, this paper focuses on gliomas, which are a
collection of tumors originating at the glia or its precursors
on the central nervous system (SNC) (HOLLAND, 2000).
They are malignant tumors presenting accelerated growth
with a high degree of lethality and very short average sur-
vival time. Conventional treatment of gliomas involves
a combination of different types of therapies, such as
surgery, radiotherapy and/or chemotherapy (BARNETT,
2007; BELLOMO; CHAPLAIN; ANGELIS, 2008). Con-
ventional treatment shows little improvement in the pa-
tient’s survival time and quality of life. There are other
treatments like BNCT (Boron Neutron Capture Therapy)
and treatments that use stem cells. However, they are not
yet available in Brazil. Our research does not intend to
make a choice of the best therapy, but to understand and
develop mathematical models to optimize treatments and
help in understanding this disease.

Radiotherapy was chosen here because more than 50%
of patients undergoing glioma treatment use radiotherapy
to fight the disease. This number derives from the fact that
radiotherapy is precise in removal of tumoral mass, with-
out causing neurological damage (WALKER; STRIKE;
SHELINE, 1979). Meanwhile, it becomes necessary to
forecast radiation dosages to be ministered to the patient
during treatment, this for the dose-effect relationship to
remain harmless. In future works we must address other
therapies. Thus, it will be possible to make comparisons
between therapies and combinations of them to seek better
treatment optimization.

The main goal of cancer treatment therapies is de-
stroying cancer cells preserving the healthy ones. In this
context the importance of the interdisciplinary relation-
ship between medical science and mathematics in health
research studies stands out, both aiming towards the same
goal of developing models and techniques capable of con-

tributing to cancer fighting research (BARNETT, 2007;
BELLOMO; CHAPLAIN; ANGELIS, 2008; HOLLAND,
2000; MURRAY, 2012).

Two mathematical models can be found in literature
which describe the growth rate of gliomas (DOLGIN,
2014; LEDER et al., 2014; ROCKNE et al., 2008; SWAN-
SON; ALVORD JUNIOR; MURRAY, 2000), both models
changing continually in time. The model proposed in
Swanson, Alvord Junior and Murray (2000) and Rockne
et al. (2008) consists of a partial differential equation, and
it considers the liquid proliferation and tumor invasion
rates, seen as a solid form (macro). On the other hand, the
model proposed in Leder et al. (2014) and Dolgin (2014)
is based on Markov’s chains, and considers the dynamics
of two different cancer cell populations, and beyond their
propagation it establishes a conversion and reversion rate
between these populations. Even with all this, in practice
it is very difficult to accompany this increase and decrease
in the populations of cancer cells continuously. In general,
in population growth studies measurements are performed
at regular time intervals. In this case, time is said to be
discrete, because population size is known point by point.
Thus, discrete model utilization becomes viable.

There are several discrete models such as Bernoulli’s,
binomial and models based on stochastic processes such
as time series. Time series has been integrated into sev-
eral research works, aiding with the inference on the ba-
sic properties of the series observations (DOMINGOS;
OLIVEIRA; MATTOS NETO, 2019; TEIXEIRA; IKE-
HARA; BRANDT, 1981; ZHANG, 2003). The applica-
tion of models based on time series linked in association
with computing have shown a degree of precision with-
out significant error. For example, a model utilizing the
Holt method with time series is presented as a new alter-
native for glioma growth models (JESUS et al., 2014).
In Jesus et al. (2014) it is showed that the Holt’s expo-
nential smoothing method is efficient to describe the data
from mathematical model based in reactive-diffusive par-
tial differential equation (ROCKNE et al., 2008).

This paper, together with Jesus et al. (2014), reaffirms
the great potential that exists in the use of statistical ap-
proaches to understand glioblastoma growth. The objec-
tive of this work is to apply two time series models for
tumor growth predictions based on simulated data from
model in Leder et al. (2014). The two time series models
used here are both well known statistical approaches:
ARIMA method and Holt method. It is well known that
there are more powerful time series methods, however
the two choices made proved to be sufficient to repro-
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duce the results of mathematical model in Leder et al.
(2014). The results of the two time series methods are
compared with results in Leder et al. (2014) and Dolgin
(2014), and several analysis are taken into consideration
in accordance with the dosage fractioning schedule, where
four different scenarios exist. Since the parameters of the
two mathematical models can be adjusted for a single indi-
vidual (LEDER et al., 2014; ROCKNE et al., 2008), and
considering that both models can be reproduced satisfacto-
rily by time series, then it is possible to state that the time
series is a statistical approach that can also be adjusted to
a single individual.

Mathematical models of tumor growth

Population growth dynamics can be observed in count-
less nature phenomena and they are utilized in several
different contexts. In the field of Biology, these models
can be used to describe cell proliferation and its dynamics
in the environment (MURRAY, 2012).

In recent decades, many mathematical models have
been developed in the literature aiming to observe tu-
moral behavior. For example, models based on partial
differential equations such as the reactive-diffusive model
(ROCKNE et al., 2008). In addition to those models that
consider homogeneity of tumoral cells, a different model
was proposed in Dolgin (2014), where Markov’s chains
are employed and heterogeneity of tumoral cells and dy-
namically acquired radioresistance to forecast the efficacy
of different radiation schemes are taken into consideration.

In addition to these models, studies found that using
Holt’s time series based method can be effective as a new
alternative to tumor growth models (JESUS et al., 2014).
However, for the use of time series, a set of observations
is required to estimate the growth of glioma over time
after therapy. Due to the limitations of data available in
the literature and the lack of clinical histories, in the paper
mentioned above time series were based on data generated
by the mathematical model via reactive-diffusive equation
(ROCKNE et al., 2008).

In this work, the time series were generated from the
model described in Leder et al. (2014). For this purpose,
MATLAB® software was used where a computer code
was made for the model solution via Markov’s chains,
represented by equations (1) and (2). These two equa-
tions describe the dynamics between two glioblastoma
cell sub-populations in response to radiation therapy. The
linear-quadratic model is used for fractionation of ther-
apy, where the ith dose of treatment is denoted by di.

Thus, NS
i+1 denotes the number of radiation-sensitive cells

(RSC) at time t surviving a dose of treatment di, and NR
i+1

is the number of radiation-resistant cells (RRC). NS
i and

NR
i represent the respective populations before applying

dose di. Time t corresponds to the time between treatments
i and i+1.

NS
i+1(t) = NS

i e−[αSdi+βSd2
i ]
[
(1− γ)erS(t−LS)

+
+ γe−νt+

+asγν

∫ t

0
erS(t−τ−MS)

+
∫ (τ−LR)

+

0
e−νyerR(τ−y−LR)

+
dydτ

]
+

+asNR
i e−[αRdi+βRd2

i ]
∫ max(t,LR)

LR

erR(τ−LR)erS(t−τ−MS)
+

dτ.

(1)

NR
i+1(t) = NR

i e−[αRdi+βRd2
i ]erR(t−LR)

+
+

+NS
i e−[αSdi+βSd2

i ]γν

∫ t

0
e−νserR(t−τ−LR)

+
dτ. (2)

Concerning the dynamics between these two cell sub-
populations, it has been reported that the rate of prolifer-
ation of RSC and RRC by the end of the quiescence is
given for rS and rR respectively. RRC cells convert to RSC
cells with a rate of as, and ν denotes the rate at which
RSC revert to the RRC. The αS, αR, βS and βR parame-
ters belong to the linear-quadratic model and represent
the lesions in the DNA produced from a single radiation
beam in the cancer cells. The parameter γ denotes the
fraction of RSC that revert to the RRC. The LS and LR

parameters represent the minimum time that RSC and
RRC cells take to return to the cell cycle respectively, and
MS is the minimum time for a newly created RSC to lead
to clonal expansion. The notation ( )+ assumes the value
zero if the expression within parentheses is negative, oth-
erwise it assumes the value of the expression. All these
parameters were adjusted based on experiments with mice
(LEDER et al., 2014).

Finally, let NS
1 and NR

1 be their initial populations just
before the first dose of radiotherapy, and consider the fol-
lowing relationship between these two initial populations
R = NS

1/NR
1 . Therefore, after completion of radiotherapy

fractionation in K doses, the quotient of tumor cell relative
to the initial population is defined as

xt =
NS

K+1(t)+NR
K+1(t)

NS
1 +NR

1
=

NS
K+1(t)+NR

K+1(t)

NS
1 [1+1/R]

. (3)

Four dose fractionation scenarios were simulated, as
shown in Table 1. The first scenario, Single, corresponds
to the treatment with a single dose given on the first day.

5
Semina: Ciênc. Ex. Tech., Londrina, v. 42, n. 1, p. 3-12, Jan./June 2021



Silva, L. M.; Alvarez, G. B.; Christo, E. S.; Garcia, V. S.; Sierra, G. A. P.

The second scenario, Standard, corresponds to the treat-
ment used frequently in hospitals and clinics, and con-
sists of splitting radiotherapy into five equal doses given
considering equal temporal interstices. The third and
fourth scenario, Optimum and Optimum-2, corresponds
to treatments with dose fractionations different from the
Standard, which result in less tumor growth for this math-
ematical model. It is important to mention that these two
“optimal” schemes do not correspond to the optimal math-
ematical. They are the best fractionation schemes found in
Leder et al. (2014) using a heuristic optimization method.
We adopted the same treatment schemes described in
Leder et al. (2014) to show that time series modeling
can reproduce similar results.

Table 1 – Therapy schedule.

Schedule Dose Mon Tue Wed Thu Fri

Single
(K = 1)

10 Gy 8am - - - -

Standard
(K = 5)

2 Gy 8am 8am 8am 8am 8am

Optimum
(K = 10)

1 Gy
8am
2pm
5pm

5pm
3pm
5pm

5pm
3pm
4pm
5pm

Optimum-2
(K = 8)

1 Gy - 4pm -
9am
1pm
5pm

9am
1pm
5pm

3 Gy 8am - - - -

Source: Leder et al. (2014).

The Table 2 shows the numerical values used for each
parameter in the simulations. For more details on the
model consult the reference Leder et al. (2014).

Table 2 – Parameters used in the simulations.

Parameter Value/Units

R 20
αS 0.0987 1/Gy
βS 1.14 10−7 1/Gy2

αR 0.0395 1/Gy
βR 4.58 10−8 1/Gy2

γ 0.15
ν 1.15 1/hour
rS 0.0088 1/hour
aS 0.0001 1/hour
LS 24 hour
LR 36 hour
MS 24 hour
rR 0.0001 1/hour

Source: Leder et al. (2014).

Two time series

The models used to describe time series are stochas-
tic processes, that is, sets of random variables that vary
with time where probabilistic laws apply (MORETTIN;
TOLOI, 1981). Moreover, a time series entails serial de-
pendence. Being a time series a set of observations, mea-
sured sequentially over time, these may be related to time
series of continuous or discrete-time. Thus, a time series
is said to be discrete when the set of observations is finite
or countably infinite, and it is said to be continuous when
the set is non-countably infinite (MORETTIN; TOLOI,
1981).

Then, to model tumor growth as a univariate discrete
time series, the variable X to be considered, will represent
the relative number of cancer cells in a given time interval
after the application of radiation therapy, as given by the
equation (3). Since xt can be considered a random vari-
able, it is inferred that the time series xt can be defined as
a sampling of a stochastic process over X . Therefore, the
use of time series, as a forecasting tool, can be an alter-
native method for simulating the most suitable treatment
for the patient in the cases studied of radiotherapy dose
fractionation. In addition, time series can be used as a
comparison tool between two glioma growth models. For
instance, the model proposed in Rockne et al. (2008) and
the model proposed in Leder et al. (2014).

R software was used for statistical computing and
graphics. After performing the simulation of mathematical
model in Leder et al. (2014), charts were produced for a
better evaluation of the existing components present in the
time series in order to determine the best methods to be
utilized. For this purpose, the relative number of cancer
cell error adjustments were calculated utilizing the MAPE
- Mean Absolute Percent Error - for Holt’s exponential
smoothing methods with additive and multiplicative error,
in order to monitor the calculation and verify if the adjust-
ments applied remain as close as possible to the simulated
data (HYNDMAN et al., 2008). Such error is calculated
using the following equation

MAPE =
1
N

N

∑
t=1

|xt − x̃t |
xt

, (4)

where xt are the actual values of the time series in period t,
x̃t are the predicted values for the time series in period t

and N is the number data of the time series.
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Holt method

From the graphical analysis of the charts, it was ob-
served that the data present just an exponential trend with-
out the presence of a seasonality component. When a given
series has an additive (linear) trend and does not exhibit
seasonality, Holt’s double exponential smoothing model
can be used for forecasting (HYNDMAN, 2002; HYND-
MAN et al., 2008; HYNDMAN; AKRAM; ARCHIBALD,
2008). This model, unlike the former, has two smoothing
components, α and β ranging between 0 and 1. The pre-
diction is given by

Zt+k = Lt + kTt . (5)

The update equations for level and trend parameters are

Lt = αxt +(1−α)(Lt−1 +Tt−1), (6)

Tt = β (Lt −Lt−1)+(1−β )Tt−1, (7)

where Zt+k is the relative number of cancer cells pre-
diction, h is the prediction horizon with k = 1,2, ...h.
Being Lt the level component of the series and Tt the
trend component of the series, and xt is the relative num-
ber of cancer cells observed at time t. This method,
in turn, can be analyzed with additive and multiplica-
tive error, being represented by (A,A,N) and (M,A,N),
respectively.

ARIMA method

An alternative method which can also be fitted to the
dataset generated by equation (3) is the Autoregressive
Integrated Moving Average (ARIMA) method, a more ro-
bust and flexible model that, according to the Box-Jenkins
methodology (BOX et al., 2015), yields predictions based
on the current and past values of these series. It is impor-
tant to note that the series should be composed of more
than 30 histories datas for best results. In time series anal-
ysis an autoregressive integrated moving average model
is a generalization of an autoregressive moving average
model. Both of these models are fitted to time series data
either to better understand the data or to predict future
points in the series.

When considering a non-stationary trend-driven pro-
cess, a transformation applying a difference operator can
make the series stationary. Hence, an ARIMA (p,d,q)
model is an autoregressive integrated moving average pro-
cess of d order suited to represent the portrayed series in
this case.

In the case of a non-stationary variable, the following
equation is used (BOX et al., 2015; MORETTIN; TOLOI,
1981; MONTGOMERY et al., 2015)

Zt = xt − xt−1 = (1−B)1
∆

1xt , (8)

where B is the “Backward Shift Operator” widely used
by Box et al. (2015) when describing BJ models, and
is defined as Bk = Zt −Zt−k. Considering that Zt is sta-
tionary, it follows that the xt variable is integrated of or-
der 1. Taking d differences, the above equation can be
rewritten as

Zt = ∆
dxt . (9)

Hence, the variable Zt adheres to an ARIMA (p,d,q) pro-
cess as follows

Zt = β1Zt−1 +β2Zt−2 + ...+βpZt−p + ...

+θ1εt−1 +θ2εt−2 + ...+θqεt−q. (10)

Thus, substituting equation (8) to (10), we obtain

∆xt = β1∆xt−1 +β2∆xt−2 + ...+βp∆xt−p + ...

+θ1εt−1 +θ2εt−2 + ...+θqεt−q. (11)

ARIMA is actually a class of models that explains a
given time series based on its own past values, that is, its
own lags and the lagged forecast errors, so that equation
can be used to forecast future values.

Results

Exponential smoothing model

The evolution of glioma in response to several cases
of dose fractionation was simulated as previously pre-
sented. The data generated by such simulation provided
the basis for the series utilized in this paper. The time
series aforementioned feature 100 observations over a 50
day period, being collected in 12-hour intervals. How-
ever, only 90 simulated data were used for forecasting
and the last 10 simulated data will be predicted. When
using such data, the α and β parameters found for the
Holt’s exponential smoothing model are shown in the Ta-
ble 3. It is possible to verify, through the AIC - Akaike
Information Criterion, that the most appropriate model for
all cases was the (A,A,N) model. In addition, it is also
observed that as the treatments improved the β values
decrease.
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Table 3 – Exponential smoothing model results for different types of fractionation.

Cases/Models (A,A,N) (M,A,N)
α β AIC α β AIC

Single 0.60 0.99 361.916 0.50 0.33 179.235
Standard 0.35 0.99 -244.128 0.51 0.99 -102.952
Optimum-2 0.75 0.47 -200.615 0.64 0.65 -114.401
Optimum 0.99 0.27 -266.981 0.99 0.23 -82.587

Source: The authors.

This last observation may be important for treatment
optimization (FERNÁNDEZ-CARA; PROUVÉE, 2018).
That is, the results in Table 3 suggest that there is a func-
tional dependence between dose fractionation and β , such
that the more effective the treatment, the lower the pa-
rameter value. This dependency, if known, can be useful
for finding the best dose fractionation, as a computational
algorithm that minimizes the parameter β could be con-
structed.

ARIMA model

In addition to using Holt’s exponential smoothing
method for the treatment of the simulated series, an al-
ternative forecasting method was utilized: the ARIMA
method. The time series used here were the same as in the
previous section, they consisted of 100 observations over
a 50 day period, collected on 12-hour intervals. However,
only 90 simulated data elements were used for the fore-
cast, and they were organized by cases to better explain
how the models were found.

Single Case:

In this case, the series is shown in Figure 1. It is known
that all work for model parameter estimate calculation
revolves around the autocorrelation (ACF) and partial au-
tocorrelation (PACF) functions. To show that the method
is well adjusted, all resulting values must lie within the
95% confidence interval, bounded by the dotted blue line.
However, this is not always the case, so alternatively the
best fit scenario is searched for Figure 2 shows ACF and
PACF of the residuals, respectively. It can be observed that
there are many "lags" above the region’s confidence inter-
val, represented by the blue dotted line. This fact indicates
the presence of non-stationarity.

To make the series stationary, the difference op-
erator is applied until the series passes the test.
Thus, after two differentiations a better result was ob-
tained. Finally, the ARIMA (2,2,2) model is obtained.
After applying the Box-Pierce test the results found

Figure 1 – Simulated model that predicts tumor response
and growth following single dose.

Source: The authors.

Figure 2 – Autocorrelation and Partial Autocorrelation
Functions of the residuals for Single Case.

(a) Autocorrelation Function

(b) Partial Autocorrelation Function

Source: The authors.

were: (X−squared) = 6.3352, d f = 1 and (p−value) =

0.01184.
This test verifies the autocorrelations for the esti-

mated residuals, and through its application, it is observed
whether the null hypothesis will be accepted or not. The
case of a null hypothesis is met when the residuals are
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independent and identically distributed (i.d.d.), and in con-
trast, there exists the h1 hypothesis which represents the
opposite of the null hypothesis.

A method of verifying this hypothesis is whether the
estimated model residuals are not correlated. In this case,
the value of p is a probability that measures the evi-
dence against the null hypothesis, having a value less
than the 5 % significance level. Therefore, it is concluded
that the ARIMA (2,2,2) is an acceptable model for this
data set.

The next stage is the forecasting phase, where the
ARIMA model chosen is used for this case. Predictions
were made for 10 steps forward, and the results are shown
in the Figure 3. The values predicted by the ARIMA model
(2,2,2), shown in blue, and the simulated actual values,
shown in red. It can be observed that the predicted results
were satisfactory within a confidence interval of 95 %,
shown in the blue shadow, and presented a MAPE of
only 1 %.

Figure 3 – Series observed with the prediction for the
ARIMA model (2,2,2) of the Single Case.

Source: The authors.

Standard Case:

In this case, the series can be seen in Figure 4. Simi-
larly, the autocorrelation charts were verified for the stan-
dard case. For this case, two differentiations were neces-
sary. After the second one, it was obtained that the best
model found was the ARIMA (2,2,6), since it showed
the lowest error in the predictions. The result is shown
in Figure 5. Although the result was not as good as the
previous one, this prediction method achieved a MAPE of
just 4 %.

Optimum-2 Case:

In this case, the series can be seen in Figure 6. It was
concluded that the best prediction model is ARIMA (2,2,2)
model. This model yields the prediction shown in Figure 7.
In this case, a satisfactory result was obtained where the
MAPE showed an error of only 4%.

Figure 4 – Simulated model that predicts tumor response
and growth following Standard Case.

Source: The authors.

Figure 5 – Series observed with the prediction for the
ARIMA model (2,2,6) of the Standard Case.

Source: The authors.

Figure 6 – Simulated model that predicts tumor response
and growth following Optimum-2 Case.

Source: The authors.

Figure 7 – Series observed with the prediction for the
ARIMA model (2,2,2) of the Optimum-2 Case.

Source: The authors.
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Optimum Case:

The series can be seen in Figure 8. The best model
found was the ARIMA (4,2,5) model, and its prediction
can be observed in Figure 9. In this case, estimates close to
the 95% confidence interval were obtained, with a MAPE
of only 1%. Therefore, the ARIMA (4,2,5) model was
effective for predictions in this case.

Figure 8 – Simulated model that predicts tumor response
and growth following Optimum Case.
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Figure 9 – Series observed with the prediction for the
ARIMA model (4,2,5) of the Optimum Case.

Source: The authors.

Discussions

Mathematical models assist in decision making both
in diagnosis and treatment. In particular, Markov’s chain
mathematical model (LEDER et al., 2014) proves helpful
for a detailed understanding of the dynamics between two
types of cancer cells. In addition, this model suggests as a
better treatment in radiotherapy a fractional dose different
from the standard. This result is characteristic of models
that use more than one type of different cells to describe
tumor growth. The model based on the partial differential
equation uses a single cell type, and presents standards as
the best treatment (ROCKNE et al., 2008). The standard
scheme as the best treatment using this type of model was
confirmed in Junior (2016), Souza, Neves and Alvarez
(2015) and Barbosa et al. (2019). These different predic-
tions deserve further study of both models (LEDER et al.,

2014; ROCKNE et al., 2008). However, time series mod-
eling reproduces the predictions of both models (LEDER
et al., 2014; ROCKNE et al., 2008), since similar results
to those described in Rockne et al. (2008) were repro-
duced in Jesus et al. (2014). Here, similar results to those
described in Leder et al. (2014) were reproduced.

Just as well as the model proposed in Leder et al.
(2014), the time series revealed being effective in tumor
growth behavior prediction, presenting errors of about 1
to 4 %. The ARIMA method behaved better in all situ-
ations when compared to Holt’s exponential smoothing
forecast method since it presents greater complexity in its
formulation.

The Tables 4-7 show a comparison between these two
time series models for all simulated dose fractionation
cases. It can be seen that the ARIMA model behaved bet-
ter in all cases, presenting a lesser MAPE and AIC. Such
behavior was expected, as the ARIMA model is based on
the integration of moving averages and the autocorrela-
tion between deviations and lagged observations. For the
case of Holt’s exponential smoothing model, as its name
suggests, it makes an exponential smoothing of the data
and distributes the largest weights for the initial values. In
summary, the ARIMA method is broader and distributes
equal weights for the whole series, thus guaranteeing bet-
ter results for the models portrayed here.

Table 4 – Comparison between ARIMA and Holt’s expo-
nential smoothing models for Single Case.

Single Case AIC MAPE

Holt (A,A,N) 361.916 0.047828135
ARIMA (2,2,2) -219.17 0.015342817

Source: The authors.

Table 5 – Comparison between ARIMA and Holt’s expo-
nential smoothing models for Standard Case

Standard Case AIC MAPE

Holt (A,A,N) -244.128 0.048848229
ARIMA (2,2,6) -474.75 0.040047561

Source: The authors.

There is one open question with regard to the time
series for the application in this work. In the data set used,
it is noted that the error during treatment with ionizing
radiation is greater than after treatment. This may be due
to the presence of volatility in the data, caused by the
quiescent period in the cell dynamics considered by the
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Table 6 – Comparison between ARIMA and Holt’s expo-
nential smoothing models for Optimum-2 Case

Optimum-2 Case AIC MAPE

Holt (A,A,N) -200.615 0.054364309
ARIMA (2,2,2) -351.5500 0.042270122

Source: The authors.

Table 7 – Comparison between ARIMA and Holt’s expo-
nential smoothing models for Optimum Case

Optimum Case AIC MAPE

Holt (A,A,N) -266.981 0.061801895
ARIMA (2,2,5) -455.56 0.011628106

Source: The authors.

model (LEDER et al., 2014). That is, the processed data
indicates the need to use two different time series. Each of
these two time series would be dominant at different time
intervals. The first time series, to be determined, would be
dominant until the end of radiotherapy application, and the
second time series, used in this article, would be dominant
from the end of radiotherapy. As an alternative to this
objection, we propose as future work a study of ARIMA
models in conjunction with machine learning models to
make better forecasting during treatment with ionizing
radiation (DOMINGOS; OLIVEIRA; MATTOS NETO,
2019; ZHANG, 2003).

Conclusions

In this work, the time series methodology was applied
to predict the glioblastoma growth rate in response to
radiotherapy. Additionally, the Markov’s chain mathemati-
cal model for glioblastoma described in Leder et al. (2014)
was presented briefly.

Initially, simulations were performed using the
Markov’s chain model (LEDER et al., 2014), due to the
lack of clinical data in the literature. Then, time series
were applied to predict tumor growth, a few steps forward,
the theoretical results established were put into practice
through the use of these same series. On this occasion, two
prediction methods were introduced as well as their behav-
ior shown for the data herein processed. It can be observed
that the time series modeling that produced the best per-
formance among the (A,A,N) and (M,A,N) methods was
the Holt’s exponential smoothing method (A,A,N), hav-
ing a MAPE of around 4% to 6%. Subsequently, another
method via time series was used: the ARIMA method.
Yet, as was to be expected, the ARIMA model produced

better predictions when compared with Holt’s exponential
smoothing model, displaying a MAPE of 1% to 4%.

Furthermore, the results obtained here together with
those obtained in previous article (JESUS et al., 2014)
show that the time series method is applicable to data
from two different mathematical models for glioblastoma
growth. This is because in previous article (JESUS et al.,
2014), the Holt’s exponential smoothing method is effi-
cient to model the simulated data via a reactive-diffusive
partial differential equation (ROCKNE et al., 2008). On
the other hand, in the present study the ARIMA and Holt’s
exponential smoothing methods are efficient to model the
simulated data via Markov’s chain mathematical model
(LEDER et al., 2014). Therefore, these results show that
the time series method can be considered a new alternative
model to describe glioblastoma growth. The time series
analysis is based on a stochastic process, this allows to
work with a confidence level of a predetermined statistical
probability. This feature highlights the importance of this
analysis alternative for decision making in the fractiona-
tion of radiotherapy applied to the patient. In addition, the
time series model can be adjusted for a single individual
if individual patient data is available.
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