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Two-dimensional mesh generator and quality analysis of elements on
the curvilinear coordinates system

Gerador de malhas bidimensionais e análise da qualidade dos
elementos no sistema de coordenadas generalizadas
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Abstract
Through mathematical models, it is possible to turn a problem of the physical domain to the computational
domain. In this context, the paper presents a two-dimensional mesh generator in generalized coordinates,
which uses the parametric linear spline method and partial differential equations. The generator is automated
and able to treat real complex domains and, consequently, more realistic problems. However, there is a
possibility that lower quality elements may be introduced into the computational mesh. Thus, metrics are
investigated that identify elements considered to be of lower quality. Experiments are carried out to verify the
efficiency of the adopted metrics, considering meshes with single block, and multi-blocks. According to the
experiments, the work allowed the detection of elements of lower quality, contributing to the realization of an
adequate modeling of geometries.

Keywords: Automated two-dimensional mesh generator. Parametric linear spline. Generalized coordinates.
Python language.

Resumo
Por meio de modelos matemáticos é possível transformar um problema do domínio físico para o domínio
computacional. Neste contexto, o presente trabalho apresenta um gerador de malhas bidimensionais em
coordenadas generalizadas, que utiliza o método Spline linear parametrizado e equações diferenciais parciais.
O gerador é automatizado e capaz de tratar domínios complexos e, consequentemente, mais realísticos. Entre-
tanto, existe a possibilidade de elementos de menor qualidade serem introduzidos na malha computacional.
Assim, investigam-se métricas que identificam elementos considerados de menor qualidade. Experimentos
são efetuados para verificar a eficiência das métricas adotadas, considerando malhas com um bloco e multi-
blocos. De acordo com os experimentos, o trabalho permitiu a detecção de elementos de menor qualidade,
contribuindo para a realização de uma modelagem adequada de geometrias.

Palavras-chave: Gerador de malhas bidimensionais automatizado. Spline linear parametrizado. Coordenadas
generalizadas. Linguagem Python.
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Introduction

The modeling and simulation of natural phenomena
using differential equations is an important tool for sci-
ence. However, to represent physical structures, that is,
the domain to be studied in a computational environment,
the use of simpler data organization structures, such as
matrices and vectors, tend not to be able to realistically
represent the object of study.

Different techniques have been used for the repre-
sentation of domains of irregular regions, such as struc-
tured and unstructured meshes, generalized or hybrid
meshes, among other techniques, that have advantages
and disadvantages in terms of flexibility and ability to
represent objects under study (THOMPSON; WARSI;
MASTIN, 1985; THOMPSON et al., 1997; THOMPSON
et al., 1998; MALISKA, 2004; CIRILO; BORTOLI, 2006;
KOOMULLIL; SONI; SINGHR, 2008; LAIPING et al.,
2013; SAITA et al., 2017; BELINELLI et al., 2020; MA-
GANIN et al., 2020; ROMEIRO et al., 2021).

In this work, we looked for a simplified way
to build a structured mesh for a complex domain,
which was possible through a change in the coordi-
nate system. This process allowed to convert a com-
plex domain into a set of easily manipulated data
MALISKA, 2004).

Mathematically, any geometry, described in Carte-
sian system, can be transformed into a generalized
system, allowing better adaptation in computational
modeling (CIRILO; BORTOLI, 2006; MALISKA, 2004;
ROMEIRO et al., 2011; PARDO et al., 2012; SAITA et

al., 2017; ROMEIRO et al., 2017; CIRILO et al., 2018).
In this context, this work describes the creation and im-

plementation of a two-dimensional mesh generator using
transformation metrics in generalized coordinates. This
procedure generates a domain mapped for mathematical
manipulations, which describes any physical object, from
a finite set of points.

The mesh generator is encoded in Python and uses
the libraries numpy and matplotlib for manipulations and
operations on matrices and graphical plots, respectively
(CAI; LANGTANGEN; MOE, 2005; SCIPY-NUMPY,
2020; SCIPY-MATPLOTLIB, 2020).

On the other hand, a mesh generator can introduce
elements considered to be of lower quality, depending
on the complexity of the geometry and the refinement
employed.

It is known that in a lower quality element the resolu-
tion of differential equations, which describe any phe-
nomenon, can produce unsatisfactory results, such as
numerical instability and inadequacy to reality (PARK;
SHONTZ, 2010). It can be stated that the greater regularity
of the element’s geometry, this implies a better quality of
the mesh that contains it (BOROUCHAKI; FREY, 1998;
JOHNEN; ERNST; GEUZAINE, 2015).

Since the elements belonging to the meshes in
generalized coordinates are quadrilateral, it is important
that the geometry of the element approaches a square. For
this, after the generation process, it is essential to identify
the elements of lower quality, so that, later, they can be
improved.

The process of identifying lower quality elements can
be carried out through the application of quality metrics,
which assign numerical values to the elements, order them
according to the calculated values and classify them in
terms of quality.

In this work, three criteria for analyzing the qual-
ity of the mesh elements are proposed and applied:
the ratios between the size of each side of the ele-
ment with the others (BOROUCHAKI; FREY, 1998;
JOHNEN; ERNST; GEUZAINE, 2015), the internal
angles (COELHO; LOURENCO, 2001) and the com-
pactness of the element (GOSE; JOHNSONBAUGH;
JOST, 1996; GONZALEZ; WOODS, 2011). All crite-
ria verify the similarity of the elements of the compu-
tational mesh to a square, the element considered ideal,
thus identifying those elements considered to be of low
quality.

The contribution of this paper consists in the use of the
three criteria, individually or collectively, in the context
of mesh quality analysis. We illustrate this contribution
through a variety of applications.

The work is structured as shown below. Initially,
transformation metrics are described in generalized co-
ordinate theory. Then the mesh generator is developed.
In the sequence, the metrics used to assess the qual-
ity of the elements are described. Finally, some exam-
ples of meshes obtained by the generator are presented,
as well as an analysis of the quality of the elements
obtained.

Generalized coordinates

For a computational methodology to be applied to a
physical problem, it is necessary to discretize the domain
of the problem, that is, to build a computational mesh that
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can represent the studied geometry and, thus, obtain the
values of interest.

The discretization of the physical domain can be car-
ried out according to a structured or unstructured mesh.
Unstructured meshes are more adaptable than structured
meshes, especially in problems with complex geometries
(MALISKA, 2004; FORTUNA, 2012). However, the ma-
jor disadvantage of unstructured meshes is the difficulty
of ordering the elements, which implies a variation in the
size of the diagonals of the coefficient matrix and the ad-
ditional cost of using memory, making it difficult to apply
numerical methods to obtain the solution of linear systems.
Therefore, the domain discretization in this work will be
performed using structured meshes.

As for the coordinate system, in general, the problem
domain is discretized according to the Cartesian coor-
dinate system because it is simpler. However, for prob-
lems with complex geometry, it is convenient to adopt
another coordinate system, due to the fact that the Carte-
sian coordinate system leads to a poor adaptation of the
border, since the physical domain does not always co-
incide with the domain of the Cartesian mesh. To solve
the problem, the generalized coordinate system will be
used.

In generalized coordinates, the computational mesh
coincides with the geometry of the problem and com-
putational treatment becomes more appropriate. Other
reasons that justify the use of generalized coordinates
in the discretization of computational meshes are the
simplicity in programming computational codes to solve
complex problems and the ease in developing generic
methodologies.

In the following, some important concepts about
generalized coordinate theory will be presented.

Transformation metrics

The Cartesian system (x,y) is called the physical do-
main and the generalized system (ξ ,η) is called the trans-
formed domain or computational domain.

The transformation from a non-trivial geometry de-
scribed in a Cartesian coordinate system to a generalized
coordinate system involves transformation metrics, or
mathematical relations, that can accurately describe the
transformed data.

The mapping of irregular or regular geometries written
in Cartesian coordinates (x,y), Figure 1a, is performed
numerically for regular geometries written in generalized
coordinate system (ξ ,η), Figure 1b.

Figure 1 – Coordinate systems

(x,y)

(a) Cartesian coordinate

(ξ ,η)

(b) Generalized coordinate

Source: The authors.

Since the transformed domain is regular, for
convenience, unitary normalization of elemen-
tary volumes is assumed, that is, ∆ξ = ∆η = 1.
In this way, even if in the physical plane the coordinated
lines assume arbitrary spacing, in the computational plane
the dimensions are fixed to the unit.

To obtain the (ξ ,η) system, the following generating
equations are used

ξ = ξ (x,y), (1)

η = η(x,y). (2)

The transformation metrics, based on differentials of
the equations (1) and (2), are

dξ = ξxdx+ξydy, (3)

dη = ηxdx+ηydy, (4)

or, in the matrix form

(
dξ

dη

)
=

(
ξx ξy

ηx ηy

)(
dx

dy

)
, (5)

which can also be written as

dt = Ad f , (6)

where ξx, ηx, ξy, and ηy denoting partial derivatives, dt

and d f represent, respectively, the differentials in the trans-
formed and physical domain, while A is the transformation
matrix between the domains.

Starting from the assumption that it is possible to
find a representation in a Cartesian coordinate system
for a model described in generalized coordinates, then
we admit the existence of the inverse of the equations (1)
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and (2), so

x = x(ξ ,η), (7)

y = y(ξ ,η), (8)

and from differentials of equations (7) and (8) we
have

(
dx

dy

)
=

 xξ xη

yξ yη

( dξ

dη

)
, (9)

which can also be written as

d f = Bdt , (10)

where xξ , xη , yξ , and yη denoting partial derivatives and
B is the transformation matrix between the physical and
transformed domains.

Replacing equation (6) in equation (10), we get
d f = BAd f , so that BA = I, or equivalent A = B−1. Thus,
the A matrix becomes

(
ξx ξy

ηx ηy

)
=


yη

xξ yη − xη yξ

−xη

xξ yη − xη yξ

−yξ

xξ yη − xη yξ

xξ

xξ yη − xη yξ

 ,

(11)

where J = det(A) = (xξ yη − xη yξ )
−1 is called Jacobian

of transformation (MALISKA, 2004).

Two-dimensional mesh generation

In this work, we opted for the use of elliptical partial
differential equations (EPDE) as a method of generat-
ing two-dimensional meshes, since their solutions do not
generate null Jacobian, and the lines ξ or η never inter-
sect (THOMPSON; WARSI; MASTIN, 1985; MALISKA,
2004). Thus, the governing equations for the generation
of two-dimensional meshes in a domain, for example the
domain illustrated in Figure 2(a), are

∇2ξ = P(ξ ,η), (12)

∇2η = Q(ξ ,η), (13)

whose boundary conditions of the type Dirichlet are ex-
pressed by ξ = ξ1 in Γ1 (left border), ξ = ξN in Γ3

(right border); η = η1 in Γ4 (lower border) and η = ηM

in Γ2 (upper border). In particular, in Figure 2a were used
N = 10 and M = 5 , where N is the number of lines from
ξ and M is the number of lines from η .

Figure 2 – Example of mesh in generalized coordinates

Γ1

Γ2

Γ3

Γ4

(a) Predefined point
ξ1

η1
ξ2

η2

ξ3

η3

ξ4

η4

ξ5

η5

ξ6 ξ7 ξ8 ξ9 ξ10

Γ1

Γ2

Γ3

Γ4

(b) Mesh in generalized coordi-
natesSource: The authors.

Solving the equations (12) and (13), in relation to
the (x,y) coordinates, using the transformation metrics
of the (ξ ,η) system, the coordinated lines can be gener-
ated in the directions ξ and η , inside the computational
mesh, Figure 2(b), as in any other geometry, through the
equations

αxξ ξ + γxηη −2βxξ η +
1
J2 (Pxξ +Qxη) = 0, (14)

αyξ ξ + γyηη −2βyξ η +
1
J2 (Pyξ +Qyη) = 0, (15)

where x and y are the Cartesian coordinates of the physical
domain, ξ and η are the generalized coordinates of the
computational domain, P and Q are the source functions,
and

α = x2
η + y2

η , (16)

β = xξ xη + yξ yη , (17)

γ = x2
ξ
+ y2

ξ
. (18)

The numerical solution of elliptical PDEs (14) and
(15), subject to initial and boundary conditions, provide
the lines ξ and η , which generate the computational
mesh (MALISKA, 2004; CIRILO; BORTOLI, 2006; FOR-
TUNA, 2012; DE BORTOLI, 2000). Note that initial con-
ditions are null due to the elliptical characteristic of the
equations.

For convenience, equations (14) and (15) can be writ-
ten using a generic φ variable as

αφξ ξ + γφηη −2βφξ η +
1
J2 (Pφξ +Qφη) = 0. (19)

To approximate the derivatives in equation (19),
the finite difference method is used. The mesh nodes
are labeled by the cardinal points P (center), E (east),
W (west), N (north), S (south), NW (northwest), SW

(southwest), SE (southeast) and NE (northeast), as in
Figure 3.

Using second-order finite differences by means of cen-
tral differences to approximate the derivative terms of
equation (19), around P, we obtain
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Figure 3 – Index labeling

SW
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NW N
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S SE
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NE

Source: The authors.

α(
φE −2φP +φW

∆ξ 2 )+ γ(
φN−2φP +φS

∆η2 )

−2β (
φNE −φNW +φSW −φSE

4∆ξ ∆η
)+

1
J2 (P

φE −φW

2∆ξ
+Q

φN−φS

2∆η
) = 0, (20)

and regrouping the terms

−(2α−2γ)φP +(α +
P

2J2 )φE +(α− P
2J2 )φW +

(γ +
Q

2J2 )φN +(γ− Q
2J2 )φS−

β

2
φNE +

β

2
φNW −

β

2
φSW +

β

2
φSE = 0. (21)

Thus, the numerical solution of the two-dimensional
mesh generation equations, equations (14) and (15), writ-
ten according to the generic φ variable, equation (21), is
given by

φP =
1

AP
(AEφE +AW φW +ANφN +ASφS +

ANEφNE +ASEφSE +ANW φNW +ASW φSW ), (22)

where

AP = 2α +2γ, AN = γ +
Q

2J2 , ASE =
β

2
,

AE = α + P
2J2 , AS = γ−d Q

2J2 , ANW =
β

2
,

AW = α− P
2J2 , ANE =−β

2
, ASW =−β

2
,

(23)

with derivatives present in J approximated by central dif-
ferences.

Next, the mesh generator in generalized coordinates is
presented.

Mesh generator in generalized coordinates

For the creation of an automated procedure for map-
ping a geometry in cartesian coordinates, through a
generalized coordinate system, we chose to use the pro-
gramming language Python.

The reason for this choice is due to the fact that Python
is a general, free, open, and multiplatform language, which
can allow the creation of extensions of the developed
application, such as, for example, a graphical interface
module, among others.

Regarding performance, it is necessary to use ex-
tra libraries, specific to numerical computing applica-
tions, to achieve satisfactory results at run time. Be-
cause it is a scripting language, that is, interpreted, the
performance of an application written in Python tends
to be inferior when compared to a compiled language,
as is the case of the Fortran language. In Python, the
tools available for matrix manipulation and linear algebra
are limited and not optimized for the type of application
that was intended to be developed. However, because the
adopted language is modular, it is possible to use routines
and libraries in compiled languages, in order to optimize
more complex operations, such as those used for domain
transformations (CAI; LANGTANGEN; MOE, 2005).

For the creation of the mesh generator, the following
libraries were used:

• Numpy - library dedicated to matrix and algebraic
operations in general (SCIPY-NUMPY, 2020)

• Matplotlib - library used to generate graphs
and manipulate data in graphical form (SCIPY-
MATPLOTLIB, 2020).

The additional modules employed are also free for
use.

Description of the algorithm developed

For the definition and creation of a geometry mapped
in generalized coordinates, it starts from an initial set of
points that describe the border, that is, the physical contour.
In this work, the parametric linear spline method was
chosen to interpolate the set of border points under study.
Parametric linear spline equations (BURDEN; FAIRES;
BURDEN, 2015) are

sx
i (t) = xi−1

ti− t
ti− ti−1

+ xi
t− ti−1

ti− ti−1
, (24)

sy
i (t) = yi−1

ti− t
ti− ti−1

+ yi
t− ti−1

ti− ti−1
, (25)
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∀t ∈ [ti−1, ti], where s is the interpolating spline curve and
t is the interpolated variable.

Having obtained the interpolating lines of the border,
equations (24) and (25), the number of partitions desired
for each border must be defined.

Then, points of the splines curves are selected, which
define the new border of the approximate geometry. To do
this, an approach is used to position the points by weighted
average of the components of the border, i.e.,

xi j = pΓ1Γ3
x (x0 j + i∆xξ

j−1)+ pΓ2Γ4
x (xi0 + j∆xη

i−1), (26)

yi j = pΓ1Γ3
y (y0 j + i∆yξ

j−1)+ pΓ2Γ4
y (yi0 + j∆yη

i−1), (27)

where ∆
xξ

j =
xξ j− x0 j

ξ
, ∆

xη

i =
xiη − xi0

η
,

∆
yξ

j =
yξ j− y0 j

ξ
, ∆

yη

i =
yiη − yi0

η
, i = 1, ...,ξ and

j = 1, ...,η .

The values of pΓ1Γ3
x , pΓ2Γ4

x , pΓ1Γ3
y , and pΓ2Γ4

y indicate the
weights on the left/right borders in x, top/bottom in x,
left/right in y and top/bottom in y , respectively. The per-
centage weights in equations (26) and (27) can better
adjust the distribution of points in the domain, avoiding
concentrations of points. In this way, the arrangement of
the internal points is influenced by borders. Finally, on the
set of ordered pairs, the resolution of the equation (22) is
applied.

In summary, the Algorithm 1 describes the proposed
and implemented mesh generator code.

The Algorithm 1 is a two-dimensional mesh genera-
tor developed for geometries consisting of a single block.
For complex geometries, to maintain the quality of the
elements, it is convenient to use the multi-block tech-
nique (DE BORTOLI, 2000; CIRILO; BORTOLI, 2006;
PARDO et al., 2012; SAITA et al., 2017; ALMEIDA et

al., 2018), which uses the mesh generator defined in Al-
gorithm 1 to generate each mesh block.

Figure 4 shows a rectangular geometry with an ob-
stacle. It makes a comparison between the meshes gen-
erated using Algorithms 1 e 2. It is observed that the
elements of Figure 4(a), close to the obstacle, have lost
their square shape, thus generating elements of low quality.
On the other hand, due to the shape of the geometry and
the structure of division in blocks, 3 blocks, the mesh in
curvilinear multi-block coordinates, Figure 4(b), resulted
in square elements, maintaining the quality of the ele-
ments. In order to maintain the same number of nodes and
elements in Figure 4(a), the elements of block 2 in Figure
4(b) have been refined.

Algorithm 1: Two-dimensional mesh generator
in generalized coordinates: single block

Input :Number of partitions from the physical
and transformed planes, border weights
and contour points.

Output :Coordinates of the computational mesh
nodes.

1 begin

2 Reading the input data;

3 Border interpolation: determine the border
interpolating curves using the parameterized
linear spline method;

4 Calculation of points of the spline lines: find
the new border points using a weighted aver-
age of the interpolated borders;

5 Solving coordinate transformation differ-
ential equations: numerically solve the
meshing equation in generalized coordinates
(14) and (15), applying the Gauss-Seidel Iter-
ative method;

6 end

Algorithm 2: Two-dimensional mesh generator
in generalized coordinates: multi-blocks

Input : Blocks containing number of parti-
tions from the physical and transformed
planes, border weights and contour
points.

Output : Graph and coordinates of the nodes of
each block of the computational mesh.

1 begin
2 foreach input file - block do

3 Mesh generation: generate the computa-
tional mesh of the block by executing the
algorithm 1;

4 Plot the grid: plot the computational grid
of the block using the results;

5 Write of the results;
6 end

7 Graph display: show the computational
meshes generated for all blocks in one graph;

8 end

It should be noted that another advantage of the multi-
block technique is that it allows different refinements in
the blocks, which can, in some situations, generate im-
provement of the elements.
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Figure 4 – Comparison between meshes generated with a single block and multi-block techniques, both with the same
number of partitions

(a) Mesh generated with single block

(b) Mesh generated with multiblock technique (3 blocks)

Source: The authors.

Quality analysis of mesh elements

In order to analyze the quality of the elements be-
longing to the mesh generated in generalized coordi-
nates, it was considered that a higher quality element
is a quadrilateral that comes closest to a square. Thus,
three criteria for quality analysis are proposed and applied,
namely:

• ratios between the size of each side of the ele-
ment with the others (BOROUCHAKI; FREY, 1998;
JOHNEN; ERNST; GEUZAINE, 2015);

• internal angles (COELHO; LOURENCO, 2001);

• compactness coefficient of the element (GOSE;
JOHNSONBAUGH; JOST, 1996; GONZALEZ;
WOODS, 2011).

It is observed that the criteria verify the similarity of
the elements of the computational mesh to a square, an
element considered ideal, thus allowing to identify the
elements of low quality.

Quality metrics

The nomenclatures adopted to define the sides and
angles of each element are presented in Figures 5a and 5b,
respectively. It was also considered that the numbering
starts at node i, j, rotating the element clockwise.

In this way, the evaluation of the generated mesh is

performed, in which, for each element, the ratios ri, j =
di

d j
between the size of sides di and d j are calculated, for

Figure 5 – Nomenclatures adopted to define the sides and
angles of an element

i, j

i, j+1 i+1, j+1

i+1, j

d1

d2

d3

d4

(a) Sides

i, j

i, j+1 i+1, j+1

i+1, j

α2 α3

α1 α4

(b) Angles

Source: The authors.

i = 1, . . . ,4, j = 1, . . . ,4 and i 6= j. Then, it is checked
whether the ratios are close to the unit, ri, j = 1, equivalent
to the ratio between two sides of a square.

In addition to the ratio between the sizes of the sides
of the quadrilateral, verifying the property that a higher
quality element is a quadrilateral similar to a square, it
is necessary to calculate for each element if the internal
angles approach αi =

π

2
rad, using

αi = arccos
( −→u ·−→v
‖−→u ‖ · ‖−→v ‖

)
, (28)

with −→u and −→v vectors that represent, respectively, two
sides of the element.

The third quality metric, used to verify the similar-
ity between the elements of the computational mesh
and a square, concerns the compactness coefficient c.
This metric has the characteristic of being invariant to
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translation, rotation and scale change, given by:

c =
P2

S
, (29)

where P is the perimeter and S =
1
J

is the area of the
element.

Note that if di is the size of the side of a square, then
the compactness coefficient ci of the square is given by

ci =
(4di)

2

d2
i

=
16d2

i

d2
i

= 16, (30)

so that the element loses the similarity of the square when
c 6= 16, and consequently the metric evaluates the element
as being a lower quality element. Finally, the importance
of applying quality metrics in the analysis processes and,
subsequently, improving computational meshes, lies in
the fact that the regularity of the elements of geometry
makes it possible to improve the stability and convergence
of the solutions of the differential equations, in addition
to reduce the execution time of the numerical algorithm
(PARK; SHONTZ, 2010).

Description of the developed algorithms

The process of developing the algorithm for quality
analysis of meshes, in generalized coordinates, was di-
vided into two modules. In the first, the algorithm calcu-
lates the quality metrics, being implemented in the Python

programming language (RUSSUM, 1995).
In the second, implemented in the programming lan-

guage R (R CORE TEAM, 2020), the algorithm per-
forms the identification of low quality elements, accord-
ing to the metrics employed and calculated by the first
module.

Briefly, the Algorithm 3 lists the sequence of steps
used to identify low quality elements in meshes de-
scribed by generalized coordinates. Due to its exten-
sion and in order to present it in a more didactic way,
this algorithm was divided into two parts, the Algo-
rithms 4 and 5. Further details can be obtained in
(NAOZUKA, 2018).

For the simulations (results), the parameters presented
and defined in Algorithms 3–5 will be considered, as
well as parameters that are not explicitly defined, such
as the color legend that defines the quality metrics q.
In this context, to the U ′ − E∪ set of higher quality
elements, q = 0 is assigned. The Er, Eα , and Ec sets
of low quality elements, relative to one of the evalua-
tion metrics, they are categorized, respectively, in the

Algorithm 3: Identification of low quality ele-
ments in meshes described by generalized coor-
dinates

Input : Total set of elements and their qual-
ity metrics, containing block number in
which the element is allocated, node co-
ordinates, side ratios r, internal angles α

and compactness coefficient c; number
of partitions of the transformed plan for
each block; and desired percentage p of
low quality elements.

Output : Number of points in the directions ξ

and η for each block, coordinates of the
nodes and values of q associated with
each element of the block. The value q,
defined between 0 and 20, describes the
sets of quality metrics.

1 begin

2 Execution of the Algorithm 4;

3 Execution of the Algorithm 5;
4 end

value ranges 1 ≤ q ≤ 5, 6 ≤ q ≤ 10, and 11 ≤ q ≤ 15.
Also, q = 16, 17, 18, and 20 are assigned to the sets
formed by the intersections Er,α , Er,c, Eα,c, and E∩, re-
spectively. Finally, the elements where r =+∞ and α = @,
which belong to the set U −U ′, are labeled with q = 19.
The color legend can be seen in Figure 6, which will be
the same for all experiments to be presented.

Figure 6 – Color legend associated with the quality of the
elements of a computational mesh

Source: The authors.

Results and discussion

To verify the efficiency of the developed algorithms,
and the methodological procedures used, computational
meshes generated by one block, Algorithm 1, and by multi-
blocks, Algorithm 2, are presented.

In all experiments to be presented, the quantity of ele-
ments in the sets is obtained using quality metrics (q) of
elements. Thus, information is obtained about the quantity
of low quality elements, considering the desired percent-
ages and tolerances, p e ε , in relation to the quantity of
elements in the sets: U ′−E∪ , Er , Eα , Ec , Er,α , Er,c ,
Eα,c , U−U ′ , and E∩ .
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Algorithm 4: Identification of low quality ele-
ments in meshes described by generalized coor-
dinates - Part 1
1 begin

2 Reading of input data: Read the block num-
ber, the coordinates of the nodes, the side
ratio r, the internal angle α and the compact-
ness coefficient c of each element;

3 Obtaining the U ′ set of elements: Remove
the elements where r =+∞ and α = @ from
the total set of elements U ;

4 Calculation of variances: Calculate the vari-
ance of the side ratios s2

R, between internal
angles s2

A and between compactness coeffi-

cients s2
C, according to the equation s2

M =
|M|
∑

k=1
(mk−m)2

|M|−1
, k = 1, . . . , |M|, where M in-

dicates the element of the set of sides (R), or
of angles (A) or of compactness (C);

5 if s2
R = 0 and s2

A = 0 and s2
C = 0 then

6 if rk = r� and αk = α� and ck = c� then

7 All mesh elements are identical and
equal to a square;

8 else

9 All mesh elements are identical, but
different from a square ;

10 end
11 break
12 end

13 Calculation of the minimum and maxi-
mum values: Calculate the minimum val-
ues mmin and maximum values mmax of the
quality metrics, using the equations mmin =
min{mk,m�}, mmax = max{mk,m�};

14 Normalization: Normalize the values of the
quality metrics, as well as the value of the
metrics evaluated on a square, using the
equations

15 mnormk = (b−a)
mk−mmin

mmax−mmin
+a;

16 mnorm� = (b−a)
m�−mmin

mmax−mmin
+a.

17 Standardization of normalization: Take a=
0 and b = 10 for the interval [a,b] ;

18 Calculation of variances: Calculate s2
Mnorm

variances from normalized quality metrics;
19 end

Algorithm 5: Identification of low quality ele-
ments in meshes described by generalized coor-
dinates - Part 2
1 begin

2 Calculation of tolerances: Calculate the min-
imum tolerance εmin and the maximum toler-
ance εmax;

3 for εi← εmin to εmax do

4 Identification of low quality elements:
Identify low quality elements in relation
to the ratio between sides Er, in relation
to the internal angle Eα and to the com-
pactness coefficient Ec, considering the
tolerance εi ;

5 Obtaining the set E∪i : Obtain the set
E∪i , formed by the union of the sets Er,
E al pha e Ec, and its number of elements
|E∪i |;

6 end

7 Obtaining the exponential nonlinear re-
gression function: Find the exponential non-
linear regression function that fits the toler-
ance graph εi by the quantity of low qual-
ity elements |E∪i |, applying the least squares
method;

8 Calculation of tolerance: Calculate the de-
sired tolerance ε from the exponential nonlin-
ear regression function and the desired per-
centage p;

9 Identification of low quality elements: Iden-
tify low quality elements in relation to the
side-to-side ratio Er, between internal angles
Eα and coefficient of compactness Ec, con-
sidering the desired tolerance ε;

10 Getting other sets: Get the sets E∪, Er,α , Er,c,
Eα,c, and E∩, formed by operations involving
sets Er, Eα , and Ec;

11 Attribution of the value of q: Define a num-
ber q for each category of elements, consid-
ering the sets obtained;

12 Results writing: Write the results;
13 end

One block meshes

Using geometries with cusp-shaped structures and
with one obstacle, the meshes of one block are generated,
as illustrated in the Table 1. The cusp-shaped geometry,
the first column, consists of the inner region constructed
by four circles, each circle tangent to two other circles.

The obstacle geometry, second column of Table 1, is
rectangular. Both meshes were obtained by executing the
Algorithm 1.
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Table 1 – Identification of low quality elements, according to the metrics used, for geometries with a single block.

Cusp-shaped structures Rectangular plate with one obstacle
p = 5% of low quality elements

p = 10% of low quality elements

p = 20% of low quality elements

Source: The authors.

Table 2 – Quantities of low quality elements, according to the metrics used, for geometries with a single block.

p
∣∣U ′−E∪

∣∣ ∣∣Er
∣∣ ∣∣Eα

∣∣ ∣∣Ec
∣∣ ∣∣Er,α

∣∣ ∣∣Er,c
∣∣ ∣∣Eα,c

∣∣ |U−U ′|
∣∣E∩∣∣

Cusp-shaped structures - 324 elements

5% 302 17 0 5 0 0 0 0 0

10% 302 17 5 5 0 0 5 0 0

20% 274 25 25 5 0 0 5 0 0

Rectangular plate with one obstacle - 1280 elements

5% 1262 9 11 17 4 9 10 0 4

10% 1241 11 35 19 7 11 15 0 7

20% 1093 19 181 43 15 19 37 0 15

Source: The authors.
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When applying the Algorithm 3 on the cusp-shaped
structures and rectangular plate with one obstacle, infor-
mation about the quality of the mesh elements are ob-
tained, where elements of low quality are highlighted and
identified in Table 1, according to the color legend shown
in Figure 6.

As expected, the low quality elements in the cusp-
shaped mesh are located in the vicinity of the four
vertices of the computational mesh, Table 1. Of the
324 elements of the mesh, 22 were of low quality. Ac-
cording to the metrics evaluated, for p = 5%, 17 low
quality elements refer to the ratio between sides and
5 refer to the compactness coefficient. For p = 10 and
20 %, low quality elements in relation to the internal
angle were also identified, these results can be seen in
the Table 2.

Similarly, for the 1280 elements of the rectangular
plate with one obstacle, the location of low quality ele-
ments are showed in the Table 1. Details on the quantity of
low quality elements, in relation to the metrics evaluated,
they are presented in the Table 2.

It is observed that for p = 20%, the metric referring to
the internal angle showed 181 elements of lower quality
(in the order of 15% of the total elements of the mesh),
located inferiorly in the vicinity of the obstacle and in the
upper part of the mesh.

In this context, it should be noted that Figure 4 presents
a comparison between the meshes of the rectangular plate
with one obstacle generated by one block (Algorithm 1)
and multi-blocks (Algorithm 2). It appears that the multi-
block mesh has square elements, maintaining the quality
of the elements.

Multi-block meshes

Using the geometries involving the structures NACA
64A 010 (HSU; JAMESON, 2002; NAOZUKA, 2018),
turtle, plane, profile of a face, dog and frog, multi-block
meshes are generated (NAOZUKA, 2018). The number
of blocks used to generate each of the meshes is shown
in the first row of Tables 3 and 4, varying between 2
and 25 blocks. Note that the meshes are ordered accord-
ing to the number of blocks and the complexity of the
geometry.

In the figures in Tables 3 and 4, the low quality el-
ements are highlighted and identified according to the
color legend of Figure 6. In general, it can be seen that
low quality elements were identified in all the geome-
tries presented, from the quality metrics defined in the

work. Particularly, in the NACA 64A 010 experiment,
low quality elements were identified at the ends of the
airfoil.

Due to the complexity of the geometries, it was not
possible to define a pattern in the location of the lower
quality elements detected in the multi-block computa-
tional meshes. However, there is an evident concentration
of elements in block 1 for the turtle, in block 2 for the
plane, in block 7 for the face profile, in blocks 3 and 7 for
the dog and in blocks 2, 3 and 10 for the frog.

Conclusion

This work presented the development of a two-
dimensional mesh generator in generalized coordinates.
As an original contribution, in relation to the methodology
of the computational mesh generation process, we high-
light the application of the parameterized linear spline
method for the interpolation of the borders and the cal-
culation of the weighted average of the borders to obtain
the internal points of the mesh, which allowed faster con-
vergence of the numerical resolution of the governing
equation.

Note that the chosen programming language, and the
libraries used, made possible, in addition to the optimiza-
tion of the code, precision of the results and practicality
in the visualization of the plots.

Knowing that the solution of the governing equa-
tions for the generation of two-dimensional meshes in
generalized coordinates can generate elements of low
quality, depending on the complexity of the geometry
and the refinement employed, it is essential to analyze the
quality of the meshes produced. In this context, the work
presented a process of quality analysis of computational
meshes in generalized coordinates, constituting another
important contribution.

To carry out the quality analysis of the elements of
the computational mesh, three evaluation criteria were
applied: the ratios between the size of each side with the
others, the internal angles and the compactness coefficient
of the element. As the elements of the generated meshes
are quadrilateral, then it was verified the similarity of
the elements to a square, considered as an ideal element.
Thus, using the programming languages Python and R,
algorithms were developed to classify the quality of the
elements.

According to the experiments carried out, the results
were generally satisfactory, since the implemented algo-
rithms accurately captured the low quality elements.
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Table 3 – Identification of low quality elements, according to the metrics used, for geometries with multi-blocks -
Part 1.

NACA 64A 010 Turtle Plane

p = 5% of low quality elements

p = 10% of low quality elements

p = 20% of low quality elements

40
Semina: Ciênc. Ex. Tech., Londrina, v. 42, n. 1, p. 29-44, Jan./June 2021



Two-dimensional mesh generator and quality analysis of elements on the curvilinear coordinates system

Table 4 – Identification of low quality elements, according to the metrics used, for geometries with multi-blocks -
Part 2.

Face profile Dog Frog

p = 5% of low quality elements

p = 10% of low quality elements

p = 20% of low quality elements
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Table 5 – Quantities of low quality elements, according to the metrics used, for geometries with multi-blocks.

p
∣∣U ′−E∪

∣∣ ∣∣Er
∣∣ ∣∣Eα

∣∣ ∣∣Ec
∣∣ ∣∣Er,α

∣∣ ∣∣Er,c
∣∣ ∣∣Eα,c

∣∣ |U−U ′|
∣∣E∩∣∣

NACA - 2 blocks and 576 elements

5% 567 5 3 4 0 0 3 0 0

10% 567 5 4 5 0 1 4 0 0

20% 545 7 27 23 4 5 21 0 4

Turtle - 6 blocks and 581 elements

5% 570 3 0 10 0 2 0 0 0

10% 553 11 11 15 0 5 4 0 0

20% 543 15 28 26 5 13 18 0 5

Plane - 8 blocks and 868 elements

5% 850 5 13 9 0 2 7 0 0

10% 841 7 19 10 0 2 7 0 0

20% 798 15 56 20 2 6 15 0 2

Face profile - 7 blocks and 474 elements

5% 457 6 0 12 0 1 0 0 0

10% 452 10 6 14 1 3 5 0 1

20% 440 16 21 21 4 5 19 0 4

Dog - 8 blocks and 258 elements

5% 414 3 4 18 0 2 4 4 0

10% 401 3 5 32 0 3 5 4 0

20% 370 12 20 57 0 11 15 4 0

Frog - 25 blocks and 566 elements

5% 727 20 0 8 0 0 0 0 0

10% 712 28 2 18 0 5 0 0 0

20% 685 38 11 42 0 18 3 0 0

Source: The authors.
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