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Abstract
In financial markets, volatility modeling has been a strategy widely used because it reflects uncertainties
about changes in asset prices. Incorporating peculiarities of financial series, this study estimated the volatility
for the intraday index of the Brazilian stock market (Ibovespa) using ARIMA-APARCH models in different
time frequencies with the aid of the wavelet MODWT decomposition technique. This work proposes an
analysis of the impacts of the frequency components on the behavior of the volatility of intraday returns
using the series of details wavelet in different time horizons, in an atypical period in the global financial
markets, generated by the COVID-19 pandemic. The empirical results suggest low unconditional volatility
and strong signs of persistence in all analyzed frequencies. The asymmetry in volatility is evidenced in the
higher frequencies, the leverage effect being present only in the series of details with variations of 15-120
min., which is corroborated with the results obtained with the reconstructed series. The evidenced behaviors
have an impact on the elaboration of short-term investment strategies and risk management, since the positive
and negative shocks, such as those given by the world pandemic of COVID-19, have different impacts on
the volatility of returns in shorter periods. The information obtained can contribute to the analysis of future
atypical events in the Brazilian stock market, supporting the decision-making of economic agents.
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Resumo
Em mercados financeiros, a modelagem da volatilidade vem sendo uma estratégia muito utilizada por refletir
as incertezas sobre as variações dos preços dos ativos. Incorporando peculiaridades de séries financeiras,
este estudo estimou a volatilidade para o índice intradiário do mercado acionário brasileiro (Ibovespa)
por meio de modelos ARIMA-APARCH em diferentes frequências temporais com o auxílio da técnica de
decomposição wavelet MODWT. Este trabalho propõe a análise dos impactos dos componentes de frequência
no comportamento da volatilidade de retornos intradiários com o uso de séries de detalhes wavelet em
diferentes horizontes temporais, em um período atípico nos mercados financeiros mundiais, gerado pela
pandemia do COVID-19. Os resultados empíricos sugerem baixa volatilidade incondicional e fortes sinais de
persistência em todas as frequências analisadas. A assimetria na volatilidade é evidenciada nas frequências
maiores, com efeito alavancagem presente apenas nas séries de detalhes com variações de 15-120 min., o
que é corroborado com os resultados obtidos com a série reconstruída. Os comportamentos evidenciados
impactam na elaboração de estratégias de investimento de curto prazo e gerenciamento de risco, uma vez
que os choques positivos e negativos, como os dados pela pandemia mundial do COVID-19, têm impactos
diferenciados sobre a volatilidade dos retornos em prazos menores. As informações obtidas podem contribuir
na análise de futuros eventos atípicos no mercado acionário brasileiro embasando a tomada de decisão dos
agentes econômicos.
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Introduction
The analysis of intraday financial market series

presents specific challenges. These data include high-
frequency components that vary over time and are
characterized by complex dynamics that display frequent
asset price movements during a given trading period
(GALLEGATI; SEMMLER, 2014; IN; KIM, 2013).
Financial returns present stylized characteristics,
such as:

i) a high kurtosis value;

ii) high volatility clustered over time;

iii) the presence of seasonal patterns during
asset trading and others stylized facts

(MORETTIN, 2017).

Volatility is one of the most significant issues in
the field of finance. This measure corresponds to the
conditional standard deviation of asset returns, which
can manifest in different ways in a financial series and
which reflect uncertainties regarding price changes. The
greater the variation in the price of an asset over a
time period is, the greater the volatility. Certain as-
pects of market volatility, such as the presence of per-
sistence and the asymmetry of information shocks in
financial returns series, have been a significant focus of
the empirical studies presented in Audrino and Hu (2016),
Baur and Dimpfl (2018), Pan and Liu (2018), Patton and
Sheppard (2015), Ramzan, Ramzan and Zahid (2012),
among others.

The intrinsic complexity of these systems re-
quires methodologies that incorporate these common
characteristics of intraday financial series into volatility
modeling. Thus, the ARCH (Autoregressive Conditional

Heteroskedasticity) family of conditional heteroscedas-
ticity models, introduced by Engle (1982), has proven
important in the areas of asset pricing, portfolio selection
and risk assessment as these tools address issues such
as asymmetric distribution, persistence and the leverage
effect, see Black (1976).

This ARCH family of models includes the APARCH
(Asymmetric Power ARCH) model, developed by Ding,
Granger and Engle (1993). In addition to addressing
persistence, this model provides flexibility by incorpo-
rating an exponent of conditional standard deviation
that varies with an asymmetry coefficient to consider
the leverage effect resulting from the risk aversion in-
herent to economic agents. According to Daly (2008),
the phenomenon of leverage occurs when the volatility
of returns increases when the prices goes down, while

volatility is less intense during periods of high prices.
The APARCH also includes seven other ARCH exten-
sions as special cases: the classic ARCH and GARCH,
GJR-GARCH, TS-GARCH, TARCH, NARCH and Log-
ARCH (or MGARCH).

The volatility data can be analyzed through the
decomposition of time scales. Hasbrouck (2016)
and Nava, Matteo and Aste (1989) demonstrate that
the consideration of different time scales helps to
explain the inherent complexity of financial index
volatility behaviors and captures the effects of in-
traday and long-term patterns on price movements
(LATIF et al., 2011; ROSSI, 2015) as well
as the impacts of long- and short-term trends
(GALLEGATI; SEMMLER, 2014). As a result,
the use of wavelet techniques has gained many supporters
(BIAGE, 2019; JENSEN; WHITCHER, 2014; OMANE-
ADJEPONG; ABABIO; ALAGIDEDE, 2019; SHAH;
TALI; FAROOQ, 2018).

This study examined the influence of the financial
microstructure on volatility by analyzing the impacts of
different time frequencies on intraday volatility behaviors.
To this end, the ARIMA-APARCH process was used
to estimate conditional variance at various frequencies
based on the wavelet decomposition of the intraday
time series of returns. This technique enabled us to
capture different levels of non aggregated detail in the
original series over time. The aim was to analyze, at
each frequency, the effects of asymmetry, unconditional
variance, the presence of persistence and the leverage
effect on world financial markets during the COVID-19
pandemic.

The analysis used the intraday returns of the Ibovespa
index during a period that reflects the impacts of the
COVID-19 pandemic. The Ibovespa is an index of the
average performance indicators of stocks traded on the
Brazilian capital market, one of Latin America’s most
important markets. Thus, the contribution of this study
is its evaluation of the impacts of various financial cy-
cles on estimates of the conditional variance of the
Brazilian stock market, which demonstrates how promi-
nent securities respond to the effects of volatility over
different time horizons. Since this financial market
has increased susceptibility to crises, and considering
the sampling period of this study, its results can be
used during future periods of uncertainty to support
the investment management decisions of economic
agents.
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The period of analysis was from March 17 to Septem-
ber 11, 2020, with a sampling interval of 15 minutes for
the seven hours of daily trading in the Brazilian market.
The Maximal Overlap Discrete Wavelet Transform
(MODWT) developed by Percival and Walden (2000) was
used; it enables the filtering of series into different fre-
quency components and preserves the variation in the
original series with location invariance. The decompo-
sition was performed using the Daubechies wavelet fil-
ter (DAUBECHIES, 1992) with two null moments since
it exhibits important properties in the multiresolution
analysis.

Methodological framework and procedures

The basic methodological structure for conditional
heteroscedastic processes and the APARCH model
used in this study are presented below, along with
the characteristics of the MODWT decomposition.
These procedures were performed with the assistance
of software R (R CORE TEAM, 2020) using the
fGarch (WUERTZ et al., 2019) and wmtsa

(CONSTANTINE; PERCIVAL, 2017) software packages.

Data

Ibovespa index quote data were obtained using the
QuantTools (KOVALEVSKY, 2018) package. Each record
contains information about price, trade volumes and trade
date and time. Table 1 shows the composition of the
Ibovespa index. The analysis period was March 17 to
September 11, 2020, and n = 3660 observations are in-
cluded. The sampling interval was every 15 minutes for
the seven hours of continuous trading in the Brazilian
stock market. The analyzed series corresponds to the in-
traday log-returns rd,m = ln(pd,m)− ln(pd,m−1), where
pd,m is the asset price in period m = 1, . . . ,28 of busi-
ness day d = 1, . . . ,124. The notation rt used here rep-
resents the intraday series of returns of the Ibovespa
rd,m.

Wavelet analysis

The MODWT filters a time series into multiscale in-
formation. The MODWT exhibits the essential properties
of a time series decomposition: it is non-orthogonal and
location-invariant, thus preserving variation in the original
series, for more details, see Percival and Walden (2000).
These characteristics enable the estimation of volatility
using reconstructed series of decomposition.

Table 1 – Main stocks comprising the Ibovespa index
from March to December 2020.

S/A Storage code Participation

Vale do Rio Doce VALE3 10.46%

Itaú Unibanco ITUB4 6.38%

Petrobras PETR4 5.62%

B3 B3SA3 5.33%

Bradesco BBDC4 5.09%

Petrobras PETR3 4.40%

Magazine Luiza MGLU3 3.19%

Ambev ABEV3 2.95%

Banco do Brasil BBAS3 2.34%

Weg WEGE3 2.34%

Intermédica GNDI3 2.33%

Lojas Renner LREN3 1.95%

Natura NTCO3 1.91%

Suzano SUZB3 1.85%

JBS JBSS3 1.84%

Source: The authors.

To generate the wavelet financial series, iterative fil-
tering of the returns data is needed. For all integers n of
length L, the low-pass g j,l and high-pass h j,l filters are
applied to decompose signal and must meet the following
criteria:

i) ∑
L−1
l=0 hl = 0;

ii) ∑
L−1
l=0 h2

l =
1
2 ;

iii) ∑
L−1
i=0 hihi+2n = 0;

iv) gl =−1lhl−.

The MODWT {g j,l} and {h j,l} dimension filters are
expressed as follows: h̃ j,l = h j,l/2 j and g̃ j,l = g j,l/2 j.
Because of the advantages offered by compact support
and orthogonality, this study uses the Daubechie wavelet

hl, j = (−1)l−L j gL j−1−l with two null moments (db2)
(DAUBECHIES, 1992).

Using s̃0,t = rN−1
t=0 as the initial input, the decomposi-

tion process is performed using the pyramidal algorithm
developed by Mallat (1989) from the relationships pre-
sented in equations (1) and (2)

s̃ j,t ≡
L j−1

∑
l=0

g̃ j,lrt−l mod N (1)

and

d̃ j,t ≡
L j−1

∑
l=0

h̃ j,lrt−l mod N , (2)
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in which L j = (2 j−1)(L−1)+1 corresponds to the size
of the filter associated with each scale j, j = 1, . . . ,J, and
mod N is a module operator. At j levels and time period t,
the coefficients of scale s̃ j,t refer to the rt approach, which
captures longer fluctuations, and coefficients d̃ j,t capture
fluctuations as structural changes, representing the rt de-
tails. Since the MODWT preserves the original variation
of the input series, and given the relationships presented
in equations (1) and (2), a reconstruction of rt can be
obtained, as shown in equation (3)

rt =
J

∑
j=1

d̃ j,t + s̃J,t . (3)

Details wavelet series

The d̃ j,t coefficients are the objects of our analysis as
they consist of time series that describe rt in increasingly
coarse levels of resolution that are not aggregated over
time. Each level of detail corresponds to a cycle. The
higher the level of decomposition is, the longer the time
interval of the cycle (CROWLEY, 2007). The d̃ j,t series
uses approximate capture variations in minutes, hours,
weeks and months. The frequencies are measured accord-
ing Crowley (2007) by Table 2, and are based on the
Brazilian market workday.

Table 2 – Variation in and interpretation of the
decomposition components of the Ibovespa intraday
log-returns

Level Frequency

d̃1,t 15-30 trading minutes

d̃3,t 60-120 trading minutes

d̃6,t 8-16 hours ≈ 1-2 trading days

d̃8,t 32-64 hours ≈ 5-9 trading days

d̃10,t 128-256 hours ≈ 18-37 trading days

Source: The authors.

Because the weekly variations captured by d̃8,t are
influenced by the days of the week (the so-called Monday
and Friday effects), to adjust for volatility at this level it
is necessary to isolate this seasonality as Alberg, Shalit
and Yosef (2008), according to the equations (4) and (5),
given by

d̃8,t = α1Mot +α2Tut +α3Wet +α4Tht +α5Frt +δt (4)

and

(d̃8,t −
ˆ̃d8,t)

2 = α1Mot +α2Tut +α3Wet +α4Tht +α5Frt + εt

(5)

for which Mot , Tut , Wet , Tht , Frt , are dummy variables
representing the days of the week, and ˆ̃d8,t is the value
predicted by equation (4). The filtered series is obtained

from equation (5) is d̃8,t =
(d̃8,t−

ˆ̃d8,t )√
η̂

, for which η̂ is the

estimated value of (d̃8,t − ˆ̃d8,t)
2.

APARCH model

The ARCH group of processes generally expresses the
volatility component (conditional variance) and an inno-
vation component commonly assumed to be Gaussian,t-
Student or an extension of these distributions. Likewise,
the APARCH model was developed to introduce the
flexibility of a variable exponent with an asymmetry coef-
ficient to detect the asymmetric impacts of shocks on the
volatility (leverage effect) of a series of financial returns.

The general structure of the APARCH(p,q) model for
a conditional standard deviation (σt) of rt is given by
rt = µ +εt , in which εt = ztσt and zt ∼Dν(0,1), with σδ

t

presented in equation (6)

σ
δ
t = ω +

p

∑
i=1

αi(|εt−i|− γiεt−i)
δ +

q

∑
j=1

β jσ
δ
t− j, (6)

subject to the following parameter restrictions to ensure
that the conditional variance is positive and weakly sta-
tionary:

• ω ≥ 0 , δ ≥ 0, |γi| ≤ 1;

• αi ≥ 0 , i = 1, . . . , p, β j ≥ 0, j = 1, . . . ,q;

• 0≤ ∑
p
i=1 αi +∑

q
j=1 βi ≤ 1, otherwise.

The ω parameter corresponds to the average degree
of volatility of the conditional variance. The δ parameter
enables the estimation of other powers to determine the
conditional standard deviation using a Box-Cox transfor-
mation in σt . The αi coefficient indicates the reaction of
the volatility to a shock in the series, and β j measures the
amount of volatility from the previous period that persists
in the current period.

The sum of αi and βi represents the persistence of
volatility, subject to the restriction given above. If case

∑(αi + β j) > 1, the series shows a high persistence of
volatility, i.e., volatility shocks will last for a very long
time in the series. The presence of the leverage effect
is indicated if γi > 0. The term Dν detects, if present, a
distribution with a heavy tail and indicates an error distri-
bution with mean 0 and variance 1, where the distribution
is normal if ν = 0.
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The µ conditional average is modeled by using an au-
toregressive integrated moving average (ARIMA) model
and applying the Box and Jenkins (1970) methodology.
ARMA(p,q) denotes an autoregressive and moving
average model of order (p,q) that can be specified as
described by equation (7)

rt =
p

∑
i=1

φirt−i +
q

∑
i=1

θiεt−i + εt , (7)

in which the εt term is the residual that comprises indepen-
dent and identically distributed random variables (iid) with
zero mean and variance σ2, φi,θ j ∈ R, with i = 1, . . . , p

and j = 1, . . . ,q.
From the ARMA model definition, the hypothesis

of the stationary time series provides an analogous
ARIMA(p,0,d) process; otherwise, rt must be differenti-
ated, and the ARIMA(p,d,q) must be adjusted, with d as
the order of differentiation of the series. The stationarity
analysis of each series is conducted using the Augmented

Dickey-Fuller (ADF) test developed by Dickey and Fuller
(1979, 1981).

With series data representing rt at different j frequen-
cies, ARIMA-APARCH models are estimated with d̃ j,t ,
using a maximum likelihood (ML) approach. To model
the conditional variance after the ARIMA(p,d,q) model
is identified and estimated, it is necessary to make an ad-
ditional assumption regarding the density function Dν ,
denoted by g(zt ;τ), where τ is a vector of distribution
parameters. The log-likelihood function is given by equa-
tion (8)

l(θ ,τ) =
T

∑
t=1

log f j
(
d̃ j,t | θ ,τ, It−1

)
, (8)

with the maximum likelihood estimator (MLE) of

θ̂hMLE = max
θ∈Θ

l(θ ,τ),

in which θ is the vector of unknown parameters for the
conditional mean and variance, and It−1 are the data de-
fined in period t.

Since financial time series often exhibit non-normal
distributions with excess kurtosis and asymmetry, a more
appropriate distribution for zt is the t-Skewed(ν ,ξ ), in
which the parameters ν and ξ represent the degrees of
freedom and asymmetry, respectively. For the GARCH
structure, Lambert and Laurent (2001) recommend using
the function l(θ ,τ), given t-Skewed distribution, described

by the equation (9)

l(θ ,ν ,ξ ) = T
[

logΓ

(
ν +1

2

)
− log

(
ν

2

)
− 1

2
log(π(ν−2))

]

+T

[
log

(
2

ξ + 1
ξ

)
+ log(s)

]
− 1

2

T

∑
t=1

[
log
(

σ
2
t

)]

− 1
2

T

∑
t=1

[
(1+ν) log

(
1+

(szt +m)2

ν−2
ξ
−2It

)]
,

(9)

in which

It =

{
1, if zt ≥−m

s ,

−1 if zt <−m
s ,

m =
Γ((v+1/2))

√
v−2√

πΓ(v/2)

(
ξ − 1

ξ

)
and

s =

√(
ξ 2 +

1
ξ 2 −1

)
−m2.

Results and discussion

Data and descriptive statistics

Figure 1(a) shows graphs of prices and Figure 1(b)
of the intraday log-returns (∆ = 15 min) from March 17
to September 11, 2020. The price movements clearly re-
flect the intraday behavior and the log-returns volatility
groupings. These behaviors reflect the impacts of the
COVID-19 pandemic on world financial markets, which
experienced an initial shock in March 2020. In addition to
the pandemic, the influence of instability in Brazilian poli-
tics can be observed during this period. It is also necessary
to consider the increasing investment in the Brazilian cap-
ital market. The descriptive analysis exhibits peculiarities
such as negative asymmetry with a value of −0.65, and
an excess of kurtosis equal to 40.14. The Kolmogorov-

Smirnov test produced a KS = 0.49, which is also not
normal.

The MODWT decomposition process was applied to
the series using the methodology described in the previous
section to obtain J = 11 levels of decomposition. For the
APARCH adjustment, we used the detail wavelet series
d̃ j,t , j = 1,3,6,8,10, corresponding to the variation fre-
quencies from the very short term (stochastic noise) to the
medium and long terms. The series obtained are shown in
Figures 2(a)-2(e).
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Figure 1 – Ibovespa series from March 17 to September 11 (∆ = 15min): (a) Price series; (b) Series of intraday
log-returns.

(a) (b)

Source: The authors.

Figure 2 – Series d̃ j,t , with j = 1,3,6,8,10, or the MODWT decomposition of the intraday Ibovespa log-returns from
March 17 to September 11 (∆ =15 min).

(a) (b)

(c) (d)

(e)

Source: The authors.
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Series d̃8,t captures the Friday effect. Thus, the fil-
tered series was used to model the volatility according
to the methodology presented above, which is based on
the estimations of equations (3) and (4). The results of
the regression, with the standard errors in parentheses, are
shown in Table 3.

Table 3 – Regression coefficients for the day of the week
effect for d8,t .

Coefficients Estimates

α1 0.000063
(0.00001)

α2 0.000016
(0.00001)

α3 −0.00000014
(0.00001)

α4 0.000017
(0.00001)

α5 −0.000039*
(0,00001)

*significant at 5%

Source: The authors.

Volatility analysis

Once the series obtained by the wavelets coefficients
were defined, the stationarity condition was analyzed. As
shown in Table 4, the ADF test results without constant
(no ct) and with constant and trend (ct+trend) confirmed
that d̃10,t is the only non stationary series.

Table 4 – Unit root ADF test for details series d̃ j,t ,
j = 1,3,6,8,10.

Series Option p-Value

d̃1,t
no ct

ct+trend
≤ 0.01
≤ 0.01

d̃3,t
no ct

ct+trend
≤ 0.01
≤ 0.01

d̃3,t
no ct

ct+trend
≤ 0.01
≤ 0.01

d̃6,t
no ct

ct+trend
≤ 0.01
≤ 0.01

d̃8,t
no ct

ct+trend
≤ 0.01
≤ 0.01

d̃10,t
no ct

ct+trend
≤ 0.01
0.04

Source: The authors.

The ARIMA(p,d,q)-APARCH(1,1) pro-
cesses were estimated next. The specifications
for the conditional average were given by
ARIMA(1,0,1), ARIMA(0,0,8), ARIMA(2,0,0),
ARIMA(1,0,0) and ARIMA(2,1,1) models for
d̃1,t , d̃3,t , d̃6,t , d̃8,t filtered and d̃10,t , respectively.

The results of the parameter estimates are shown in Table
5, with the standard errors in parentheses. The Box-Pierce

Q(20) statistics for the standardized residuals indicate the
goodness of fit of the models.

Regarding the results for µ with the estimated
values of the explanatory variables defined by φ and
θ , it should be noted that for the frequency represented
by series d̃3,t , Figure 2(b), the results reflect the persis-
tence of price movements during the day, as was also
observed by Schulmeister (2009). It was necessary to ad-
just ARIMA(p,1,q) for d̃10,t , Figure 2(e), as this level
represents the lower frequency movements in the medium-
to long-term trend, which demonstrates the dynamism
of asset trading activities in the financial market. This
behavior is substantiated by the ADF test results and by
the correlogram presented in Figure 3, which shows the
autocorrelation values slowly trending downwards to zero.

The results for σ show low unconditional volatility on
every scale, as given by the ω estimates. The ξ asymmetry
parameter was significant and positive, and the ν estimate
captured the presence of heavy tails. The α1 and β1 coef-
ficients were also significant for every series. The asym-
metry and leverage effects on volatility were observed
only in the decomposition of short-term oscillations and
stochastic noise.

The low α1 values for every frequency except the
weekly frequency indicate that β1 the effects of shocks on
volatility are felt quickly. The shocks experienced during
the examined period mainly correspond to uncertainties
in the global economy pertaining to the COVID-19 pan-
demic. For the intraday, daily and monthly frequencies,
more than 90% of the shock in the t−1 time series per-
sisted at time t. For the weekly frequency, 78% of the
shock persisted. Furthermore, for all frequencies in which

∑α1 +∑β1 > 1, the effects of shocks on volatility per-
sisted for a longer period in the series. In other words, the
process of reversing the conditional variance to its mean
value tends to be slow after a shock.

The leverage effect represented by γ1 > 0 was only
exhibited at the d̃1,t and d̃3,t levels, indicating that
past negative shocks, such as the effects of COVID-
19, economic and political instabilities and exogenous
changes in transaction volumes, have a more intense
impact on t time-conditional volatility than past posi-
tive shocks. The presence of asymmetry in d̃6,t , γ1 <

0, indicates that positive shocks have a greater im-
pact on volatility than negative ones. For the other se-
ries, γ1 was not significant, indicating that price drops
and hikes could have the same effect on volatility.
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Table 5 – ARIMA-APARCH model estimates for series d̃ j,t . j = 1,3,6,8,10

Coefficients d̃1.t d̃3.t d̃6.t d̃8.t d̃10.t Coefficients d̃1.t d̃3.t d̃6.t d̃8.t d̃10.t

φ1 −0.02** 0.99* 0.98* 0.30* ω 5e−5* 1e−6* 3e−8* 7e−4* 6e−8*
(0.01) (0.01) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

φ2 −0.03* −0.02** α1 0.10* 0.11* 0.05* 0.56* 0.04*
(0.01) (0.00) (0.02) (0.00) (0.01) (0.07) (0.00)

θ1 −0.99* 0.95* −0.29* γ1 0.31* 0.28* −1.32** −0.06 −1.21
(0.00) (0.00) (0.02) (0.08) (0.07) (0.07) (0.05) (0.11)

θ2 0.89* β1 0.93* 0.91* 0.95* 0.78* 0.96*
(0.00) (0.014) (0.01) (0.00) (0.01) (0.00)

θ3 0.85* δ 1.18* 1.25* 1.38* 0.35* 0.98*
(0.00) (0.12) (0.13) (0.17) (0.03) (0.25)

θ4 −1.00* ξ 1.01* 1.01* 1.00* 0.99* 1.00*
(0.00) (0.01) (0.01) (0.01) (0.01) (0.01)

θ5 −0.92* ν 2.50* 2.85* 3.26* 2.01* 2.91*
(0.00) (0.11) (0.15) (0.18) (0.01) (0.15)

θ6 −0.87* Q(20) 0.55 0.12 0.30 0.99 0.38
(0.00)

θ7 −0.83*
(0.00)

θ8 0.02*
(0.00)

*significant at 5%, **significant at 10%
Source: The authors.

Figure 3 – Autocorrelation function for the d̃10,t series,
MODWT decomposition of the Ibovespa intraday logre-
turns from March 17 to September 11 (∆ = 15min).

Source: The authors.

The results for the γ1 coefficient indicate that the first
levels of decomposition are responsible for most of the
rt variability (around 89%), as was also observed by
Biage (2019) and Kumar and Anandarao (2019).

Since decomposition of higher frequencies bet-
ter enabled the detection of the leverage effect, the
ARIMA(p,d,q)-APARCH(1,1) processes were applied in
the reconstructed rt = d̃1,t − d̃3,t = ∑

3
j=1 d̃ j,t series using

equation (3). In Figure 4, we can observe the resulting
reconstruction. The results of the ADF test showed no
unit root evidence for the reconstructed series (p-value ≤
0.01 for no ct and ct+trend cases). The ARIMA(2,0,1)-
APARCH(1,1) model was adjusted, and the results are
shown in Table 6 (with standard errors in parentheses),
which shows that asymmetry, the leverage effect and per-
sistence were all exhibited during this period.

Figure 4 – Reconstructed series with d̃ j,t , for j = 1,2,3,
of the MODWT decomposition of Ibovespa intraday log-
returns (∆ = 15min).

Source: The authors.

Table 6 – ARIMA-APARCH model estimates for the
Ibovespa intraday reconstructed series (∆ = 15min).

Coefficients Ibovespa Coefficients Ibovespa

φ1 -0.630* β1 0.880*
(0.291) (0.022)

φ2 -0.680* δ 1.300*
(0.282) (0.264)

θ1 0.656* ξ 0.927*
(0.289) (0.026)

ω 0.006* ν 4.197*
(0.002) (0.410)

α1 0.139* Q(20) 0.670
(0.025)

γ1 0.120*
(0.007)

*significância de 5%
Source: The authors.
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Conclusion

Considering the dynamics of financial assets, the main
objective of this study was to determine the behavior of
conditional volatility components in intraday financial se-
ries for short-, medium- and long-term cycles. To this end,
we used the MODWT technique to separate the Ibovespa
log-returns series (∆ = 15min) into the following five fre-
quency components: d̃ j,t , j = 1,3,6,8,10. The particu-
lar characteristics of intraday financial series, such as
asymmetry, seasonality and volatility groupings, led to
select ARIMA(p,d,q)-APARCH(1,1) models with a t-
Skewed(ν ,ξ ) distribution.

The results show that for the sampled period, every
frequency of Ibovespa returns exhibited low unconditional
volatility and asymmetry. In addition, volatility tended
to persist in the series for a long time at every frequency.
Asymmetric effects of shocks on volatility were significant
for the 1- to 2-day frequency, but the leverage effect was
only exhibited for very short frequencies (15-120 min),
revealing that negative price fluctuations have a greater
effect on volatility in the very short term. The results
led us to conclude that the impacts of high frequency
decomposition, which also had significant effects on the
series of returns, exhibit a leverage effect.

The estimates produced by the modeling of the
reconstructed series with the first three MODWT levels
corroborate the results for the frequencies. The re-
sults of this study show that models that apply multi-
scale resources and wavelet techniques can provide
period-specific information regarding intraday volatility
in financial markets. During times of uncertainty, such
as the current global COVID-19 pandemic, such informa-
tion and its impacts on conditional variance are essential
for the development of short- and long-term hedge strate-
gies by economic agents. Therefore, the findings of this
study may contribute to financial management and analy-
sis, especially during events that increase uncertainty in
the Brazilian stock market.
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