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Failure analysis on a water pump based on a low-cost MEMS
accelerometer and machine learning classifiers

Análise de falhas em uma bomba d’água baseado em um acelerômetro
MEMS de baixo custo e classificadores de aprendizado de máquina
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Abstract
This work presents a failure diagnosis tool for a water pump using a low-cost MEMS accelerometer. It was
inserted three types of failures: rotor blade (new and damaged), pump soleplate tightness (stiff or loose), and
cavitation, in this case on three conditions: none, incipient and severe, totaling twelve fault combinations.
These conditions were tested under two different speeds to perform the diagnosis, totaling twenty-four tests.
In all cases, the vibration signals from axes X, Y, and Z were acquired. Some features extracted from the
vibration spectra from X-axis were used to compose the dataset. These data were analyzed employing logistic
regression, a linear support vector machine (SVM), and an artificial neural network multilayer perceptron
(ANN-MLP). We compared these three techniques of machine learning and evaluated which one was able to
obtain the most accurate result. Using the ANN-MLP, the system was able to detect all three types of failures
inserted, with about 100% of accuracy on the rotor blade condition, 92% for anchorage faults, and about 99%
accuracy on cavitation state. As a conclusion, it is demonstrated that this classifier algorithm can be used to
process the data from the low-cost MEMS accelerometer in predictive maintenance as an accurate tool.

Keywords: MEMS Accelerometer. Diagnosis by vibration. Diagnostic classifiers. Logistic regression. Linear
SVM. ANN-MLP.

Resumo
Este trabalho apresenta uma ferramenta de diagnóstico de falhas para uma bomba de água utilizando
um acelerômetro MEMS de baixo custo. Foram inseridos três tipos de falhas: lâmina do rotor (nova e
danificada), estanqueidade da placa da bomba (rígida ou solta) e cavitação, neste caso em três condições:
nenhuma, incipiente e grave, totalizando doze combinações de falhas. Estas condições foram testadas sob
duas velocidades diferentes para realizar o diagnóstico, totalizando vinte e quatro testes. Em todos os
casos, os sinais de vibração dos eixos X, Y, e Z foram adquiridos. Algumas características extraídas dos
espectros de vibração dos eixos X foram utilizadas para compor o conjunto de dados. Estes dados foram
analisados empregando regressão logística, uma máquina vetorial de suporte linear (SVM) e perceptron
de rede neural artificial multicamadas (ANN-MLP). Comparamos estas três técnicas de aprendizagem da
máquina e avaliamos qual delas foi capaz de obter o resultado mais preciso. Usando a ANN-MLP, o sistema
foi capaz de detectar todos os três tipos de falhas inseridas, com cerca de 100 % de precisão na condição da
pá do rotor, 92 % para falhas de fixação da bomba à base e cerca de 99 % de precisão no estado de cavitação.
Como conclusão, é demonstrado que este algoritmo classificador pode ser usado para processar os dados do
acelerômetro MEMS de baixo custo em manutenção preditiva como uma ferramenta precisa.

Palavras-chave: Acelerômetro MEMS. Diagnóstico por vibração. Classificadores de diagnóstico. Regressão
logística. SVM linear. RNA-MLP.
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Introduction

Fault diagnosis has been widely used in the industry
for several years. The investment in predictive mainte-
nance may represent a decrease in operational costs be-
cause it implies a significant drop in the unscheduled
machine stops (FLORINO; MELLO; CARAZZAI, 2014).
Moreover, modern diagnosis systems reduce the main-
tenance time, optimizing its planning because those
tools can indicate which is the type of incipient failure
(JARDINE; LIN; BANJEVIC, 2006; NAKAJIMA, 1988;
STEEGE, 1996).

Rotating machines are subject to fatigue, wear, defor-
mations, anchorage base accommodation, among other
problems. These phenomena cause shaft misalignment,
slack in straps and gears, cracks, unbalance, and many
other defects. Those failures increase the vibration, which
can be measured and analyzed, and, from that signal, it is
possible to identify and in some cases go further: diagnos-
ing the mechanical malfunction (RAO, 2010).

Generally, the vibrations tend to increase along the
time, causing vibration on several frequencies with
significant amplitudes which may result in machine
malfunctions, implying maintenance costs and ma-
chine failures. Many standards were created to indicate
acceptable vibration thresholds for rotating machines
(IEEE..., 2007). These thresholds help evaluate vibration
levels, allowing the operators to justify the maintenance
decisions (NORTON; KARCZUB, 1994).

The forces exerted on different machine parts intro-
duce specific excitations, which may be used to identify
possible failures. Thus, a measurement of the vibration be-
havior is suitable for determining the core of the problem,
allowing a more accurate diagnosis, indicating the poten-
tial fault, like a bearing, bushing, gear, etc. The machine
vibrations occur in a wide range of the spectrum; thus, it
is possible to identify some malfunctions using the corre-
sponding frequencies (BRAUM, 1986).

According to the Hydraulics Institute, 20% of to-
tal energy consumption in the industry is provided by
fluid moving systems (pumps) (AUGUSTYN, 2012;
BAZANINI, 2018; MATTOS; FALCO, 1998). Thus, this
type of equipment is essential for the perfect operation of
the productive process. A common malfunction on water
pumps is the cavitation. This phenomenon is characterized
by the small steam bubbles shaping in the middle of
the fluid when it is subject to a specific condition of
pressure and temperature. When one of these bubbles,
also known as cavities, implode, an enormous amount

of energy is released, causing wear on the metal surface
blade, including debris detachment, which can propagate
to the pipe and compromise other equipment present in
the system (WHITE, 2016).

This kind of phenomenon significantly reduces the
lifetime of a pump, due to the wear which it causes in
its rotor. The cavitation is related to the pipe pressure,
among other variables; thus, the pressure measurement is
usually employed to analyze and control this phenomenon.
The installation of equipment to measure this variable is
invasive into the process, requiring pipe cuts, and flanges
assembly what leads to an additional cost to monitor the
cavitation (KAYA et al., 2008; WHITE, 2016).

However, the cavities rupturing generates high am-
plitude vibrations, increasing the ambient noise, and
propagating for the whole system. The relationship
between the cavitation condition and the vibration is
governed by a phenomenon that depends on the forces
exerted by the rupture of the steam bubbles and on the res-
ponse of the mechanical structure to these forces. These
different cavitation levels result in other vibrations excita-
tions with different frequencies and amplitudes which can
be measured and analyzed (WOWK, 1991).

Thus, this vibration signal can be used to classify the
cavitation level. Computational tools have been used in
this classification task. A typical tool that is mostly used
in classification problems is Logistic Regression. In some
cases, a non-linear classification tool is used to aid in this
diagnosis too, like artificial neural networks (ANN), which
are tools capable to approximate any differentiable func-
tion (CYBENKO, 1989). In this paper, the classification
was made using these three technics: logistic regression,
linear support vector machine (SVM), and multi-layer
perceptron (MLP).

Any malfunction in a rotating machine may cause
changes in its vibration as unbalance, misalignment,
cracks, among others. Each machine element induces its
excitement, which identifies a specific disorder (RAO,
2010; WOWK, 1991). Considering it, other disturbances
besides cavitation were applied to simulate other com-
mon malfunctions. These disturbances are related to
the mechanical equipment situation. During the tests,
two rotors were used, one of them with a set of new
blades and the other one with damaged blades, that
have already suffered cavitation effects. Another distur-
bance applied is related to the pump anchorage, which
was fixed stiffly and loosely. In all cases, the system
was operated at two different speeds: 900 RPM and
1368 RPM.
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The relationship between cavitation and vibration
in centrifugal pumps has been investigated in some
works. In Nasiri, Mahjoob and Vahid-Alizadeh (2011)
a cavitation diagnosis based on vibration is presented.
The vibration was acquired using three piezoelectric ac-
celerometers, which costs about US$100.00 per unit, and
the data were analyzed with an ANN. No other failures
besides cavitation were investigated, and the reference
discusses the influence of the position of the sensors in
the diagnosis; three-speed are tested, and the first two
harmonic frequencies are used as an input feature, and
all the data were acquired using a commercial analyzer
B&K 3560C.

In Stopa, Filho and Martinez (2014), a method to
detect incipient cavitation using Load Torque Signa-
ture Analysis (LTSA) correlating with the vibration
FFT analysis under different pump speeds is presented.
In that work the load torque was estimated measuring the
pump current and monitoring the vibration through a not
specified sensor; however, an index of precision in the
diagnosis was not presented. As in Nasiri; Mahjoob and
Vahid-Alizadeh (2011), no other failure besides incipient
cavitation was identified.

In Hamond et al. (2017) it is presented that it is pos-
sible to diagnose faults on centrifugal pumps using low
frequencies analysis; The faults investigated were the inlet
vane damages and bearing outer race faults. The sensor
used to acquire the vibration signal was non-specified.
In that work, the modulation signal bispectrum method
was used to characterize the vibration signals. This method
is employed to extract deterministic characteristics of
modu-lating components in a low-frequency band for di-
agnosing both the bearing defects and impeller blockages.
No investigation about cavitation was presented.

In Dutta et al. (2018) a machine learning algorithm
is presented to diagnose the cavitation status on centrifu-
gal pumps, being able to detect if there is cavitation or
not; incipient cavitation was not investigated. The support
vector machine classifier was used in a machine learning
algorithm. However, the signals used to characterize the
failure were used as the system pressures measurements
such as the static head, vapor pressure, gauge pressure,
and friction head. Consequently, an invasive method was
used to install the sensors.

In Sánchez et al. (2018) the vibration signals ac-
quired by an accelerometer were compared with the ISO
10816 standard of vibration severity. The signals were
measured under normal operation, cavitation operation
(similarly as done in Dutta et al. (2018) and under dif-

ferent speeds too. The vibration severity RMS was de-
termined to compare according to ranges to ISO 10816
standard.

In this work, the results for fault diagnosis are
not only cavitation but also for incipient cavitation,
and two other failures are presented. The introduc-
tion of the other failures was done to check the ca-
pacity of the classifier algorithm to differentiate the
phenomena that cause vibrations and still perform an ac-
curate diagnosis. The data was also collected at different
speeds to validate the diagnosis for different operational
conditions.

Another contribution of this article is the use of
low-cost equipment. A MEMS accelerometer (microelec-
tromechanical systems) NXP MMA8451Q model em-
bedded on the development board FRDM-KL25Z was
chosen. This equipment costs less than US$1.20 per
unit (NXP, 2017) and presents low energy consump-
tion. A Matlab interface was developed to acquire the
vibration signals (PEDOTTI; ZAGO; FRUETT, 2017).
This kind of equipment is easy to install because the
process is non-invasive and does not require a system
shutdown.

This work is structured as follows: theoretical basis,
where the relationship between faults and vibration is pre-
sented and is explained how cavitation arises and what
are its implications on the equipment; experimental appa-
ratus, where the test plant is presented; data acquisition,
where the data collection device is presented; analysis
techniques, where the three methods used are explained;
operation conditions, explaining which was the measure-
ment conditions on each test; data analysis, presenting
how the data was prepared and divided and finally the
results.

Theoretical Basis

The rotating machines generally present periodic vibra-
tions (PEDOTTI; ZAGO; FRUETT, 2017; RAO, 2010).
A Fourier Series can represent any periodic waveform.
The knowledge of the vibration spectrum is essential to
diagnose several anomalies because each kind of mal-
function presents a specific characteristic signature. For
example, the unbalance, affects directly the FFT ampli-
tude corresponding to the machine fundamental frequency
(RAO, 2010; WOWK, 1991). Figure 1 shows some cases
of malfunctions on rotating machines concerning affected
frequency.

173
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 41, n. 2, p. 171-184, July/Dec. 2020



Pedotti, L. A. S.; Zago, R. M.; Rocha, J. C., Dalfré Filho, J. G.; Giesbrecht, M.; Fruett, F.

Figure 1 – Example of machine malfunctions and their
corresponding frequencies.

Source: The authors.

Cavitation on water pumps

In a liquid flow, keeping the temperature constant,
bubbles or steam cavities are generated whether the pres-
sure is reduced to the steam pressure of that liquid.
Hence the term cavitation. In pumping systems, the liquid
transported can vaporize in the pump suction or its ro-
tors, limiting the suction capability and causing other
undesirable effects as pressure fluctuation, vibration, addi-
tional noise, and erosion.

In industries or utilities, the conservation and main-
tenance of the centrifugal pumps represent a significant
resource of labor and materials (SCHRODER; LUCCA;
DALFRÉ FILHO, 2015). Nonconformities, as pumps op-
erating with cavitation, cause essential losses to the pro-
ductive system. Engineers, technicians, and other profes-
sionals involved in the installation and maintenance use
the theoretical foundations and experiments performed
to comprehend the causes, measure the effects, and to
prevent damage caused by cavitation phenomena.

Commonly used quantities to characterize the
cavitation are the Net Positive Suction Head (NPSH) or the
cavitation index. The NPSH calculation is the most used
for the technician involved in pumping system designs
(SCHRODER; LUCCA; DALFRÉ FILHO, 2015). In this
case, two indexes are calculated, the NPSH available
(NPSHa) and NPSH required (NPSHr). The NPSHa refers
to the total system pressure measured in the suction pump
blind flange in a specific flow and water temperature. The
NPSHa is a characteristic of the pumping system and
depends on the altitude of the installation, temperature,
and the liquid characteristics and also on the hydraulic
configuration of the system.

Table 1 – Cavitation Condition ×Measured Pressure.

Cavitation Condition Measured Pressure
None 0.5 psi

Incipient 0.3 psi
Severe 0.1 psi

Source: The authors.

On the other hand, the NPSHr represents the energy
of the liquid in the suction flange of the pump, required to
reach the rotor, without vaporization. The NPSHr depends
on elements of pump design as rotor diameter, engine
speed, and specific rotation. Finally, for a given flow, if
the NPSHa calculated is greater than NPSHr, provided by
the pump manufacturer, the system will not cavitate.

The cavitation index (σ ) is a dimensionless variable
that relates the energy of pressure available for given ki-
netic energy which favors or, even, indicates the suscepti-
bility of occurrence of the phenomenon. In Knapp, Daily
and Hammit (1970) the cavitation index σ , is defined by
equation (1)

σ =
p0− pv

ρv2

2

, (1)

where p0 is the reference pressure in the flow, pv the vapor
pressure, ρ the specific mass, and v the flow velocity.

High values of σ reflect, in general, the absence of
cavitation, while reduced values indicate the presence of
cavitation. Despite the ease of calculating the index, its
experimental determination is not too easy (SCHRODER;
LUCCA; DALFRÉ FILHO, 2015), mainly for incipient
cavitation. An experiment, from a flow without cavitation,
requires the imposition of pressure reduction by some de-
vice and detection of parameters to characterize the pres-
ence of the phenomenon. For example, many experiments
adopt visual observation to detect the presence of steam
bubbles, which when detected, indicate the presence of
cavitation and intensity. This requires a transparent device,
in this case, in the suction pump, which is usually diffi-
cult to install (SCHRODER; LUCCA; DALFRÉ FILHO,
2015; KNAPP; DAILY; HAMMIT, 1970).

In this experiment, some classifiers algorithms are
trained to detect the cavitation from vibration signals. A
manometer was installed in the pump suction point in
order to provide data for the supervised training of those
algorithms. The pressures and cavitation conditions are
presented in Table 1. This procedure needs to be done only
once for each pump type so that it is possible to determine
its profile.
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Table 2 – Costs of main commercial devices.

Commercial devices Cost Per Unit
VM220 Portable US$ 785

VM-6360 Hand Held US$ 380

HS-620 & HS-630 US$ 1.015

VSA101 & VSE002 US$ 1.460

FLUKE 805 US$ 2.200

Tecnoferramentas VM-6380 US$ 1.090

Omega HHVB82 U US$ 1.435

OneProd Falcon SMART more than US$ 17.000

Source: Pedotti, (2019).

Through installing access plugs on the piping,
manometers can be installed to measure the pressure.
The plugs can be sealed later and the manometers can
be used at other points in the process. Other tech-
niques for cavitation detection using pressure trans-
mitters can be done. However, pressure transmitters
are significantly more expensive when compared to
manometers.

Less expensive procedures as the use of vibration sen-
sors mean a significant reduction in installation costs.
However, commercial piezoelectric accelerometers are
also expensive, making its installation practically unfeasi-
ble on some machines.

The accelerometer used is not yet prepared to face
the bad weather of industrial environments, such as dust,
shock, among others. However, a device can be developed
for this purpose using similar technologies that may offer
results analog to those obtained in this article. Table 2
gives a summary of the main vibration measuring devices
for the industrial environment used in the market and their
respective costs. Some of the devices listed in the table
have superior technologies. However, there is a market
potential to be exploited for more cost-effective machine
health monitoring devices.

The use of non-invasive equipment with low-cost and
easy installation makes this monitoring feasible, and this
can result in a significant reduction in maintenance costs.
This is the purpose of the MEMS device shown in section
Data acquisition.

Experimental apparatus

In this section, the test bench and the data acquisition
device are presented.

Test bench

Hydraulic, electrical, and mechanical components that
constitute the test bench for the tests with the centrifugal
pump are shown in Figure 2.

The water used in the experiment is recirculated from
a bottom tank and boosted to the upper reservoir. The
upper tank has 8.4 m3. In the center of the tank has a
flow-calming system, in the shape of a circular crown,
with 2.6 m of external diameter and 2.3 m of internal
diameter and 0.85 m high, built-in perforated metal grid,
and its interior filled with about hundred thousand 0.02 m
diameter glass beads. Thus, the flow which enters the
suction pipe of the pump is stabilized. On the center of the
circular crown, a suction water intake pump with 0.15 m
diameter, and a filter was maintained with a 0.6 m minimal
submergence level during the experiment. Hanging, in the
center of the tank too, a vortex breaker built with a wood
shape prevents the occurrence of swirls over the water
intake.

From the water intake of the upper tank, the water
is suctioned by a downward pipe with 1.95 m of length
and 0.15 m diameter. Upstream the tested pump and the
suction line, there are a valve and a pressure transducer,
separated by a distance of 1.2 m. A manovacuometer was
installed too to allow a fast visual verification of changes
and the operation point tunning. Upstream of the pump
flange, a rectilinear section pipe with 1.2 m length from
the pressure transducer finishes the suction line.

The equipment used during the experiments is a
horizontal centrifugal pump Ns 147, mono stage, radially
split, fixed to concrete by anchors. The pump and motor
assembly are aligned by laser. The frequency inverter is
responsible for supplying power to the three-phase electric
motor (WEG IP55, 22 kW, 4 poles, 1800 RPM, η = 89%)
with a manually controlled acceleration ramp.

Data acquisition

The device chosen as a vibration data acquisition tool
was the MEMS MMA8551Q accelerometer, embedded
on the development board FRDM-KL25Z. This capacitive
accelerometer is a triaxial sensor, with 14 bits resolution
(NXP, 2018). The three-axis acquisition device was as-
sembled using the configuration shown in Figure. 3.

The acquisition provided by the accelerometer
was communicated using the USB (Universal Serial
Bus) communication between the acquisition board
and a computer with Matlab. Figure 4 shows the
block diagram of the device installed in the pump.
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Figure 2 – Test bench diagram. 1. Bottom tank; 2. Valve; 3. Supply pump; 4. Flowmeter; 5. Upper tank; 6. Flow-
calming; 7. Level ruler; 8. Water intake; 9. Manovacuometer; 10. Pressure Transmitter; 11. Centrifugal pump (which is
the one understudy); 12. Manometer; 13. Bypass; 14. Siphon; 15. Inverter command panel.

Source: The authors.

This system was developed by the authors of this pa-
per especially to measure vibrations in rotating machines
(PEDOTTI; ZAGO; FRUETT, 2017).

Figure 3 – Acquisition board model FRDM-KL25Z with
the MEMS accelerometer MMA8451Q on board and its
coordinates.

Source: The authors.

Figure 4 – Block diagram of the experimental apparatus.

Source: The authors.

Analysis techniques

Three known classifiers were implemented to evaluate
which analysis technique is suitable to obtain the best
classification accuracy. These classifiers are presented in
this section.

Logistic regression

Logistic regression can be used for various classifica-
tion problems. It is one of the most simple and commonly
used Machine Learning algorithms for two-class classi-
fication. Logistic regression describes and estimates the
relationship between a dependent binary variable and in-
dependent variables, and predicts the probability of occur-
rence of a binary event using a logit function (LAROSE,
2006). The model to calculate the probability can be ob-
tained by equation (2)

p =
1

1+ e−(β0+β1x1+...+βnxn)
, (2)

where p is the probability, βi are the parameters of the
model and xi, i = 1 · · ·n are the values in the observed
data.

In logistic regression: the dependent variable follows
a Bernoulli Distribution, and the parameter estimation is
done through maximum likelihood (HARRELL JUNIOR,
2001).
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Linear support vector machine (SVM)

A support vector machine is a discriminative classi-
fier formally defined by a separating hyperplane. The
derivation of the hyperplane in linear SVM is done by
transforming the problem using linear algebra (ROJO-
ÁLVAREZ et al., 2018). This classifier is capable to per-
form multi-class classification. The LinearSVC is an im-
plementation of support vector classification (SVC) for
the case of a linear kernel. For a training dataset with n

points of the form (x,y1), ...,(xn,yn) where the yi are ei-
ther 1 or −1, each indicating the class to which the point
x1 belongs and x1 is a p-dimensional real vector. Any
hyperplane function is given by equation (3):

w ·x−b = 0, (3)

where w is the normal vector to the hyperplane. The pa-
rameter b

‖w‖ determines the offset of the hyperplane from
the origin.

Artificial neural network

Biological neural networks inspire artificial neural
networks (ANN). They are general functions approxima-
tors and can be applied to almost any machine learning
problem. It uses a nonlinear mapping from the input to
the output space. Furthermore, it is possible to create con-
ditions that reproduce cognitive ability and processing
skills which are much desirable in several applications
(HAYKIN, 2008; GOLDBERG; HIRST, 2017).

When a system presents multidimensionality and its
variables are subject to nonlinear interactions and when
is possible to collect data and learn with that, the neural
network becomes one of the possible ways to model that
system.

The mathematical modeling of an artificial neuron
presents simplifications with the purpose to represent the
most significant system aspects. Therefore, less consider-
able details are discarded, enabling its modeling. Figure 5
shows the mathematical model of an artificial neuron.

Figure 5 – Mathematical model of an artificial neuron.

Source: The authors.

The output yk of the neuron k can be written by equa-
tion (4)

yk = f (uk) = f

(
m

∑
j=1

wk jx j +bk

)
, (4)

where uk is the input signal of the activation function
f (uk), wk j is the weight associated with the input j, x j

it the j-th input, bk is a bias and m is the number of
inputs.

A simplification can be made in equation (4) including
the bias as an input signal with value x0 = 1 with
associated weight wk0 = bk, as shown in equation (5)

yk = f (uk) = f

(
m

∑
j=0

wk jx j

)
= f

(
wT x

)
, (5)

where wT = [wk0 wk1 · · ·wkm] and x = [x0 x1 · · ·xm]
T .

The connection process between the artificial neurons
leads the generation of synapses and construction of an
ANN (Artificial Neural Network).

Multi-layer perceptron

The Multi-Layer Perceptron (MLP) is an ANN feed-
forward class. An MLP consists of, at least, three nodes:
an input layer, a hidden layer, and an output layer. Each
node is a neuron that uses nonlinear activation functions.
In the Multi-Layer Perceptron (MLP), the output from
each neuron of the previous layer is the input for every
neuron in the next layer. This structure is known as per-
ceptrons neural network with an intermediate layer. The
MLP uses a learning technique called backpropagation for
training. It can classify data that is nonlinearly separable
(HAYKIN, 1998; ROJAS, 1996).

The activation functions used in this work were: Rec-
tified Linear Units (ReLU), equation (6) and Sigmoid,
equation (7)

f (x) = max(0,x), (6)

f (x) =
1

(1+ e−x)
. (7)

The ReLU (NAIR; HINTON, 2010) is a general activation
function used in most cases currently, and the sigmoid
generally works better for classifiers. These activation
functions have been chosen due to this characteristics.
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Operational conditions

The experiments were performed under twelve
operational conditions of the pump, according to the rows
of the Table 3. In this table, the column Target ANN indi-
cates which value is considered for each condition to train
the classifiers. In the array, the first position is used to
indicate the rotor blade condition, 0 in case of new and 1
in case of damaged. The second it is used to indicate the
base fixation condition, 0 in case of stiff or 1 in case of
loose. The third, fourth and fifth positions, indicates the
cavitation state being, 1 in case of no cavitation in the
third position with 0 in the following two positions, 1 in
case of incipient cavitation in the fourth position with 0
in the previous and next positions and 1 in case of severe
cavitation in the fifth position with 0 in the two previous
positions.

The pump speed was adjusted using a frequency in-
verter, in operation mode V/f, to 76% (1368 RPM) and
50% (900 RPM) of nominal value, totalizing 24 tests. The
accelerometer was fixed in the pump mechanical seal in
vertical the position, as shown in Figure 4.

In the operation mode considering the input pres-
sure normal, the pump operates in a steady state without
cavitation, in other words, NPSHa > NPSHr. In this case,
the control valve (Figure 2: 2 red) (suction) is completely
opened, and the containment valve is closed entirely. Only
after starting the motor and adjusting the speed pump
(Figure 2: 11 green), the containment valve (Figure 2: 2
blue) is opened. The vibration data was collected after the
system is in steady state operation.

In the operation where the input pressure presents
incipient cavitation characteristics, the system operates
in a mode similar to the normal, except for the reduction
in the suction pressure through the closure of the suction
control valve, which causes a decrease on the total head
gauge and the presence of noise in the rotor, which are
markers that classify cavitation.

Each type of cavitation was evaluated using a pres-
sure measuring with a manometer installed in the suction
point, with was determinate in 0.5 psi for normal condi-
tions, 0.3 psi for incipient cavitation and less than 0.1 psi
for severe cavitation. Thus, from the indication of these
markers, the vibration data were acquired.

For the tests with the rotor blade, two blades were
used, one new and other with severe damage caused by
cavitation. Figure 6 shows the rotor blades that were used.
For the tests with different base fixation conditions, two
fixation bolts were loosened as shown in Figure 7.

Figure 6 – Rotor blades used in the tests: (left) new (right)
damage (with erosion highlighted).

Source: The authors.

Figure 7 – Bolts used to change the base fixing conditions.

Source: The authors.

Data analysis

The accelerometer can measure the vibration of the
three axes over time. Thus, the choice of relevant data to
analyze needs to be done. A feature widely used in vibra-
tion analysis is the amplitude in the frequency domain.
So, the FFT of vibration was computed for data in 1 s
intervals, along with the RMS value of X, Y, and Z. The
results for one of the intervals for the axis X are shown in
Figure 8.

Figure 8 – FFT calculated for computer analysis using
Test 1 data.

Source: The authors.
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Table 3 – Combinations of tests performed.

Test Rotor Blade Base Fixation Cavitation RPM (%) Binary Target
1 New Stiff None 76 [0,0,1,0,0]
2 New Stiff Incipient 76 [0,0,0,1,0]
3 New Stiff Severe 76 [0,0,0,0,1]
4 New Loose None 76 [0,1,1,0,0]
5 New Loose Incipient 76 [0,1,0,1,0]
6 New Loose Severe 76 [0,1,0,0,1]
7 Damaged Stiff None 76 [1,0,1,0,0]
8 Damaged Stiff Incipient 76 [1,0,0,1,0]
9 Damaged Stiff Severe 76 [1,0,0,0,1]

10 Damaged Loose None 76 [1,1,1,0,0]
11 Damaged Loose Incipient 76 [1,1,0,1,0]
12 Damaged Loose Severe 76 [1,1,0,0,1]
13 New Stiff None 50 [0,0,1,0,0]
14 New Stiff Incipient 50 [0,0,0,1,0]
15 New Stiff Severe 50 [0,0,0,0,1]
16 New Loose None 50 [0,1,1,0,0]
17 New Loose Incipient 50 [0,1,0,1,0]
18 New Loose Severe 50 [0,1,0,0,1]
19 Damaged Stiff None 50 [1,0,1,0,0]
20 Damaged Stiff Incipient 50 [1,0,0,1,0]
21 Damaged Stiff Severe 50 [1,0,0,0,1]
22 Damaged Loose None 50 [1,1,1,0,0]
23 Damaged Loose Incipient 50 [1,1,0,1,0]
24 Damaged Loose Severe 50 [1,1,0,0,1]

Source: The authors.

The sample rate of the accelerometer is 817Hz. Thus
the FFT has 408 samples, with 1Hz of resolution. Dur-
ing the preliminary data analysis, it was observed that
only the spectral amplitudes for vibrations in X-axis,
the RMS values for vibrations in three axes, and the
speed provided enough data to classify the operational
conditions studied in this work. The total time mea-
sured for all tests was 2278 seconds (about 1,58 s/test).
So, the data array has 2278 lines.

Two different sets of features, each one of them
including the X-axis spectrum, RMS values for the three
axes, and speed, were considered. In the first one, all the
408 components calculated for integer frequencies of the
X-axis spectrum were considered, totalizing 412 features.
This dataset was called dataset A.

However, it is well known to be possible to detect
the majority of low-frequencies faults observing only the
main harmonics amplitude (PEDOTTI; ZAGO; FRUETT,
2017). Thus, an analysis using these features was made to
verify if these were enough to diagnose the same faults.

So, using the same quantity of data but with fewer features,
the same methods were tested. Therefore, in this dataset
array, there are 2278 lines, with 14 features each, as pre-
sented in Figure 10. This dataset was called dataset B.

For each result, a ROC (Receiver Operating Character-
istic) curve was plotted as a metric to evaluate the classi-
fier output quality. The ROC curves feature a true positive
rate on the Y-axis and false positive rate on the X-axis.
Thus, the top left corner of the plot is the ideal point;
a false positive rate of zero, and a true positive rate of
one. Then a curve is defined from the point (0,0) to the
point that characterizes the true positive rate and the false-
positive rate for a given classifier and from that point to
the point (1, true positive rate). A larger area under that
curve is usually better (POWERS, 2011). To extend the
ROC curve and area to multi-class classification, binary
targets were chosen. The AUC (area under the ROC curve)
measures the entire two-dimensional area underneath the
entire ROC curve and provides an aggregate measure of
performance across all possible classification thresholds.
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Figure 9 – Features extraction from vibration data to use in the computer analysis (whole spectrum): dataset A.

Source: The authors.

Figure 10 – Features extraction from vibration data to use in the computer analysis (10th firsts harmonics orders):
dataset B.

Source: The authors.

The AUC can be interpreted as the probability that the
model ranks a random positive sample more likely than a
random negative sample.

The programming language Python was chosen to train
the classifiers (SCIKIT-LEARN, 2018). The Keras library
was used (KERAS, 2018) which is executed on the frame-
work Tensorflow. The Tensorflow library is opensource
and specific to use in machine learning where a large
variety of tasks can be applied (TENSORFLOW, 2018).
Another advantage of using the Tensorflow is that it can
be run on multiple CPUs and GPUs and it is available for
many platforms. From the input values sampled, 70%
of them were used to train the classifier, 30% to test
the data.

An algorithm was made to calculate the probability
for every failure using three classifiers: logistic regression,
linear SVM, and multi-layer perceptron. A free software
machine learning library scikit-learn was used. It is an
open-source machine learning library for Python that in-
cludes several classifications, regression, and grouping al-
gorithms including supporting vector machines, designed
for interaction with Python’s numerical and scientific li-
braries (SCIKIT-LEARN, 2020).

Regarding the implementation in a commercial
product, an SoC (System on a Chip) containing, for
example, an ARM Cortex A53 processor, is capable of
executing the algorithms presented in the article with
low power consumption, less than 1 W (NXP, 2020).

It is relevant to highlight that the training of the models
is a computationally heavy step, but the execution of the
developed models is not. Concerning computational costs,
these depend on which processor will be deployed in a
commercial product, leaving the processing limitation less
relevant than the memory for storage of samples.

Results

Using the dataset A, the logistic regression results are
shown in Figure 11. For the linear SVM the results are
shown in Figure 12.

Figure 11 – ROC curve for accuracy into fault diagnosis
using logistic regression as classifier for the dataset A.

Source: The authors.
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Figure 12 – ROC curve for accuracy into fault diagnosis
using Linear SVM as classifier for the dataset A.

Source: The authors.

Several neural networks were trained, with a different
number of neurons and layers. A network which presented
satisfactory results was one with three layers with 100
neurons in the first and second layers and 50 neurons in
the last layer, using the same input presented in section
Data Analysis. The ANN-MLP has five outputs, as shown
in Figure 13. Using the ANN-MLP the results are shown
in Figure 14.

Figure 13 – ANN-MLP representation with its respectives
inputs, hidden layers and outputs.

Source: The authors.

Figure 14 – ROC curve for accuracy into fault diagnosis
using multi-layer perceptron as classifier for the dataset A.

Source: The authors.

Using the dataset B, logistic regression the results are
shown in Figure 15, for the linear SVM the results are
shown in Figure 16 and for ANN-MLP the results are
shown in Figure 17.

Figure 15 – ROC curve for accuracy into fault diagnosis
using logistic regression as classifier using dataset B.

Source: The authors.

Figure 16 – ROC curve for accuracy into fault diagnosis
using Linear SVM as classifier using dataset B.

Source: The authors.

Figure 17 – ROC curve for accuracy into fault diagnosis
using multi-layer perceptron as classifier using dataset B.

Source: The authors.

Comparative results

The Table 4 summarizes the results obtained for each
classifier applied to diagnose the centrifugal pump failures
for the test data. In table, the result of prediction accuracy
using the three classifiers is presented. A comparison with
the input type also was made and the difference between
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Table 4 – Comparing the results obtained using different number of inputs.

Faults
Prediction Accuracy (%)

Logistic Regression Linear SVM ANN-MLP
Whole

Spectrum
dataset A

10th firsts
Harmonics
dataset B

Diff.
Whole

Spectrum
dataset A

10th firsts
Harmonics
dataset B

Diff.
Whole

Spectrum
dataset A

10th firsts
Harmonics
dataset B

Diff.

Rotor
Blade 82.0 79.5 2.5 91.2 85.2 6.0 100.0 89.0 11.0

Fixation
Base 63.2 56.0 7.2 69.9 64.1 5.8 92.4 77.8 14.6

None
Cavitation 62.3 62.3 0.0 86.8 76.1 10.7 99.7 94.0 5.7

Incipient
Cavitation 67.9 68.1 0.1 71.9 69.4 2.5 99.1 92.3 6.8

Severe
Cavitation 69.6 69.6 0.0 75.9 69.6 6.3 99.4 88.3 11.1

Source: The authors.

the result obtained for the whole spectrum and the 10th
first harmonics was computed. In this case, the datasets
did not result in a significant accuracy difference.

It was obtained more than 56% accuracy in predict
the probability of each failure using logistic regression
and linear SVM. Using the ANN-MLP classifier was
possible to achieve an average accuracy of 99.4%. Also,
it is observed that the highest difference found in the
comparisons was using the MLP, whose highest value was
10.3%. However, it was possible to obtain prediction ac-
curacy value over then 77% using dataset B and over then
92% using dataset A. In both datasets, the MLP presented
better results.

The time spent to execute the ANN-MLP in a personal
computer using the dataset A as input was 94 s and for the
dataset B was 67 s. Using the dataset B the computational
analysis is made about 28% faster. It may be advantageous
to use a dataset that provides a reliable response and a
shorter processing time. Thus, process actions can be done
more quickly to minimize equipment damage.

The large number of harmonics used in dataset A

brought more information than the low number used in
dataset B. However, this also increased the computational
complexity of the method. Choosing the complexity of
the method to be committed is a user choice that depends
on the accuracy of the required information versus the
existing computational capacity.

Conclusion

This work presented three types of classifiers to
analyze vibration in a centrifugal pump using a low-cost
MEMS accelerometer. This vibration analysis aimed to

diagnose three types of failures: rotor conditions (new or
damage), base fixation (stiff or loose), and the cavitation
condition (none, incipient and severe). These diagnoses
were made through the following features: calculating FFT
from the vibration of the X-axis, vibration RMS values
from X, Y, and Z-axis, and the machine speed.

Three classifiers were used: logistic regression, linear
SVM, and multi-layer perceptron. The results were com-
pared to evaluate which of them obtained the best per-
formance. It was observed that the ANN-MLP provided
better results, being capable of diagnosing with more than
92% accuracy in predicting for the mechanical failures
applied, and with about 99% accuracy in evaluating the
cavitation status.

The low-cost equipment used to acquire the vibration
data was capable to provide enough data to extract features
to analyze the centrifugal pump health. Data processing
must be done to apply the classifiers. The types of clas-
sifiers presented are suggested by the authors. A mainte-
nance manager may use the classifier that is most familiar.
However, the results may differ from those presented here.

The feature extraction was considered fundamental to
obtain these results. Combine with other possible features,
such as temperature and pressure, can improve the predic-
tions could be better yet. However, these variables need
invasively install on the test bench.

The objectives were achieved and each of the faults
was analyzed. Even the incipient cavitation that is consid-
ered hard to identify, could be detected with a high degree
of reliability. In future work, vibration measurement can
be done at other pump positions simultaneously, bringing
another perspective of vibration detection that can lead to
even more accurate results.
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