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Optimal Control Model for Vaccination Against H1N1 Flu

Modelo com Controle Ótimo para a Vacinação contra a Gripe H1N1
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Edilson Fernandes de Arruda3

Abstract
This paper introduces a mathematical model to describe the dynamics of the spread of H1N1 flu in a human
population. The model is comprised of a system of ordinary differential equations that involve susceptible,
exposed, infected and recovered/immune individuals. The distinguishing feature in the proposed model
with respect to other models in the literature is that it takes into account the possibility of infection due to
immunity loss over time. The acquired immunity comes from self-recovery or via vaccination. Furthermore,
the proposed model strives to find an optimal vaccination strategy by means of an optimal control problem
and Pontryagin’s Maximum Principle.

Keywords: Optimal control. Mathematical modeling. Pontryagin’s maximum principle. H1N1 flu. Vaccina-
tion.

Resumo
Este artigo apresenta um modelo matemático para descrever a dinâmica da propagação da gripe H1N1 em
uma população humana. O modelo é composto por um sistema de equações diferenciais ordinárias que
envolvem indivíduos suscetíveis, expostos, infectados e recuperados / imunes. O modelo se diferencia dos
demais na literatura por levar em consideração a possibilidade de infecção devido à perda de imunidade ao
longo do tempo. A imunidade pode ser adquirida naturalmente, ao convalescer da doença, ou por meio de
vacina. Além disso, o modelo proposto busca encontrar uma estratégia de vacinação ideal por meio de um
problema de controle e do Princípio Máximo de Pontryagin.
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Introduction

Some diseases are known to return periodically over
time, such as the common cold and the H1N1 flu, and
modellers often employ epidemiological models to study
their behaviour. The H1N1 flu, in particular, spreads very
rapidly and has been a concern to Brazilian public health
officials since the first outbreak in 2009. It returned with
particular force in 2016, uncharacteristically long before
wintertime, and that has led to the anticipation of the
annual vaccination campaign.

Given the spread of the disease and its potential
to return in short time spans, models and tools to as-
sist both in the understanding of the dynamics and in
the design of control mechanisms for the H1N1 flu
gained renewed importance (BANKER; WILSON, 2009;
OLIVEIRA et al., 2009). To evaluate the strategy taken
by the Korean government to overcome the epidemic,
Kim et al. (2017) addressed three types of control and
analysed the intervention taken by the Republic of Ko-
rea in the 2009 outbreak. Earlier, a model with age-
dependent transmission rates was introduced in Lee et al.
(2013). In another study, researchers addressed flu-like
pandemics and modelled vaccination and antiviral con-
trols, splitting the infected compartment into two: in-
fected who are untreated (Iu) and infected who are treated
(Itr) (LEE; CHOWELL, 2017). Other studies applying
control theory to influenza vaccination problems can
be found in (JABERI-DOURAK; MOGHADAS, 2014;
TCHUENCHE et al., 2011). Unlike the present work,
however, the aforementioned studies do not contemplate
the possibility of reinfection. From the logistics standpoint,
an optimal vaccine distribution model for the influenza
virus (H5N1) was introduced in Matrajt et al. (2013) and
solved by means of genetic algorithms.

As one might expect, optimal control strategies are
not exclusively applied to the control of influenza or
flu-like pandemics. In Malik et al. (2013) one is faced
with a study regarding three types of plurivalent vaccines
against the human papillomavirus (HPV), which consid-
ers distinct dynamics for women and men. Outside pan-
demic models, optimal control strategies can be used to
study drug administration in HIV treatment (PASTORE
et al., 2018; ARRUDA et al., 2015). In addition, a variety
of optimal control strategies in biological mathematical
models can be found in the literature, see for example
(FATMAWATI; TASMAN, 2015; HELAL et al., 2015;
NANNYONGA et al., 2015; TAI et al., 2015).

This paper proposes a mathematical model based on
differential equations to describe the dynamics of the
H1N1 flu. In addition, we develop an optimal control
problem to find an optimal vaccination strategy over a
prescribed time horizon, in such a way as to prevent
contagion while keeping the overall cost of the vacci-
nation campaign to a minimum. It is worth pointing out
that finding an adequate criterion to contrast the financial
costs of vaccination campaigns with the social cost of
the spread of the disease may not be a trivial test for pol-
icy makers. Indeed, delving into this problem is besides
the scope of the present paper. One may argue, however,
that the spread of the disease does imply a financial cost,
which may be used in the design of the vaccination strat-
egy. The main contributions of this paper are twofold.
Firstly, we treat the control action weights in the cost
functional as parameters (monetary cost), which can be
modified in numerical simulations and sensitivity analy-
ses. Secondly, in contrast to the literature on H1N1 con-
trol strategies, the proposed model allows for the possi-
bility of reinfection, thus enabling the policy maker to
account for the seasonal nature of the virus. All in all,
the paper calls for a new dialogue between the scientific
community and the policy makers, offering insight into
the efficacy of control and prevention in times of scarce
investments.

More specifically, this paper addresses a mathematical
formulation comprising a set of ordinary differential equa-
tions based on the so-called Susceptible - Infected - Re-
moved (SIR) model. This model, proposed by Kermack
and McKendric (1927), is comprised of a non-linear sys-
tem of equations that describe each of the subgroups in-
cluded in the model: the susceptible, which are individuals
vulnerable to the disease; the infected, those that actu-
ally had contracted it and may infect others; and the re-
moved, which comprises two groups of individuals, those
already recovered and considered immune to the disease
for some time thereafter and those who died from the dis-
ease (KERMACK; MCKENDRIC, 1927). The proposed
formulation considers the possibility of vaccination, which
influences the dynamics of the disease by preventing con-
tagion. The vaccination, however, may lose efficiency over
time, occasioning the possibility of reinfection for vacci-
nated individuals; such loss of efficiency is modelled by a
parameter. This paper also addresses the problem of gen-
erating an optimal vaccination strategy in terms of a cost
functional, which takes into account the vaccination cost
and a cost related to the number of infected individuals.
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The proposed problem is modelled as an optimal control
problem, and solved by an iterative procedure based on
the gradient algorithm (KIRK, 1970).

The vaccination process

The importance of the use of vaccination as a protec-
tion against disease may be based on two components:
a decrease in the number of new cases (morbidity) and the
low financial cost of the vaccine in relation to the treatment
of the disease. The goal is to induce a protection against
the pathogen not only to safeguard individuals against
serious forms of the disease, but also to control the disease
in the community. Therefore, a thorough understanding of
the effects of vaccination on the community requires more
than pure biological knowledge. To attain it, one should
consider the effect of vaccinating individuals, in order to
come up with a strategy that interrupts the chain of disease
transmission. In that context, mathematical models can
be very useful, providing contributions to the understand-
ing of the underlying dynamics. Such models describe
the phenomenon of disease transmission and allow the
generation of scenarios from different vaccination strate-
gies, thus anticipating the effects of an eventual vaccina-
tion.

The vaccine production process for an arising flu strain
requires at least 6 months for virus identification, vaccine
invention, and then mass production using a long-standing
egg-based technology (LARSON; TEYTELMAN, 2012).
According to the Brazilian government, egg allergy is the
single counter indication of this manufacturing technol-
ogy. In any case, in addition to side effects, there are other
factors which are critical to the effectiveness of vacci-
nation strategies. It is understood that the vaccine may
fail in two levels. Firstly, it may not induce immunity in
the individual, typically as a result of some failure in the
manufacturing process or of some deficiency in the indi-
vidual’s immune system. Failure may also occur when the
level of vaccination immunity is low, therefore resulting
in immunity loss shortly after taking the vaccine. This
illustrates the importance of incorporating the possibility
of reinfection in the vaccination model.

To understand the role of vaccination in the eradica-
tion of a disease, we must define two basic concepts in
epidemiology. The first is called force of infection, which
corresponds to a per capita disease incidence or incidence
of new cases per susceptible individual in a population.
The force of infection could determine not only the ex-
tent of the spread but also the necessary effort to stop it.

The second concept is the most important parameter in
epidemiology, the reproductive number R0, defined as the
average number of new infections per infected individual
in a fully susceptible population. If R0 < 1 the disease will
be extinguished, while R0 > 1 implies that the disease is
endemic. The value of R0 is an indication of the severity
of the epidemic; the higher the value, the more severe the
situation.

By vaccinating individuals, one often expects to slow
down the spread of the disease by turning susceptible in-
dividuals into immune ones whilst also preventing them
from acquiring the disease. As a consequence, one can
also expect a decrease in secondary cases generated by in-
fected individuals, thus creating a chain effect that benefits
the population and reduces the reproductive number R0.
Hence, one can view vaccination as a control mechanism
for the disease. Under such a view, this paper studies the
effect of vaccination on the spread of H1N1 flu. The model
also accounts for reinfection, with a view at emulating the
effect of weakened immunity as the time elapsed since the
last vaccination increases.

This work is organised as follows. The following sec-
tion explains the nature of compartment model, upon
which our Optimal Control Problem is based. Next, we
introduce the optimal control problem, employ Pontrya-
gin’s maximum principle to find an optimal vaccination
strategy and derive the equilibrium points for the proposed
model. Then, in order to illustrate the proposed approach,
we present 4 (four) distinct numeric simulations. Each
simulation depicts the resulting optimal vaccination cam-
paign, as well as the population dynamics as the campaign
progresses. Finally, the last section concludes the paper.

The model

Influenza is a directly transmitted disease, i.e., its
spread occurs following the contact of susceptible indi-
viduals (who have not had contact with the virus) with
infected individuals (who have non-negligible concentra-
tion of virus in their bodies). A mathematical formulation
comprises a set of ordinary differential equations that
describe the so-called Susceptible - Infected - Removed

(SIR) model, where S represents susceptible individuals, I

stands for infected patients and R corresponds to removed
individuals. The compartmentalised model, widely used
to study the transmission dynamics of infectious diseases,
including H1N1 flu (DIAS; ARRUDA, 2014; DIAS et al.,
2015), assumes that an individual may successively visit
stages of susceptibility, infection and recovery (removal).
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It also assumes that immunity is permanent (for life). Gen-
erally, the model does not consider the latency period
during which the virus replicates in the cells of the newly
infected individual, i.e. it does not consider infected but
not infectious individuals. Additionally, the rates of birth
and death are equal, which implies that the population has
reached equilibrium. The model also has the limitation
of considering that individuals are evenly spread in space.
However, this assumption makes sense if one wishes to
describe the spread of a disease in a population spatially
distributed by means of differential equations.

In this study we consider two improvements in the
SIR model, firstly, we consider that part of the susceptible
population has either been vaccinated or has already recov-
ered from the infection, and therefore is partially protected
from the complications arising from the disease. This ef-
fect will be introduced in the next section by means of the
variable u(t), that emulates the vaccination strength at any
given time t. The optimal vaccination strength levels will
then be determined by means of an optimal control vari-
able. Secondly, we consider that the vaccine has limited
effect and that after a period of time there is the possibility
of reinfection. To that effect, we introduce the group E

that represents the number of exposed or latent individuals
at time t, and R is now the number of recovered individu-
als at time t. The system of equations in (1) represents the
evolution of population in time,

dS
dt

= α +ζ R−β IS−µS

dE
dt

= β IS−κE−µE

dI
dt

= κE−δ I− γI−µI

dR
dt

= γI−ζ R−µR.

(1)

In the system of equations (1), α is the rate of birth or
immigration; β is the infection rate of susceptible individu-
als upon contact with infected individuals; µ is the natural
death rate; κ is the infection rate for exposed individuals;
δ is the rate of disease-induced death; γ is the rate of recov-
ery from the disease. The dynamics of the proposed model
is depicted in Figure 1. Note that S(t) + E(t) + I(t) +

R(t) = N(t), where N(t) is the total population. Observe
also that 1/κ days is the average length of the latent pe-
riod, and 1/γ days is the mean length of the infectious
period before recovery (LENHART; WORKMAN, 2007).

Typically, the parameters in (1) can be inferred from
real data by means of statistical methods (MAGAL-
HÃES et al., 2016). As vaccine-induced immunity weak-
ens over time, it is necessary to consider the rate of
immunity loss ζ , where ζ = 0 means perennial im-
munity. For the sake of simplicity we define variable
X(t) = {S(t),E(t), I(t),R(t)} to represent the set of all
variables of the original system.

Figure 1 – Transfer diagram of the Influenza A (H1N1)
epidemic model with reinfection.

Source: The authors.

The optimal control problem

The rationale of the optimal control formulation in
this section is to search for a vaccination strategy with
the ideal compromise between vaccination cost and the
resulting protection level. Such a compromise must be
built upon the fact that a full vaccination of the population
is generally unnecessary from a immunization standpoint;
in addition, it is often infeasible from a logistics point of
view. The system below describes the dynamics of the
controlled system, considering the effects of vaccination.
The interactions between the variables are depicted in
Figure 2 that follows.

dS
dt

= α +ζ R−β IS−µS−uS;

dE
dt

= β IS−κE−µE;

dI
dt

= κE−δ I− γI−µI;

dR
dt

= γI−ζ R−µR+uS.

(2)

The variable u(t) is the portion of susceptible indi-
viduals that must be vaccinated at each time interval,
and comprises the vaccination strategy. Each dose of vac-
cine has a cost, and typically a higher vaccination cov-
ering implies in a non-linear cost increase due to the in-
creased logistic requirements to reach remote populations.
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Figure 2 – Transfer diagram of the Influenza A (H1N1)
epidemic model with reinfection and vaccine control.

Source: The authors.

In our model, we use a quadratic cost function to represent
the overall vaccination budget. Naturally, we also aim to
protect the largest possible number of individuals, which
is equivalent to minimising the number of infected indi-
viduals, that also composes the cost functional. Hence,
for any control trajectory u : t→ R+, we define the cost
functional J[u] as

J[u] = min
∫ T

0 (I(t)+ cu(t)2)dt, (3)

where c ≥ 0. While the cost functional in (3) accounts
for our objectives, it may lead to infeasible solutions, pre-
scribing infinite vaccination rates at the origin, to make
sure the number of infected individuals is nil. Since it is
obvious that the vaccination effort is limited, we define
a normalized rate of vaccination u : t → [0,1]. For cal-
culation purposes, we make a small change in the cost
functional, replacing the control variable u(t) for an equiv-
alent variable v(t) = 1−u(t), which leads to:

J[v] = min
∫ T

0 (I(t)+ c(1− v(t))2)dt. (4)

The above formulation, with the constant v(t) ≥ 0, en-
sures that the vaccination levels u(t) are normalized in the
interval [0,1].

To solve the optimal control problem we make use
of Pontryagin’s Maximum Principle (PMP) (FLEMING;
RISHEL, 1975) and derive the Hamiltonian of the prob-
lem, given by:

H = I + c(1− v)2 +w1[α +ζ R−β IS−µS−
+(1− v)S]+w2[β IS−κE−µE]+w3[κE−
+δ I− γI−µI]+w4[γI−ζ R−µR+(1− v)S]+

+zv,

(5)

where W (t) = {w1,w2,w3,w4} is the set of ad-
joint variables, or Lagrange multipliers. The PMP
also states that there must exist a differential rela-
tion between original system and the associated vari-

ables in the adjoint system, given by dW
dt = − ∂H

∂X .
Hence, the adjoint system of equation becomes:

dw1

dt
=

dH
dS

= w1(β I +µ +1− v)−w2β I−w4(1− v);

dw2

dt
=

dH
dE

= w2(κ +µ)−w3κ;

dw3

dt
=

dH
dI

=−1+w1βS−w2βS+

+w3(δ + γ +µ)−w4γ;

dw4

dt
=

dH
dR

= w4(ζ +µ)−w1ζ .

(6)
The system (6) has a final boundary condition, called

transversatility condition, wi(T ) = 0, where i = 1, . . . ,4
and T is the final optimization horizon.

Solving the optimal control problem

Now we have two differential equations systems to
solve. For the original system in (2) we typically have
the initial conditions, whereas the adjoint equations in
(6) must satisfy the final boundary condition. To solve
both systems we applied the Finite Differences Method
(FDM), with forward and backward differences respec-
tively (BURDEN; FAIRES, 2008).

The equilibrium of the proposed model

To study the equilibrium of the original system with-
out any interference we must assume that no vaccination
(control) is applied. In other words, we must consider the
uncontrolled system (1). When the system reaches equi-
librium, we must have dX

dt = 0, and it is that expression
that enables us to find the composition of the population
at equilibrium.

As mentioned below, it is of the utmost importance
that we determine the reproduction number R0. To
perform this we define s(t) = S(t)

N(t) , which represents
the fraction of susceptible individuals in the pop-
ulation. So, stationary equilibrium implies ds

dt = 0.
Consequently, we must have:

s(teq) =
(δ + γ +µ)(κ +µ)

βκ
, (7)

where teq is the time to reach equilibrium. For the other
groups, exposed; infected and recovered, their respective
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ratios in equilibrium are:

e(teq) =
(δ + γ +µ)(ζ +µ)(R0α−µ)

(ζ +µ)βκ−R0ζ γκ
, (8)

i(teq) =
(ζ +µ)(R0α−µ)

(ζ +µ)β −R0ζ γ
, (9)

r(teq) =
γ(R0α−µ)

(ζ +µ)β −R0ζ γ
. (10)

Observe that X(t) = X(teq)∀t ≥ teq. So we can calcu-
late s(teq), and consequently determine R0:

R0 =
βκ

(δ + γ +µ)(κ +µ)
. (11)

Numerical solutions

This section features some simulations, performed in
a new code developed in MATLAB c© R2016a, that con-
siders variations of two parameters: vaccination cost and
initial infected population (I(0)). For all simulations, we
consider the set of parameters in Table 1.

Table 1 – General simulations parameters

Parameter Value
α 1 individuals per day

β 0.00018

κ 0.3333 individuals per day

δ 0.001 individuals per day

γ 0.14 individuals per day

µ 0.0000548 individuals per day

ζ 0.0333 individuals per day

T 100 days

Source: The authors.

With the exception of the rate of immunity loss (ζ ),
all parameters in Table 1 were borrowed from (ZHOU;
GUO, 2012). The choice of T = 100 days is directly as-
sociated with the duration of brazilian vaccination cam-
paign and ζ = 0.0333 implies a slow rate of immu-
nity loss. All simulations start with a healthy but sus-
ceptible population that receives one or more infected
individuals.

Table 2 displays the data of all four simulation cases
featured in this section, as well as the computational out-
put, which is displayed in the bottom part of the table.

Table 2 – Experimental Parameters

Parameter (I) (II) (III) (IV)
S(0) 1000 1000 1000 1000

E(0) 0 0 0 0

I(0) 1 5 5 10

R(0) 0 0 0 0

Strategy cost(c) 10 10 80 80

Accuracy x 10−4 1 1 5 7.5

Comput. informations
Iterations 50 155 38 60

Exec. time(s) 0.3594 0.9219 0.1875 0.3596

Source: The authors.

For all examples, we set the initial susceptible popula-
tion (S(0)) to a thousand individuals, whereas the exposed
and immune population (E(0) and R(0), respectively) are
both nil. For experiment (I), the initial infected population
I(0) is set to one and the cost parameter c is set to 10.
For the remaining cases, these parameters are alternately
changed, as detailed in Table 2. Accuracy refers to the
tolerance used as a reference for the convergence of the
computational method.

Figures 3-6 depict the results. They show the evolu-
tion of susceptible, infected and recovered populations as
time elapses, as well as the optimal vaccination strategy u.
Figure 3 features experiment (I), which simulates the intro-
duction of a single H1N1 infected individual in a healthy
population, with a vaccination strategy cost (c = 10). Note
that the optimal strategy prescribes an immediate vacci-
nation rate of u(0) = 0.33 and decreases such a rate as
time progresses. Observe also that the infection is rapidly
eradicated, whereas the immune population grows steeply
to the totality of individuals.

In the second experiment (Figure 4) we increase
the initial infected population, and that has an im-
pact in the initial rate of vaccination, which in-
creases to around 0.84. Such a control manages to
keep the infected, susceptible and immune popula-
tions over time in similar levels to those in the
Experiment (I).

The results of Experiment (III), which features a sig-
nificant increase in the vaccination cost c, are presented
in Figure 5. That results in a decrease of the initial vac-
cination rate to around 0.23. Once again, the infected,
susceptible and immune populations are kept in similar
levels to those in the Experiment (I).
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Figure 3 – Experiment (I) results. Optimal vaccination strategy (a); susceptible individuals dynamics (b); infected
individuals dynamics (c); immune individuals dynamics (d).

Source: The authors.

Figure 4 – Experiment (II) results. Optimal vaccination strategy (a); susceptible individuals dynamics (b); infected
individuals dynamics (c); immune individuals dynamics (d).

Source: The authors.
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Figure 5 – Experiment (III) results. Optimal vaccination strategy (a); susceptible individuals dynamics (b); infected
individuals dynamics (c); immune individuals dynamics (d).

Source: The authors.

Figure 6 – Experiment (IV) results. Optimal vaccination strategy (a); susceptible individuals dynamics (b); infected
individuals dynamics (c); immune individuals dynamics (d).

Source: The authors.
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The results of Experiment (IV) are depicted in Figure
6. The infected population is increased with respect to
that of the previous experiment, representing around 1%
of the healthy population. That results in an increase in
the initial vaccination rate to around 0.38, and the new
strategy manages to keep all populations in similar levels
to those in the previous experiments.

It is worth pointing out that in all simulations the op-
timal control problem leads the infection to zero around
the middle of simulated period. This fact means that the
optimal control achieves the desired prevention, blocking
the virus spread while accounting for the monetary cost
of the vaccination strategy.

Concluding Remarks

It is known that naturally created immunity for infec-
tion and immunity induced by vaccination are not perma-
nent. They reduce over time causing a significant impact
on immunisation programs. We employ a model that takes
into account the immunity loss over time. Vaccines can
be used to control or eradicate a disease. If the goal is
the eradication, the knowledge concerning the immunisa-
tion period of a vaccine must be complete. Thus, eradi-
cation strategies based on vaccination will only be effec-
tive if the protection time is long enough. Specifically
regarding Influenza, that poses a great challenge.
We proposed an optimal control problem to retrieve an
optimal vaccination for a prescribed period, taking into
account the immunity loss that leads to reinfection. The
obtained results are promising and suggest that the model
is sound and can be helpful in the design of public poli-
cies under budgetary constraints, and to track vaccination
goals.
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