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Soliton propagation in lossy optical fibers

Propagacao de solitons em fibras 6ticas dissipativas

Caroline Dall’Agnoll; Paulo Laerte Natti?; Eliandro Rodrigues Cirilo?;
Neyva Maria Lopes Romeiro*; Erica Regina Takano Natti’

Abstract

In this work we study the propagation of solitons in lossy optical fibers. The main objective of this work is to
study the loss of energy of the soliton wave during propagation and then to evaluate the impact of this loss on
the transmission of the soliton signal. In this context, a numerical scheme was developed to solve a system of
complex partial differential equations (CPDE) that describes the propagation of solitons in optical fibers with
loss and nonlinear amplification mechanisms. The numerical procedure is based on the mathematical theory
of Taylor series of complex functions. We adapted the Finite Difference Method (FDM) to approximate
derivatives of complex functions. Then, we solve the algebraic system resulting from the discretization,
implicitly, through the relaxation Gauss-Seidel method (RGSM). The numerical study of CPDE system with
linear and cubic attenuation showed that soliton waves undergo attenuation, dispersion, and oscillation effects.
On the other hand, we find that by considering the nonlinear term (cubic term) as an optical amplification, it
is possible to partially compensate the attenuation of the optical signal. Finally, we show that a gain of 9%
triples the propagation distance of the fundamental soliton wave, when the dissipation rate is 1%.

Keywords: Optical communication. Soliton. Finite differences. Dissipation. Nonlinear amplification.

Resumo

Neste trabalho estudamos a propagacdo de solitons em fibras dpticas com perdas. O principal objetivo deste
trabalho € estudar a perda de energia da onda soliton durante a propagacdo e avaliar o impacto dessa perda
na transmissdo do sinal soliton. Neste contexto, um esquema numérico foi desenvolvido para resolver um
sistema de equagdes diferenciais parciais complexas (EDPC), que descreve a propagagdo de solitons em
fibras 6ticas com mecanismos de perdas e de amplificagdes nao-lineares. O procedimento numérico € baseado
na teoria matematica das séries de Taylor para fun¢des complexas. Adaptamos o método de diferencas
finitas (MDF) para aproximar derivadas de fun¢des complexas. Em seguida, resolvemos o sistema algébrico
resultante da discretizago, implicitamente, por meio do método de Gauss-Seidel com relaxamento (MGSR).
O estudo numérico do sistema de EDPC com atenuagdo linear e ctibica mostrou que ondas soliton sofrem
efeitos de atenuagdo, dispersdo e oscilagdo. Por outro lado, verificamos que ao considerar o termo ndo linear
(termo cibico) como uma amplificag@o Gtica € possivel compensar parcialmente a atenuagdo do sinal 6tico.
Finalmente, mostramos que um ganho de 9 % triplica a distincia de propagacdo da onda soliton fundamental,
quando a taxa de dissipacdo é de 1 %.

Palavras-chave: Comunicacao 6ptica. Soliton. Diferencas finitas. Dissipacdo. Amplifica¢do nio linear.
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Introduction

One of the essential activities of the human condition
is communication. The exchange of information has be-
come very important for both personal and professional
life. This exchange of information can occur analogically
or digitally through various means such as coaxial cables,
microwave, radio frequencies, infrared and optical fibers.
With the Internet access facilitated through cell phones,
notebooks and tablets, we see the daily growth of informa-
tion traffic, which forces communication systems to have
greater transmission capacity, high bandwidth, efficiency
and speed with no significant energy losses and with low
costs.

Among the means of data transmission cited, fiber
optic communication systems are the most suitable for
these requirements, since they have low attenuation factor,
high bandwidth and low production costs. In addition, due
to its lightweight, flexible and low volume format, optical
fibers have low storage costs. Another important feature
of optical fibers is that they have high electrical resistance,
which makes them a highly insulating medium, preventing
external electromagnetic interference and guaranteeing
better transmission quality, with secrecy, among other
advantages.

On the other hand, the physical characteristics of opti-
cal fibers are very important for preserving the quality of
the transmitted signal, so that inomogeneities, diffusion of
hydrogen molecules, bubbles, variations in diameter and
roughness perturb the propagation of signals, generating
noise and loss power. Therefore, in the last decades sev-
eral experiments have been carried out to compensate the
effects of dispersion and nonlinearities in optical commu-
nication systems over long distances in order to increase
their data transmission capacity. One of the most impor-
tant innovations in the field of communication technology,
able to overcome these difficulties, is based on the concept
of optical solitons.

Solitons are optical pulses capable of keeping their
shape unaltered in non-linear and dispersive media, such
as in optical fibers. The principle of propagation of the
solitons in optical fibers is based on the perfect balance be-
tween the Group Velocity Dispersion (GVD) and the Kerr
effect due to the non-linearity of the medium (AGRAWAL,
2019; MENYUK; SCHIEK; TORNER, 1994; TAYLOR,
1992).

Historically, Smith et al. (1996) showed that solitons
could propagate in fibers with periodic variation of the
GVD, even if the mean dispersion was practically null,

so a new idea emerged for systems with solitons: the sys-
tems with managed dispersion. Other experiments were
performed by Fukuchi ef al. (2001) on mono-channel
and WDM systems, aiming to reach transmission ca-
pacity above 1 Tb/s. Later, Algety Telecom, based in
Lannion, France, made the practical use of solitons a
reality when developing submarine telecommunications
equipment based on the transmission of optical solitons
(ALGETY TELECOM, 2002).

Currently, much research has been carried out to
find a soliton transmission system capable of compet-
ing commercially with current communication systems,
that is, offering high transmission rates at low cost
(CHEMNITZ et al., 2017; EFTEKHAR et al., 2019; LUO
et al., 2017; ZAJNULINA et al., 2017; WANG et al.,
2019).

In this context, this work performs numerical studies
describing the propagation of solitons in dielectric optical
fibers, with emphasis on the study of power loss and the
evaluation of the impact of this dissipation in the transmis-

sion of the soliton signal.
Solitons in optical guides

This section studies the coupled non-linear sys-
tem of complex partial differential equations (CPDE),
obtained from Maxwell’s equations, which describe
the longitudinal propagation of two coupled elec-
tromagnetic waves (fundamental and second har-
monic modes) in ideal x(® dielectric optical fibers
(GALLEAS; YMALI; NATTI; NATTI, 2003). This CPDE

system is given by

.8611 razal * / =
e "2 ap Haieep(-ipe) =0
(M
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where i = /1 is the imaginary unit, a; (&, s) and a2 (&, s)
are complex variables that represent the normalized am-
plitudes of the electrical fields of the fundamental and
second harmonic waves, respectively, with a} (&, s) as its
complex conjugates. The independent variable s has spa-
tial character, and the independent variable & has tem-
poral character. The real parameters o, 3, 6 and r are
related with the dielectric properties of the optical fiber
(CIRILO; NATTI; ROMEIRO; TAKANO; NATTI, 2008;
QUEIROZ; NATTI; ROMEIRO; NATTI, 2006; YAMALI;
GALLEAS; NATTI; NATTI, 2004).
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The CPDE system (1) presents ideal soliton solutions
(GALLEAS; YMALI; NATTI; NATTIL, 2003) given by
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The existence of these solutions (YAMAI, GALLEAS;
NATTI; NATTI, 2004) is conditioned by the fact that the
hyperbolic secant function argument is real and by the
non-existence of singularities in (2) and (3).

As we know, propagation of soliton-type waves in
real optical fibers does not occur in the same way as
in ideal optical fibers (CIRILO; NATTI; ROMEIRO;
NATTI; OLIVEIRA, 2010). There are many pro-
cesses that can cause disturbances in the propaga-
tion of real solitons: connection/fusion between opti-
cal fibers (OLIVEIRA; NATTI; CIRILO; ROMEIRO;
NATTI, 2020; WANG; ZHOU; XU; YANG; ZHANG,
2019), Rayleigh scattering (PALMIERI; SCHENATO,
2013), high-order dispersion and high-order nonlinearities
(TRIKI; BISWAS; MILOVIC; BELIC, 2016), soliton
self-steepening, Raman effect and self-frequency shift
(WEN; YANGBAO; SHI; FU, 2018), polarization-mode
dispersion (KUMAR; RAO, 2012), nonlinear phase noise
(YUSHKO; REDYUK; FEDORUK; TURITSYN, 2014),
among other processes (ASHRAF; AHMAD; YOUNIS;
ALI; RIZVI, 2017).

It should be observed that the perturbed coupled non-
linear Schrodinger differential equations systems, which
describe wave propagation in real optical media, do not
present analytical solution. In the literature there are sev-
eral numerical approaches whose objective is to describe
the propagation of perturbed solitons in dielectric environ-
ments, most of them using the finite difference method
(ISMAIL; ASHI, 2016; OLIVEIRA; NATTI; CIRILO;
ROMEIRO; NATTI, 2020) or the finite element method
(ISMAIL, 2008; KARCZEWSKA; ROZMEJ; SZCZE-
CINSKI; BOGONIEWICZ, 2016).

210 s} )

In this context, in order to observe the loss
of energy caused by these processes in the soliton
wave propagation, we add two perturbative terms to

equation (1), ie,
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where iy a; and iy ap are linear dissipative terms,
while ik |a;|?> a; and ik |ay|* a, are nonlinear dissipa-
tive or amplification terms. In this case the propagating
wave is not a soliton, and only numerical solutions are
possible.

In Cirilo et al. (2010) a numerical procedure was
developed to solve the propagation of soliton waves
in ideal optical fibers (CIRILO; NATTI; ROMEIRO;
NATTI; OLIVEIRA, 2010), described by the PDE sys-
tem (1). The procedure is based on the finite difference
method for complex functions and relaxation Gauss-Seidel
method.

In this work we perform adaptations in the nume-
rical procedure developed, in order to solve the sys-
tem (4). In this context, we made approximations in
order to obtain an Implicit Method, because the result-
ing linear system (in complex variables) became well-
conditioned. We chose to solve the resulting linear sys-
tem by the Relaxation Gauss-Seidel method, which ac-
celerates the convergence (CIRILO; NATTI; ROMEIRO;
NATTI, 2008). Note that the resolution of the complex
linear system can be performed by other procedures,
such as Cholesky decomposition, conjugate gradiente, tri-
diagonal matrix algorithm (TDMA), modified strongly
implicit procedure (MSI), among others. We chose the
Relaxation Gauss-Seidel method because of its mathemat-
ical simplicity and easy computational implementation
(CIRILO; NATTI; ROMEIRO; NATTI; OLIVEIRA, 2010;
CIRILO; BARBA; NATTI; ROMEIRO, 2018; CIRILO;
PETROVSKI; ROMEIRO; NATTI, 2019; OLIVEIRA;
NATTI; CIRILO ROMEIRO; NATTI, 2020; PARDO;
NATTI; ROMEIRO; CIRILO, 2012; ROMEIRO; CAS-
TRO; CIRILO; NATTI, 2011; ROMEIRO; MANGILI;
COSTANZI; CIRILO; NATTI, 2017; SAITA et al., 2017;
SMITH, 2004). This numerical procedure is presented in

the next section.
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Numerical model

The system (4) is numerically resolved in do-
main § x s = [0,T] x [-L,L], where T,L € R. By
discretizing the variables a;(&,s) = aj(k+ 1,j) and
ay(€,s) = ax(k+ 1,j) for k = 0,1,....,kpay and j =
1,2,...,ni, where k4, is denominated the last advance in
& and ni the maximum number of points in s, the propaga-
tion domain of the soliton waves is defined by a discretized
computational grid of k., X ni points, as represented in

Figure 1.

Figure 1 — Computational domain of propagation of soli-
ton waves.
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Source: The authors.

Thus, by means of the finite difference method,
by approximating the temporal derivatives by progres-
sive differences, and the spatial derivatives by central
differences, we can rewrite (4) as

. 1 .
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Applying the relaxation Gauss-Seidel method
(CIRILO; NATTI; ROMEIRO; NATTI, 2008), we can
compute iteratively aj (k+ 1, j)"*! through the equations

given below

+14, ar(k+1,j—1)+D
lAP
'Bj+ A ar(k+1,j+1)™
+ : ,
Ap

ai(k+1,/)" =
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until the stop criterion is satisfied, ie,

max |ay(k+1,/)") —a;(k+1,))"| <107° (8)

2<j<n;i

where

lB] — 1Ap0 a (k, j)(ﬂ-‘rl)
- aT(k7j)(n+l) a2<kaj)(n+1) exp(—lﬁé)

Similarly a; (k+ 1, j)"*1 is calculated.

Numerical simulations for solitons with dissipation

In this section, in all the simulations of system (4),
we assume for the dielectric parameters the following
values: r = —1, B = —0.5, « = —0.25 and 6 = —0.1.
These values are compatible with those measured in
real optical fibers (ARTIGAS; TORNER; AKLMEDIEV,
1999). On discretization, we define As = 1.0 x 10~ ! and
AE = 1.0 x 1073 for the variables s and &, respectively.
The intervals of variation of s and & were adapted to
each case, so that the plots of the propagated solitons re-
mained in the computational domain, as represented in the
Figure 1.

Figure 2 shows the propagation of the modes |a; (&, s)]|
and |ay(&,s)| of soliton wave packet under ideal con-
ditions, without dissipative or gain terms, ie, with

u=x=0.
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Soliton propagation in lossy optical fibers

Figure 2 — Propagation of modes |a;(&,s)| and |ax (&, )|
of ideal soliton wave (U = kK = 0).
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Source: The authors.

Note that propagation occurs without variations in
wave amplitudes, which can best be observed in Figure 3,
where the evolution of the amplitudes as a function of the

time variable & is visualized.

Figure 3 — Profile of |a; (&,s)| and |ay (&, s)| modes of the
ideal soliton wave (U = K = 0).
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Source: The authors.

In the following simulation we add the linear dissi-
pative term illa,, com n = 1,2, as shown in the system
of equations (4). Initially we take u = —0.05, a weak
dissipation. Note that in Figures 4-6 the propagation shows

attenuation and oscillations in the amplitude of the waves.

These oscillations are explained by the transfer (coupling)
of energy between the fundamental and second harmonic
waves, due to the parameter f3 in the equation system (1).
Finally, it is shown in figure 6 that the soliton waves, in the
presence of a linear dissipative term, undergo dispersion

(pulse widening).

Figure 4 — Propagation of modes |a;(&,s)| and |a2(&,s)|,
when subjected to linear dissipation u = —0.05.
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Source: The authors.

Figure 5 — Profile of modes |a; (&, s)| and |ax (&, s)|, when
submitted to linear dissipation u = —0.05.
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Source: The authors.

In other simulations, when we take strong linear
dissipations, for example pt = —1, it is observed that the
oscillations and dispersion effects in Figures 4-5 disappear,

since the intense attenuation factor masks this effect.
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Figure 6 — Transverse section of modes |a;(&,s)| and
lax(E,s)| at & =0, & =35 and £ = 18, when subjected to
linear dissipation u = —0.05.
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Source: The authors.

In the next simulations we will study the non-
linear dissipation term ik|ay|*a,, with n = 1,2. In
Figures 7 - 9 we take k = —0.05. It is verified that de-
cay rate with non-linearities is less intense than the decay

rate due to linear dissipation (1 # 0).

Figure 7 — Propagation of modes |a;(&,s)| and |ay (&, s)|,
when subjected to nonlinear dissipation k = —0.05.
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Source: The authors.

The Figure 8 shows oscillations in the amplitudes of
a1(&,s) and ay (&, s). Note that the nonlinear dissipation
term also generates dispersion in the pulse, Figure 9.

In other simulations, unlike in the case of linear

dissipation, when we take strong nonlinear dissipations,

for example k¥ = —1, it is observed that the oscillations

and dispersion effects in Figures 8-9 increase.

Figure 8 — Profile of modes |a; (&,s)| and |az(&,s)|, when

submitted to nonlinear dissipation k¥ = —0.05.
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Source: The authors.

Figure 9 — Transverse section of modes |a;(&,s)| and
laz(E,s)| at & =0, & =30 and £ = 60, when subjected to
nonlinear dissipation k¥ = —0.05.
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Source: The authors.

Numerical simulations for solitons with dissipation and
gain

In this subsection it is considered an optical fiber with
linear losses of 1%, that is, u = —0.01 in equation (4).
It is also contemplated that in the link there is optical
regeneration of the soliton signal through optical ampli-
fiers, for example, erbium doped fiber amplifiers (EDFA),
which allows amplifying the optical signal without the
need for conversion of the optical-electric-optical signal
(AGRAWAL, 2019).

In this context, we simulate the nonlinear properties
that an optical fiber must have, so that the gain, given
by k, allows the soliton wave to triple its propagation
distance, in relation to the situation in which there is only
dissipation u = —0.01. We consider that the detection
threshold at the receiver, due to noise, is 10% of the initial
amplitude.

In the first simulation, represented in Figures 10 - 12,
we consider the soliton wave only with linear dissipation
u = —0.01 (with ¥ = 0). Consistently with the pre-
vious results, we observed the attenuation, oscillation
and dispersion of the fundamental and second harmonic

modes.
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Soliton propagation in lossy optical fibers

Figure 10 - Propagation of modes |aj(&,s)| and
|az (&, )|, when subjected to linear dissipation g = —0.01.
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Figure 11 - Profile of modes |a;(&,s)| and |az(&,s)],
when submitted to linear dissipation 4 = —0.01.
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Note that in the Figure 11, around & = 28, the fun-
damental wave amplitude is less than 10% of the ini-
tial amplitude. In this configuration the signal is not
read by the detector, causing a transmission failure. In
this context, we intend to simulate values for gain K
in order to increase the propagated distance of the fun-
damental and second harmonic waves before this fault

occurs.

Figure 12 — Transverse section of modes |a;(&,s)| and
laz (&, 5)| at & =0, & =40 and £ = 55, when subjected to
linear dissipation u = —0.01.
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Below we consider the following gains: 1%, 3%, 6%,
and 9%. Considering in the optical fiber a gain of 1%
(x = 0,01 with u = —0.01), it is observed in the Fig-
ure 13 a small increase of the propagated distance of the
fundamental wave. Now the first minimum occurs at ap-

proximately & = 33.

Figure 13 - Profile of modes |a;(&,s)| and |az(&,s)],
when submitted to linear dissipation ¢ = —0.01 and non-
linear gain ¥ = 0.01.
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The Figures 14 and 15 show the fundamental and
second harmonic mode propagation profiles for gains
kK = 0.03 and k¥ = 0.06 (with u = —0.01). Note in the
Figures 14 and 15 a significant increase in the fundamen-
tal wave propagation distance before the first minimum
occurs. Note that the first minimum amplitude are located

at & =37 e & = 48, respectively.

Figure 14 — Profile of modes |a;(&,s)| and |a2(&,s)],
when submitted to linear dissipation t = —0.01 and non-
linear gain k¥ = 0.03.
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Figure 15 — Profile of modes |a;(&,s)| and |ay(&,s)],
when submitted to linear dissipation 4 = —0.01 and non-
linear gain x = 0.06.
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Finally, the Figure 16 simulates the situation
corresponding to the gain k = 0.09. In this case, the first
minimum amplitude of the fundamental wave occurs at
approximately & = 88. We conclude that with a gain of
9%, it is possible to triple the propagation distance of
the fundamental soliton wave, when subjected to linear

dissipation of 1%, before the first minimum occurs.

Figure 16 — Profile of modes |a;(&,s)| and |ax(&,s)],
when submitted to linear dissipation 4t = —0.01 and non-
linear gain k¥ = 0.09.

0.25 E 0.45

ai (‘tal‘;) o

o
N
o
@
&

a (é,s) V

Amplitude
Amplitude

o

o
=
S

0 0

0 20 40 60 E) 80 100 0 20 40 60 & 80 100

Source: The authors.

Note that in the situations analyzed in the Figures
11, 13, 14, 15, and 16, substantial attenuation in the
fundamental wave amplitude occurs, while the attenu-
ation of the second harmonic amplitude is less intense.
In this context, we point out that, from an experimental
point of view, it is more interesting to use the second har-
monic wave as the information carrier wave, since all the
dissipation and gain analysis made in this section for the
fundamental wave is also valid for the second harmonic

wave.

Conclusion

In this work we numerically simulate the propagation
of soliton waves in non-ideal optical fibers, subject to
dissipation and gain.

104

Initially, we present the modeling of a nonlinear com-
plex differential equation system (1) that describe the
propagation of solitons waves in )((2) ideal fibers. The
analytical solutions of the soliton type (2-3) were also
discussed.

Then, through mathematical modeling, we add
dissipation and gain terms to equations (1). The new
equations no longer have soliton-type solutions. To sim-
ulate the propagation of these perturbed soliton waves,
also called quasi-soliton waves, we adapted the numerical
procedure developed in (CIRILO; NATTI; ROMEIRO;
NATTI; OLIVEIRA, 2010), which employs the finite
difference method associated with the relaxation Gauss-
Seidel method, to solve the CPDE system (4).

Right away, the numerical study of CPDE system
showed that quasi-soliton waves suffer attenuation, oscil-
lation and dispersion effects. Specifically, we were inter-
ested in the study of nonlinear optical signal amplification,
the cubic term of the equation (4), when x > 0. We show
that by this gain is possible to partially compensate the
attenuation of the optical signal, described by the linear
term of equation (4), when u < 0.

We conclude that with a gain of 9 %, it is pos-
sible to triple the fundamental soliton wave’s pro-
gression distance, when subjected to linear dissipation
of 1 %, before the first minimum of its amplitude
occurs.

Another very significant result of this work was that,
from an experimental point of view, it is more interesting
to use the second harmonic wave as the carrier informa-
tion wave, since it presents the dissipation and oscillation
effects with less intensity than the fundamental wave, see
Figures 11, 13, 14, 15, and 16.

As a suggestion for future work, we can improve the
modeling of the gain and loss mechanisms in the propaga-
tion of soliton pulse. What are the intensities and patterns
of disturbances caused in the optical pulse due to dif-
ferent gain and loss mechanisms, for example, effects
described by cubic terms (LATAS; FERREIRA, 2007)
or derivative terms (KOHL; BISWAS; MILOVIC; ZER-
RAD, 2008)? This study would allow to numerically
verify the effect on the signal caused by each mechanism,

separately.
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