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Comparative analysis between measures of strain in structures of bar

Análise comparativa entre medidas de deformação em estruturas de
barra

Lucas Dezotti Tolentino1; Luiz Antonio Farani de Souza2

Abstract
The performance of structures is of fundamental importance within the structural design, however, the
structure response when subjected to loading is a function of several variables. Structures are designed to
meet ruin safety criteria and meet service conditions so that unacceptable damage to nonstructural elements
does not occur and to ensure the effective part durability. The contribution of computational systems assists
the analysis process, especially in the study of complex structural systems. Thus, this paper aims to apply
concepts of continuum mechanics through four one-dimensional strain measurements on a bar requested by
an axial tensile load and to verify their behavior in the face of increased load. Cauchy’s, Green’s, Logarithmic
and Almansi’s strains were studied. It is concluded that, for small load increments, the difference between the
numerical results obtained by the Ftool program and those obtained here were considerably close. However,
with the consequent increase in loading, there was a large variation in the response of the bar regarding the
displacement for the strain measurements. The displacements in the bar were obtained with the finite element
positional method.
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Resumo
O desempenho de estruturas é de fundamental importância dentro do projeto estrutural, contudo a resposta
da estrutura quando submetida a carregamentos é função de diversas variáveis. As estruturas são projetadas
para atender a critérios de segurança contra ruína e satisfazer condições de serviço, para que não ocorra
danos inaceitáveis em elementos não estruturais e garantam a efetiva durabilidade da peça. A contribuição
de sistemas computacionais auxilia o processo de análise, principalmente no estudo de sistemas estruturais
complexos. Desse modo, este artigo tem por objetivo aplicar conceitos da mecânica do contínuo por meio
de quatro medidas de deformação unidimensional em uma barra carregada axialmente à tração e verificar o
comportamento das mesmas frente ao aumento do carregamento. Foram estudadas as deformações de Cauchy,
de Green, Logarítmica e de Almansi. Conclui-se que, para pequenos incrementos de carga, a diferença entre
os resultados numéricos obtidos pelo programa Ftool e os obtidos aqui foram consideravelmente próximos.
No entanto, com o consequente aumento do carregamento houve uma grande variação da resposta da barra
quanto ao deslocamento para as medidas de deformação. Os deslocamentos na barra foram obtidos com o
método posicional de elementos finitos.

Palavras-chave: Ftool. Medidas de deformação. Mecânica do contínuo. Método posicional de elementos
finitos.
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Introduction

The use of deformable and elastic structural elements
has been increasingly widespread, such as natural or vul-
canized filled polymers. These materials contribute to re-
duced vibration, shock absorption and increased flexibility
in connections.

One of the important characteristics of the materials is
their ability to resist or transmit stresses. Their response
under stress is closely related to the property of the mate-
rial to deform elastically or plastically. A material exhibits
elastic behavior when subjected to mechanical stress, it
exhibits non-permanent deformations. When removing
such stresses, the material returns to its original dimen-
sions. The plastic behavior is observed when the same
material is subjected to higher stresses and its dimensions
are permanently changed, and once the efforts stop, the
material does not return to its original dimensions (YAW,
2017; MELO, 2015).

The appearance of permanent deformations in the ide-
alized medium corresponds to the process of disagreement
movement in the crystalline structure of the materials. The
mechanical response of materials to deformation occurs in
part immediately and over time. The second has a higher
or lower intensity according to the characteristics of the
request and the medium itself.

In structural design, a correct assessment of the struc-
ture behavior is extremely important, and its response to
a given load is a function of several random variables
that affect its performance. When a system is subjected to
extreme loading, it can undergo large displacements and
deformations, and such behavior generally leads to partial
or total collapse of the structure (WRIGGERS, 2008).

Structures are designed to meet ruin safety criteria
and meet service conditions so that there is not unac-
ceptable damage to non-structural elements under load-
ing action. In addition, the degree of cracking must be
within the acceptable range on the flexed parts so as not
to affect the structure durability. According to Kimura
(2007), when a serviceability limit state (SLS) and/or an
ultimate limit state (ULS) is reached, the building use is
unfeasible.

In the stability/instability analysis of structures, it is
important, during the solution process, taking into account
load and displacement limit points crossing in the equi-
librium path (SANTANA, 2015). Computational methods
are of great help in the process of modeling, analyzing and
verifying the results, especially of structures with complex
nonlinear behavior.

Several authors have sought analytical solutions of
static equilibrium differential equations for mechanical
problems involving small or large deformations. Timo-
shenko and Goodier (1951) described the static equilib-
rium equations, the geometric compatibility and the con-
stitutive law for elastic and isotropic materials, subjected
to small displacements and deformations. These authors
presented analytical solutions for cases with simplified
loading and geometry.

Schieck, Pietraszkiewicz and Stumpf (1992) showed
the exact solution for highly deformable, elastic, circular
plates with uniformly distributed transverse loading and
embedded.

Coda and Greco (2004) developed the Finite Element
positional formulation for geometric nonlinear static anal-
ysis of one-dimensional structures submitted to small
or large deformations. This formulation is based on the
principle of the minimum total potential energy and
the fundamental unknowns of the problem are the po-
sitions of the finite element nodes, rather than the dis-
placements, which are the unknowns in the standard fi-
nite element formulation for solids. The positional for-
mulation is classified as a Total Lagrangian formulation
(LACERDA, 2014).

Despite the great difference in the nature and inter-
nal structure of materials most commonly used in en-
gineering, similar behavioral characteristics can be ob-
served on a macroscopic scale (elasticity, viscosity, plas-
tic deformation, etc.). Such behavioral condition justifies
the use of Continuum Mechanics theory; although the
hypothesis of medium continuum does not refer to the
internal structure of the material, it plays an important
role in the theoretical modeling, since it defines concepts
such as stress and strain associated with material points
(GONÇALVES, 2003).

Mathematical functions that represent the displace-
ments and deformations suffered and that have the
coordinates of the points as free variables could de-
scribe eventual transformations that lead to a configu-
ration change. Continuum Mechanics provides several
ways to measure one-dimensional strain in a structure,
which are: Engineering’s or Cauchy’s strain; Green’s
strain; Logarithmic or Hencky’s strain; and Almansi’s
strain.

In this context, this work aims to perform an analy-
sis of the different strain measurements, from a problem
consisting of an axially loaded bar to traction. The dis-
placements in the bar were obtained with the positional
finite element method.
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Computational simulations are performed with Matlab
software (MATLAB, 2015) and compared with the results
obtained by the Ftool v.4.0 software (MARTHA, 1999;
DEL SAVIO et al., 2004). Analysis considered the con-
stitutive relation of the linear elastic material and small
displacements (hypotheses of linear analysis). The nu-
merical results indicate the differences in the structural
response with the strain measures.

Second section

One-dimensional strain measurements

The deformation of a bar is characterized by an
offset u in the bar, as shown in Figure 1. L0 is the
initial length (before deformation) of the bar and L
is its length after deformation, such that u = L − L0

(MENIN, 2006; LACERDA, 2014).

Figure 1 – Bar elongation.

Source: Lacerda (2014).

Deformation is described in two senses: deformation
and strain. In the sense of deformation as Ogden (1997), it
is a body transformation from a reference configuration to
the current configuration. Such a concept does not differ a
simple rigid body movement from a change in body shape.
Strain refers to a normalized dimensionless measure of the
displacement between the material points of the body with
respect to a reference configuration. Figure 2 illustrates
such concepts.

Figure 2 – Difference between deformation and strain.

Source: Lacerda (2014).

Figure 2a illustrates a rigid body movement,
and Figure 2b shows a movement in which
changes body shape, not representing a rigid body.
Both scenarios are considered deformation, i.e. configu-
ration change. However, any strain measurement should

be null for the first situation and nonzero for the second
(LACERDA, 2014). Several strain measurements may be
appropriate for linear and nonlinear analysis.

Engineering’s strain

Engineering’s or Cauchy’s strain (εe) is the simplest
strain measurement, expressed by the following equation
(MENIN, 2006; LACERDA, 2014):

εe =
u
L0

=
L−L0

L0
, (1)

where L is the deformed length and L0 is the initial or
undeformed length.

Engineering’s strain measures the deformation even
though the bar has rotated greatly in the direction of εe .

Green’s strain

Considering engineering’s strain, it can be rewritten as
follows (MENIN, 2006; LACERDA, 2014)

εe =
(L−L0)(L+L0)

L0(L+L0)
. (2)

As L = u+L0 = εeL0 +L0, we have

εe =
L2 −L2

0
L0(εeL0 +L0 +L0)

=
L2 −L2

0

L2
0(εe +2)

. (3)

In case the strain is small, i.e. εe ≈ 0, εe can be ne-
glected in equation (3), obtaining the equation

εG =
L2 −L2

0

2L2
0

, (4)

where εG is called Green’s strain. There are many exam-
ples of structures with large displacements but with small
strains. In these cases, Green’s strain is suitable for the
analysis of this type of structure.

Logarithmic strain

If the strain is too large, Logarithmic strain is more
appropriate, also known as natural strain, true strain or
Hencky’s strain. The conceptualization of the theory con-
sists of the sum of all infinitesimal strain increments that
occur during the bar elongation, from the initial length L0

to the final length L. The infinitesimal strain increment is
given by (LACERDA, 2014)

dε =
dL
L
. (5)
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This increment integration is the definition of Loga-
rithmic strain (εL), according to the equation

εL =
∫ L

L0

dε =
∫ L

L0

dL
L

= ln
(

L
L0

)
. (6)

Even though Logarithmic strain can be generalized to
more than one dimension, such generalization is complex
and of high computational cost (BONET; WOOD, 2008).

Almansi’s strain

The strain of Almansi (εA) is given by (MENIN, 2006;
LACERDA, 2014)

εA =
L2 −L2

0
2L2 . (7)

The Almansi’s strain design is similar to Green’s strain.
However, the difference is that the former refers to the
deformed configuration and the latter to the initial config-
uration.

Positional formulation of finite elements for 2D
truss bar

This section is a brief description of the positional
formulation for 2D truss bar. The bar element only trans-
mits axial forces and it has constant cross-sectional area
A. Coordinates (X1, Y1) and (X2, Y2) represent the initial
configuration of the bar element (also known as reference
coordinates). Coordinates (x1, y1) and (x2, y2) represent
the deformed configuration of the bar element.

Table 1 describes the internal force vector Fel and
the stiffness matrix Kel for the element of 2D truss bar,
obtained for the different strain measurements.

Table 1 – Describes the internal force vector Fel and the
stiffness matrix Kel for the element of 2D truss bar, ob-
tained for the different strain measurements.

Strain
measurement

Internal force vector and stiffness matrix
Fel Kel

Engineering
EAεe

L
b

EA
L3 B

Green
EAεG

L0
b

EA
L3

0
B

Almansi
EAL2

0εA

L3 b
EAL2

0
L7

(
L2

0 −3L2εA
)

B

Logarithmic
EAL0εL

L2 b
EAL0

L4 (1−2εL)B

Source: Adapted from Lacerda (2014).

In Table 1, L0 and L are the initial (reference) and
deformed lengths of the bar element, respectively, E is the
elastic modulus and b is the vector given by

b = [x1 − x2 y1 − y2 x2 − x1 y2 − y1]
T , (8)

where xi and yi, with i = 1,2, are the coordinates of node
i of the bar, and matrix B is determined by

B = bbT . (9)

The displacement vector u is given by

u = d−0 d, (10)

where 0d is the nodal coordinate vector for the starting
position of the bar (undeformed).

Methodology for solving structural problem

The basic structural problem is to find the equilibrium
configuration of a structure that is under the action of
applied forces. The equilibrium conditions of the finite
elements representing the structure can be expressed by
the following system of equations (BATHE, 2006)

g = P−Fint(d) = 0, (11)

where g is unbalanced forces vector, P is the vector of
nodal external forces and Fint is the global nodal internal
forces vector corresponding to the finite element stresses
- calculated as a function of the nodal coordinate vector
d. The solution of the equation system is solved by the
Newton-Raphson method with constant load control. The
iterative equations are

K(d(k−1))(δd(k)) = P−Fint(d(k−1)), (12)

d(k) = d(k−1)+δd(k), (13)

where K is called of global stiffness matrix and δd is the
sub-increment of the nodal coordinate vector.

For a truss consisting of ne finite elements of bar, the
matrix K and vector Fint are obtained from the stiffness
matrix Kel and internal force vector Fel of each element,
respectively, such that stated (BATHE, 2006)

K =
ne

∑
i=1

AKeli , (14)

Fint =
ne

∑
i=1

AFeli , (15)

where A is an assembly operator.
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Numerical Results and Discussion

Being the model of an axially loaded bar as shown
in Figure 3, which has one end with pinned-type support
and the other with roller-type support, so that it has a
single degree of freedom (x-axis displacement direction).
The bar has initial length L0 = 1.0 m, cross-sectional area
A = 1.0 x 10−4 m2 and elastic modulus E = 10.0 GPa.
The structure is subjected to an axial load P = 100.0 kN
assuming that it is applied slowly and in increments (static
analysis).

Figure 3 – Structural model of the bar.

Source: The authors.

Figure 4 shows the equilibrium paths (load P versus

horizontal displacement u). Table 2 presents the numer-
ical results obtained for the load increments P, with the
respective resulting strain measurements. The results are
compared with those found by the Ftool v.4.0 software.

Figure 4 – Equilibrium paths.

Source: The authors.

The displacement found in Ftool served as a reference
parameter with the strain measures implemented; Figure
4 shows that for lower intensity loads, which start the
paths, the variation of the results is smaller. However, as
the load increases, the strain measurements differ from
the results found by the Ftool software, except for En-
gineering’s strain, since this program makes use of this
strain measurement, and the displacements coincide, as
observed in Figure 4 and Table 2.

For loading up to 10.0 kN, the values found for all
strain measurements are close to those obtained by Ftool,
with a difference of less than 1.60 % for Green’s strain
and Logarithmic strain and less than 3.70 % Almansi’s
strain. Only Green’s strain had a negative variation, with

values lower than those of Ftool, and the others occurred
with positive variation and values higher than those found
in this program.

When applied 100.0 kN loading, it is noticeable that
the Almansi’s strain provides the largest result difference
of 75.57 %. Green’s strain and Logarithmic strain portray
the smallest variation in relation to Ftool , being 11.97
% and 18.33 %, respectively. Clearly, Green’s strain and
Logarithmic strain, although these measurements show a
variation of less than 19.00 % when compared to Ftool,
there is a considerable difference between them. Green’s
strain obtained the smallest difference between all mea-
surements.

Depending on the load increment, Almansi’s strain
values generate a larger difference compared to the values
observed in the reference parameter (Ftool); thus, larger
loads provide greater displacements, and the strain mea-
sure tends to nonlinearity of the line, a situation that can
be observed in the equilibrium path in Figure 4.

Conclusion

The results demonstrated the response of the bar re-
quested to an axial tensile load as a function of the strain
measures, whose material behavior is elastic-linear. The
displacements obtained by Ftool were used as a reference
parameter.

The strain measurements varied according to the load
increase, and considering the characteristics of the numer-
ical example, we concluded that for small load increments
the measurements obtained results close to the Ftool, with
little difference between the numerical values. However,
the increase in loading generates a considerable difference
depending on the amount of strain applied.

Logarithmic and Almansi’s strain reached the largest
variations when the maximum load was imposed, and
for this study situation, such measures showed a relevant
difference. In the case of Almansi’s strain, we found the
highest value inequality. Cauchy’s or Engineering’s strain
resulted in exactly the same values to those obtained by
Ftool.

Green’s strain, compared to Logarithmic and Al-
mansi’s measurements, showed values closer to Ftool,
even with increased loading.

The mechanical behavior of a given material is diffi-
cult to predict, requiring a more refined analysis, such as
the consideration of physical and geometric nonlineari-
ties, which brings results closer to experimental tests, in
addition to the appropriate choice of strain measurement.
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Table 2 – Numerical results for strain measurements

u (m)

Load P (kN) Ftool Engineering’s strain Green’s strain Logarithmic strain Almansi’s strain

5.0 0.005 0.005 0.004963 0.005038 0.005090

10.0 0.010 0.010 0.009854 0.010153 0.010367

15.0 0.015 0.015 0.014675 0.015347 0.015848

20.0 0.020 0.020 0.019430 0.020622 0.021548

25.0 0.025 0.025 0.024120 0.025981 0.027486

30.0 0.030 0.030 0.028748 0.031426 0.033684

35.0 0.035 0.035 0.033317 0.036960 0.040164

40.0 0.040 0.040 0.037827 0.042585 0.046957

45.0 0.045 0.045 0.042281 0.048304 0.054093

50.0 0.050 0.050 0.046681 0.054120 0.061610

55.0 0.055 0.055 0.051028 0.060035 0.069555

60.0 0.060 0.060 0.055324 0.066053 0.077980

65.0 0.065 0.065 0.059571 0.072177 0.086950

70.0 0.070 0.070 0.063770 0.078411 0.096545

75.0 0.075 0.075 0.067923 0.084758 0.106864

80.0 0.080 0.080 0.072031 0.091222 0.118034

85.0 0.085 0.085 0.076094 0.097806 0.130219

90.0 0.090 0.090 0.080115 0.104515 0.143642

95.0 0.095 0.095 0.084095 0.111353 0.158609

100.0 0.100 0.100 0.088034 0.118326 0.175571

Source: The authors.
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