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Distribuição uniforme exponenciada: Uma alternativa interessante
para modelos truncados
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Abstract
In this paper some properties of the so-called exponentiated uniform distribution are derived and discussed,
such as quantile function, moments, generating function, mean deviations, Bonferroni and Lorenz curves,
Shannon and Rényi entropies. The proposed model, defined in the range [a,b] can be used as an alternative to
the truncated models. The maximum likelihood estimation of the model parameter is also conducted and
a simulation study was performed to verify the consistency of model parameter. An application to a real
data set illustrates its potentiality comparing the new distribution with other three well-known truncated
distributions.We also present, at the end, an section discussing about computational codes, where the scripts
used in R software are available.
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Resumo
Neste artigo é apresentado um novo modelo probabilístico denominado de distribuição uniforme exponencial,
do qual algumas propriedades da nova distribuição são apresentadas e discutidas, tais como a função quantílica,
momentos, função geradora, desvios médios, curvas de Bonferroni e Lorenz, entropia de Shannon e Renyi. O
modelo proposto, definido no intervalo [a,b], pode ser utilizado como alternativa aos modelos truncados. A
estimativa da máxima verossimilhança do parâmetro do modelo também é realizada e um estudo de simulação
foi realizado para verificar a consistência do parâmetro do modelo. Uma aplicação para um conjunto de
dados real ilustra a potencialidade do mesmo, comparando a nova distribuição com outras três distribuições
truncadas conhecidas na literatura.
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exponenciadas.
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Introduction

A large number of new distributions that extend well-
known distributions and provides great flexibility in mod-
eling data are being investigated in the last years. In this
context, (GUPTA et al., 1998) first proposed a general-
ization of the standard exponential distribution, called
the exponentiated exponential (EE) distribution. For a
full discussion and some of its mathematical properties,
see (GUPTA; KUNDU, 2001). In a similar perspective,
(NADARAJAH; KOTZ, 2006b) proposed the exponenti-
ated gamma (EG), exponentiated Fréchet (EF) and expo-
nentiated Gumbel (EGu) distributions, although the way
they defined the cumulative density function (cdf) of the
last two distributions is slightly different.

In many cases, the properties of these well-known
families of distributions can be expressed in terms of the
exponentiated family, such as, the Zografos-Balakrishnan-
G family (ZOGRAFOS; BALAKRISHNAN, 2009), the
Weibull-G family (BOURGUIGNON et al., 2014), the
Ristic-Balakrishnan family (RISTIC; BALAKRISHNAN,
2012), the Kummer beta generalized family (PESCIM
et al., 2012), the exponentiated generalized family
(CORDEIRO et al., 2013), among others. Hence, it is
extremely important to study exponentiated distributions
in order to provide a simpler way to derive some properties
of more complex distributions.

One of the simplest distributions in statistics is the
uniform distribution, which is defined in the interval [a,b],
facilitating the adjustment of data with limited support,
e.g., final scores of approved students [6,10] in a given
subject, height of military (minimum and maximum will
depend on the military academy) etc. The main disadvan-
tage of the uniform model, when compared with other
models, is that it is equiprobable throughout all range,
which limits its use.

In order to provide some flexibility to this distribu-
tion, keeping it in a non pre-defined range, (TORABI;
MONTAZERI, 2012) proposed the gamma-uniform (GU)
model, which is obtained from the gamma class of distri-
butions when the uniform distribution is used as the base-
line, and presented some of its properties. The gamma-
generated class of distributions consists in adding two
parameters α and β to the baseline distribution, provid-
ing a better control over its skewness and kurtosis. More
recently, (ALJARRAH et al., 2014) presented the Weibull-
uniform{log-logistic} (WU{LL}) distribution with some
properties and (TORABI; MONTAZERI, 2014) proposed
the logistic-uniform (LU) distribution, derived some pro-

perties of this distribution and presented some applica-
tions, thus showing its great flexibility. Lee (LEE; WON,
2006) proposed the exponentiated uniform type I (EUI)
distribution with support (0,θ), considering the uniform
distribution over (0,θ) in the exponentiated class of distri-
butions (GUPTA; KUNDU, 2001), and provided explicit
expressions for its moments, moments generating function
(MGF), estimation of the parameters, reliability and the
right-tail probability. As they considered the uniform dis-
tribution with parameters zero and θ , the EUI distribution
became very limited.

Similar to (LEE; WON, 2006), we propose in this
paper a simple model, belonging to the interval [a,b],
using the exponentiated class of distributions (GUPTA;
KUNDU, 2001), which has cdf expressed by

F(x) = G(x)α , (1)

where G(x) represents the baseline cumulative distribu-
tion and α > 0 denotes the shape parameter. In the pro-
posed model, so-called the exponentiated Uniform (EU)
distribution, we assume that G(x) is the uniform(a,b) cdf.
Furthermore, deriving equation (1), we can easily obtain
the probability density function (pdf) of the exponentiated
class of distributions, given by

f (x) = αG(x)α−1g(x), (2)

where g(x) is the baseline pdfF.
The rest of this paper is organized as follows: First

we define the EU distribution, provide some special cases
and present some general properties such as the quan-
tile function, moments, mgf, mean deviations, Bonferroni
and Lorenz curves, entropy and maximum likelihood esti-
mation. After, we perform a simulation study. Lastly, an
application to real data is presented followed by conclu-
sions.

Exponentiated uniform distribution

Let X be a random variable which follows an
uniform distribution, with pdf and cdf given by
g(x) = (1)/(b − a) and G(x) = (x − a)/(b − a), res-
pectively, where −∞ < a < x < b < ∞. The EU density
function is defined from (2) by taking g(x) and G(x) to be
the pdf and cdf of the uniform distribution, respectively.
Its pdf is given by

f (x) =
α

(b−a)α
(x−a)α−1 , (3)

where x ∈ [a,b] and α > 0 is a shape parameter.
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Based on equation (1), the cdf of the EU distribution
is given by

F(x) =
(

x−a
b−a

)α

. (4)

A random variable having the pdf, equation (3), is de-
noted by X ∼EU(α,a,b). For α = 1, we have the uniform
distribution with parameters (a,b). Moreover, if a = 0
and b = 1, we obtain the beta distribution with parame-
ters (α,1), which also corresponds to the Kumaraswamy
distribution with parameters (a,1). If a = 0, we have
the EUI(α,b) and if X ∼ EU(α,0,1) then − log(X) ∼
Exponential(a).

In the survival analysis context, using (3) and (4), the
survival function and hazard rate function (hrf) of the EU
distribution are given by

S(x) =
(b−a)α − (x−a)α

(b−a)α

and

h(x) =
α (x−a)α−1

(b−a)α − (x−a)α
,

respectively. Plots of the EU density, cumulative and
hazard functions for selected values of α are given in
Figure 1. Even though its simplicity, Figure 1(c) shows
that the EU distribution has a hrf that includes two types
of shape forms, i.e., increasing and bathtub, characteristics
that many simple models do not accommodate.

Quantile function and median

The pth percentile xp is defined by F(xp) = u. Using
(4), the quantile function (qf) can be expressed as

x = Q(u) = F−1(u) = (b−a)u
1
α +a. (5)

Quantiles of interest can be obtained from (5) by sub-
stituting appropriate values for u. In particular, the median
of X is obtained when u = 0.5 by

M =
(b−a)

2
1
α

+a.

We can also use (5) for simulating EU random vari-
ables by setting u as an uniform random variable on the
unit interval (0,1).

Moments

We obtain the sth ordinary moment of the EU distribu-
tion using equation (2) as follows

µ
′
s = E(X s) = α

∫ b

a
xs g(x)G(x)α−1dx,

Figure 1 – Plots of the EU distribution with a = 0, b = 5
and different values of α: (a) pdf, (b) cdf and (c) hrf.

(a)

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

1
.2

x

f(
x
)

α=6.0
α=0.1
α=1.0

(b)

0 1 2 3 4 5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

x

F
(x

)

α=6.0
α=0.1
α=1.0

(c)

0 1 2 3 4 5

0
2

4
6

8

x

h
(x

)

α=6.0
α=0.1

Source: The Authors.

where G(x) and g(x) are the cdf and pdf of the uniform
distribution. Setting u = G(x), we obtain

µ
′
s = α

∫ 1

0

[
G−1(u)

]s
uα−1du,

where G−1(u) denotes the qf of the uniform distribution
which can be obtained from (5) when α = 1. So, the sth

moment of the EU distribution is given by

µ
′
s = α

∫ 1

0
[(b−a)u+a]s uα−1du. (6)

Using the binomial expansion in equation (6), we
obtain

µ
′
s = α

s

∑
k=0

(
s
k

)
as−k(b−a)k(k+α)−1. (7)
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The first and second moments, obtained from (7), are
given by

E(X) =
α b+a
α +1

(8)

and

E(X2) =
2a2 +2abα +b2α (α +1)

(α +1)(α +2)

respectively. Hence, the variance of the EU distribution
becomes

Var(X) =
α(b−a)2

(α +1)2(α +2)
.

Plots of mean and variance for some values of α and
b, considering a = 0 fixed are displayed in Figure 2.

Figure 2 – Plots of the (a) mean and (b) variance for the
EU distribution with a = 0 and different values of α and
b.
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Moment generating function

Using (2) we provide the formula for the mgf
M(t) = E(et X ) of X , where X ∼ EU(α,a,b), as
follows

M(t) = α

∫ b

a
etx g(x)G(x)α−1dx,

where G(x) and g(x) are the cdf and pdf of the uniform
distribution. Considering u = G(x) and computing the
integral, the mgf of X reduces to

M(t) =
−α eatΓ[α, t(a−b)]

[t(a−b)]α
,

where Γ(a,z) =
∫

∞

z ta−1e−tdt denotes the incomplete
gamma function.

Mean deviations

The amount of scatter in a population is evidently mea-
sured to some extent by the totality of deviations from
the mean and the median. If X follows the EU distribu-
tion, we can derive the mean deviations about the mean
µ ′1 = E(X) and about the median M from

δ1 =
∫ b

a
|x−µ

′
1| f (x)dx = 2 µ [F(µ)−1]+2T (µ) (9)

and

δ2 =
∫ b

a
|x−M| f (x)dx = 2T (M)−µ (10)

respectively, where T (z) =
∫ b

z x f (x)dx. The mean µ ′1 is
defined in (7) and the median M is calculated using equa-
tion (5) by taking u = 0.5. The expressions for the mean
deviations about the mean and median are given by

δ1 =
2αα+1(b−a)
(α +1)α+1

and

δ2 =
2a+α a(1+0.5

1
α )+α b(1−0.5

1
α )

α +1
,

respectively (see Appendix A.1).

Bonferroni and Lorenz curves

The Bonferroni and Lorenz curves have applications
not only in economics to study income and poverty, but
also in other fields like reliability, insurance, medicine and
demography. They are defined by

B(p) =
1

pE(X)

∫ q

a
x f (x)dx (11)

and

L(p) =
1

E(x)

∫ q

a
x f (x)dx,
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respectively, where q = Q(p) is given by (5) for a given
probability p. Therefore, the curves for X are given by
(see Appendix A.2)

B(p) =
α p

1
α +aα +a
α b+a

(12)

and

L(p) =
p
(

α p
1
α +aα +a

)
α b+a

.

Entropies

Two popular entropy measures are the Rényi (RÉNYI,
1961) and Shannon (SHANNON, 1951) entropies. The
Rényi entropy of a random variable with pdf f (·) is de-
fined as

IR(γ) =
1

1− γ
log
∫

∞

−∞

f γ(x)dx,

for γ > 0 and γ 6= 1. The Shannon entropy of a random
variable X is defined by E[− log f (X)]. It is the particular
case of the Rényi entropy when γ ↑ 1.

Using (3) we obtain for the EU distribution

∫
∞

−∞

f γ(x)dx =
∫ b

a

αγ

(b−a)αγ
(x−a)αγ−γ dx

=

[
αγ (b−a)1−γ

γ(α−1)+1

]
.

Therefore, the Rényi entropy of X is expressed by

IR(γ) =
γ logα− log(γ(α−1)+1)

1− γ
+ log(b−a). (13)

The Shannon entropy can be obtained by limiting γ ↑ 1
in (13). Using the pdf expressed in (3) we have

E [− log f (X)] = log(b−a)− log(α)+
α−1

α
.

Inference

Let Xi be a random variable following (3) with vector
θ = (α,a,b)> of parameters. Note that a and b parameters
are fixed according to the data set (minimum and maxi-
mum, usually), so only α will be estimated, i.e., θ = (α)>.
The log-likelihood l(θ) for the model parameter, consid-
ering a sample size of length n, is given by

l(θ) = n[log(α)−α log(b−a)]+(α−1)
n

∑
i=1

log(xi−a).

The score function for parameter α can be obtained
from the last eq. and is given by

Uα(θ) =
n
α
−n log(b−a)+

n

∑
i=1

log(xi−a). (14)

The maximum likelihood estimate (MLE) θ̂ of θ is
obtained by solving the nonlinear likelihood equation
Uα(θ) = 0. The MLE for α obtained from (14) is ex-
pressed by

α̂MLE =
1

log(b−a)−
n

∑
i=1

log(xi−a)
.

Considering a and b fixed, for interval estimations and
hypothesis tests of the model parameter α , we require the
unit observed information J(α) = {Lαα}. Under condi-
tions that are fulfilled for parameters in the interior of the
parameter space but not on the boundary, the asymptotic
distribution of

√
n(α̂ −α) is N(0, I(α)−1), where I(α)

is the unit expected information. Based on the the normal
N(0,J(α̂)−1) distribution, where J(α̂) is the observed
information matrix evaluated at α , we can construct ap-
proximate confidence intervals and confidence regions for
the parameter α , whose element is given

J11 =
∂

2 logL
∂α

2 =
−n
α2 .

Simulation

To perform the simulation study with the EU distri-
bution, we set U from (5) as an uniform random variable
on the unit interval (0,1). We simulate data from an EU,
α = 0.5,1,4,a = 0,b = 1, distribution and use three dif-
ferent sample sizes (n = 20, 50, 150, and 300). For each
sample size, we compute the MLEs of α . This process
was repeated 1,000 times and the average estimates (AE),
biases and the mean squared errors (MSEs) are computed.
The results are reported in Table 1. The required numerical
evaluations are implemented in R software through the
function optim.

Comparing the performance of the estimators in
Table 1, we can verify that the MSE values decrease for
all scenarios as the sample size increase, indicating a con-
sistence in the MSE.

Application

In this section we introduce a real data set in
order to illustrate the potentiality of the new distri-
bution, comparing its fit with some truncated models.
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Table 1 – AE, bias and MSEs based on 1,000 simulations
of the EU distribution for α = 0.5, 1 and 4, by fixing a= 0
and b = 1, for sample sizes n = 20,50,150 and 300.

α n AE Bias MSE

0.5 20 0.53 0.03 0.02
0.5 50 0.51 0.01 0.01
0.5 150 0.51 0.01 0.00
0.5 300 0.50 0.00 0.00

1 20 1.05 0.05 0.06
1 50 1.01 0.01 0.02
1 15 1.00 0.00 0.01
1 300 1.00 0.00 0.00

4 20 4.18 0.18 0.95
4 50 4.10 0.10 0.36
4 15 4.02 0.02 0.12
4 30 4.02 0.02 0.06

Source: The Authors.

The original data set regards on the scores of a basic statis-
tics subject, consisting in 216 students who attended this
course in the first and second semeters of 2017 and 2018
at a Sourthern Brazilian university. In this particular ap-
plication we considered only the final scores of approved
students (n = 109).

As these scores range between [6,10], the usual way
to fit this problem is to use truncated models. Let X a
random variable that follows a continuous distribution
with pdf f (x,θ) and cdf F(x,θ). An easy way to truncate
continuous models is taking

Tr(x,θ) =
g(x,)

F(b)−F(a)
, for a < X ≤ b,

where g(x,θ) = f (x,θ) when a < X ≤ b and zero,
otherwise. All already known distributions can be easily
truncated in the R software using the gamlss.tr package
(STASINOPOULOS; RIGBY, 2016). Further, they can be
fitted using the gamlss package.

The truncated distributions chosen here for compar-
isons are exponential (Exp), Weibull (Wei) and normal
(NO). All distributions were truncated in the a = 6 and
b = 10 break points and their pdf are given by (Gaussian
pdf is omitted)

Exp : f (x) =
1
µ

exp
[
− x

µ

]
and

Wei : f (x) =
σ xσ−1

µσ
exp
[
−
(

x
µ

)σ]
.

The estimation of the parameters of all fitted distribu-
tions are summarized in Table 2. Additionally, the values
of the Akaike Information Criterion (AIC) and Bayesian
Information Criterion (BIC) statistics are also presented
to compare the goodness-of-fit. All computational pro-
cedures for EU model were carried out using the optim
function in R. For the competitive models, the MLEs were
obtained using the packages mentioned before. The results
indicate that the EU model has the lowest AIC and BIC
(101.5 and 104.2, respectively) when confronted with all
the fitted distributions, and therefore it could be chosen as
the best model.

Table 2 – MLEs of models parameters, AIC and BIC
measures for the scores data.

Model Parameters AIC BIC
EU α̂ = 0.328 101.5 104.2
Wei µ̂ = 0.130, σ̂ = 0.487 240.2 245.6
Exp µ̂ = 1.363 239.5 242.2
NO µ̂ =−5.771, σ̂ = 4.296 242.9 248.3

Source: The Authors.

Figure 3 displays the estimated densities of the fitted
models presented on Table 2. Clearly, the EU distribution
provides a closer fit to the histogram than the other models.
Using some properties of the EU model presented above,
we can conclude that: the average and variance of the score
of the approved students are E(X) = 6.98 and Var(X) =

1.27, respectively; the confidence interval of α parameter
is 0.328±0.062.

Figure 3 – Comparison of the fitted densities to the scores
data.
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Computational details

To help R users use the proposed model, all codes used
in this paper can be downloaded at R using the code

>source("https://git.io/fjinW")

After this step, the functions dEU(x, α,a,b) (density),
pEU(x,α,a,b) (cdf), qEU(x,α,a,b) and rEU(n,α,a,b)
(generate random samples) will be available. Note that
the notation of these functions are the same of the
others already implemented in R. We also provide the
mleEU(y,α = 1,a = 0,b = 1) function that can be used to
easily obtain the MLEs, standard error, confidence bound-
aries, and the AIC and BIC statistics. To exemplify, see
below an example about how to find the MLEs using a sim-
ulated random sample. This process was used to conduct
the simulation study.

>y=rEU(100, alpha=1,a=0,b=10)

>mleEU(y,a=0,b=10)

Conclusion

We introduced and studied the exponentiated uniform
(EU) distribution, which is indicated to fit variables with
limited support. Various properties of the distribution were
derived and investigated and a simulation study was con-
ducted. A real data set demonstrated that the EU model
can produce better fits than other usual models.

Appendices

Appendix A.1

Proof. The mean deviation about the mean (“δ1”) is
determined from (9). Replacing µ ′1 by (8) and the cdf by
(4), δ1 can be expressed by

δ1 = 2
(

α b+a
α +1

)[(
µ−a
b−a

)α

−1
]
+2T (µ).

Replacing µ again and after some algebra, we have

δ1 = 2
(α b+a)
(α +1)α+1 [α

α − (α +1)α ]+2T (µ). (15)

We can obtain T (µ) as

T (µ) =
∫ b

µ

x
α

(b−a)α
(x−a)α−1dx

= b− µ(µ−a)α

(b−a)α
+

(µ−a)α+1

(b−a)α (α +1)

− b−a
α +1

.

Replacing µ ′1 by (8) in the last equation, we have

T (µ) = b− (α b+a)αα

(α +1)α+1 +
αα+1 (b−a)
(α +1)α+1 −

b−a
α +1

.

Inserting the last eq. in equation (15) and after some
algebras the mean deviations about the mean can be ex-
pressed as

δ1 =
2αα+1(b−a)
(α +1)α+1 .

Proof. The mean deviations about median “M” deter-
mined from (10). Replacing µ ′1 by (8), δ2 can be expressed
by

δ2 = 2T (M)−
(

α b+a
α +1

)
. (16)

Calculating the integrate T (M) we have

T (M) =
∫ b

M
x

α

(b−a)α
(x−a)α−1dx

= b− M(M−a)α

(b−a)α
+

(M−a)α+1

(b−a)α(α +1)

− b−a
α +1

. (17)

Replacing M by the qf (5) and setting u = 0.5 in (17)
and after some algebra, we have

T (M)= b(1−0.5
1
α
+1)+a(0.5+0.5

1
α
+1)

+
(b−a)(0.51+ 1

α −1)
α +1

. (18)

Inserting (18) in (16) and after some algebra, the mean
deviations about the mean can be expressed as

δ2 =
2a+α a(1+0.5

1
α )+α b(1−0.5

1
α )

α +1
.

Appendix A.2

Proof. The Bonferroni curve is determined from (11).
Replacing E(X) by (8), the Bonferroni curve can be ex-
pressed by

B(p) =
(α +1)

p(α b+a)

∫ q

a
x

α

(b−a)α
(x−a)α−1dx.
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By integration, we have

∫ q

a
x

α

(b−a)α
(x−a)α−1dx =

q(q−a)α

(b−a)α
− (q−a)α+1

(b−a)α(α +1)
. (19)

Replacing the qf (5) in (19), we have

∫ q

a
x

α

(b−a)α
(x−a)α−1dx =

p(α p
1
α +aα +a)
α +1

. (20)

Applying (20) in (19) and after some algebra, the Bon-
ferroni curve can be expressed as

B(p) =
α p

1
α +aα +a
α b+a

.

Proof. Similar to the Bonferroni curve, the Lorenz
curve defined in equation (11) can be expressed, replacing
E(X) by (8), by

L(p) =
(α +1)
(α b+a)

∫ q

a
x

α

(b−a)α
(x−a)α−1dx. (21)

Using the integral in (20) and applying in (21), the
Lorenz curve can be written as

L(p) =
p
(

α p
1
α +aα +a

)
α b+a

.
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