
ORIGINAL ARTICLE
DOI: 10.5433/1679-0375.2019v40n2p123

Low storage explicit Runge-Kutta method

Método explícito de Runge-Kutta de baixo armazenamento

Diomar Cesar Lobão1

Abstract
This paper we are dealing with the high order accurate low storage explicit Runge Kutta (LSERK) methods
which mainly are used for temporal discretization and are stable regardless of its accuracy. The main objective
of this paper is to compare traditional RK with different forms of LSERK methods. The numerical experiments
indicate that such methods are highly accurate and effective for numerical purposes. It’s also shown the
CPU time consuming and its solution implications. The method is well suited to achieve high order accurate
solution for the scalar second order IVP (Initial Value Problem) problem as it is discussed in the present
paper.

Keywords: LSERK. Explicit method. Runge-Kutta. System of ODE.

Resumo
Neste artigo estamos tratando dos métodos explícitos Runge Kutta (LSERK) de alta ordem e baixo armaze-
namento, que são usados principalmente para a discretização temporal e são estáveis independentemente
de sua precisão. O principal objetivo deste trabalho é comparar o RK tradicional com diferentes formas de
métodos LSERK. Os experimentos numéricos indicam que tais métodos são altamente precisos e eficazes
para propósitos numéricos. Também é mostrado o tempo de CPU e suas implicações na solução. O método é
bem adequado para obter uma solução precisa de alta ordem para o problema escalar de segunda ordem do
problema de valor inicial (PVI), como é discutido no presente artigo.

Palavras-chave: LSERK. Método explícito. Runge-Kutta. Sistema de EDO.

1 Prof. Dr., Dept. Ciências Exatas, UFF/EEIMVR, Volta Redonda, RJ, Brasil; E-mail: lobaodiomarcesar@yahoo.ca
123

Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 2, p. 123-128, July/Dec. 2019

Lobão, D. C.

Introduction

We understand that Runge-Kutta (RK) methods are
an important family of single step iterative methods for
approximating the solutions of ordinary differential equa-
tions (ODEs) through a series of intermediate stage com-
putation. In the method of lines for discretizing time de-
pendent partial differential equations (PDEs) it is mainly
used RK methods to discretize in time. Depending on the
PDE in study such procedure can result in a very large
system of ODEs. Regarding to the storage requirements
for standard RK methods it is known that it is proportional
to the number of stage computations. The other hand, low
storage explicit RK (LSERK) methods are a subclass of
RK methods whose storage requirements are independent
of the number of computations stages (BUTCHER, 1987).
Such characteristic allows increasing of the number of
stages without increasing storage allocation. Based on
this fact it is observed that as we increase the number
of stages the stability limit gets larger and allowing to
increase the time step size thus speeding up time to solu-
tion for solving ODEs and or PDEs (BUTCHER, 1987;
BUTCHER, 2003).

Our main objective for this paper is to study and ex-
plore the development of LSERK coefficients and its con-
version to the standard RK of fourth order. In the present
paper, we implement and teste fourth order LSERK
methods. We obtain the stability regions and the accuracy
conditions for the implemented methods and its time per-
formance. We also explored the efficiency of the LSERK
methods along with the classic fourth order RK method
using a simple second order linear and non-linear ODE.
It is shown how to construct a Butcher Tableau from
an LSERK Tableau of coefficients. Numerical calcula-
tions are done in order to compare methods and verify its
accuracy.

The remainder of this paper is divided into four
sections. The first section we provide a general review
of the RK methods. The second section we describe the
algorithm foundation of the methods. The third section
we discusse the stability regions for each method. Finally,
the application of these methods is considered in a simple
numerical example.

Runge-Kutta Methods

Let us consider the following initial value problem
(IVP), given by


dy
dt

= f (t,y)

y(t0) = y0

(1)

where f and y are vector functions. We are seeking the
numerical approximation of the solution y(t) of the IVP
over the time interval t ∈ [t0, tn]. The time interval is then
subdivided into n equally spaced subintervals in which
the integration is carried out. Such a choice of an equally
spaced point is not required for RK method. The approxi-
mation points are defined as

ti = t0 + idt, i = 0,1,2..,n (2)

with dt = (tn− t0), where dt is the time step size.
One step of a general, explicit RK method for numeri-

cally solving equation (1) is given by

Ki = f
(

tn−1 + cidt,yn−1 +dt ∑
i−1
j=1 ai jK j

)
yn = yn−1 +dt ∑

s
i=1 biKi,

(3)

where the variable s is the number of stages related to
each RK method. The coefficients ai j are the intermediate
weights at each RK stage, bi are the final stage weights,
and ci are the intermediate time levels. It is required the
following condition

ci =
s

∑
j=1

ai j. (4)

As we can see below the Table 1 shows the general,
explicit Butcher Tableau for equations (3) (BUTCHER,
1987), which cover various RK methods. One of the most
well known RK methods is a fourth order, four stage
method, referred to as RK4.

Table 1 – Butcher Tableau for equations (3).

c1 0
... a21

. . .
...

...
cs as1 . . . ass−1 0

b1 bs

Source: The author.

The Tableau for RK4 is given in Table 2.

Table 2 – Explicit Butcher Tableau for RK4
0

1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6
Source: The author.

124
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 2, p. 123-128, July/Dec. 2019

Low storage explicit Runge-Kutta method

In order to solve equation (1) it is need to evaluate the
right-hand side function, given by f , four different times
when using RK4. It also stores a total of five different
variables, one for each iteration of RK4. In the case of
LSERK methods which are a specific class of RK methods,
it requires fewer storage registers allocations. As described
in (WILLIAMSON, 1980) who showed that some RK
schemes can be implemented in a 2N-storage format,
where N is the dimension of the ODE. This format re-
quires only two registers of length n to implement. One
step of the general s-stage 2N LSERK method is given as
follow

U i
1 = yn

V i+1
2 = AiV i

2 +dt f
(
tn + cidt,U i

1
)
, i = 1, ..,s

U i+1
1 =U i

1 +BiV i
2, i = 1, ..,s

yn+1 =U s
1

(5)

As we can see the equation (5) shows only two
variables, and which are required in order to implement the
LSERK method. This algorithm gives an implementation
of this LSERK method as described by (KETCHESON,
2010). The calculation to determine the LSERK coeffi-
cients is done via the definition of the relationship between
the Butcher coefficients and the LSERK coefficients
making use of the following relations (WILLIAMSON,
1980){

B j = a j+1, j for j 6= n; j = 1, ...,s−1
Bs = bs

(6)

A j =


b j−1−B j

b j
if j 6= 1 and b j 6= 0

a j+1, j−1− c j

B j
if j 6= 1 and b j = 0

(7)

for j = 2, ...,s and A1 = 0.
In Matlab R© language the following code fragment

implements these relations

for j = 1 : (s−1)

B(1, j) = a(j+1, j);

end
B(1,s) = b(1,s);

for i = 1 : s

for j = 2 : s

if b(1, j) ∼= 0

A(j) = (b(1, j−1)−B(1, j−1))/b(1, j);

elseif i == j+1

A(j) = (a(i, j−1)− c(j))/B(1, j);

end
end

end

We note that the relations given in equations (6) and (7)
provides a relationship between the Butcher and LSERK
coefficients, however such relations do not show that all
RK methods have a low storage implementation. Those
relations are used to build an algorithm which can trans-
form a LSERK coefficient array into a Butcher Tableau
(CARPENTER; KENNEDY, 1994).

Stability Regions

Let us consider an ODE method applied to the model
problem defined as (BUTCHER, 2003)

dy
dt

= λy

y(0) = y0.
(8)

The region of stability of the ODE method is a region
in the complex plane ℜ, such that dtλ in ℜ so y(t)→ 0
as t→ ∞ for all initial values given by y0 . The absolute
stability region can be said as a property of the ODE
method. As we numerically solve the ODE it is important
to know the absolute stability region for the method which
turns out to be useful for estimating the time step size
required to achieve a qualitatively correct solution. Picking
the RK of first up to fourth order and applying to the model
equation given by equation (8), the resulting difference
equations are written as

RK1→ yk+1 = (1+dtλ)yk

RK2→ yk+1 =

(
1+dtλ +

(dtλ)2

2!

)
yk

RK3→ yk+1 =

(
1+dtλ +

(dtλ)2

2!
+

(dtλ)3

3!

)
yk

RK4→ yk+1 =

(
1+dtλ +

(dtλ)2

2!
+

(dtλ)3

3!
+

(dtλ)4

4!

)
yk.

(9)

Thus, the regions where are defined the absolute stabil-
ity for the standard RK methods are those regions defined
in the complex plane in such way that for RK4 it is given
by

RK4→
∣∣∣∣1+ z+

z2

2!
+

z3

3!
+

z4

4!

∣∣∣∣< 1. (10)

We use the following methods throughout this
paper. The first method is a low storage LSERK(5,
4), where 5 means the number of stages e 4
means the order, proposed by (CARPENTER;
KENNEDY, 1994). The second method is a low
storage LSERK(7, 4), by (ALLANPALLI, et al, 2009).

125
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 2, p. 123-128, July/Dec. 2019

Lobão, D. C.

The third method is a low storage LSERK(13, 4), by
(NIEGEMANN; DIEHL; BUSCH, 2012). The last
method is the classical RK(4,4). Tables 3, 4 and 5 show
all of the coefficients for each method.

Table 3 – Coefficients for LSERK(5,4)

s A B

1 0
1432997174477
9575080441755

2 − 567301805773
1357537059087

5161836677717
13612068292357

3 −2404267990393
2016746695238

1720146321549
2090206949498

4 −3550918686646
2091501179385

3134564353537
4481467310338

5 −1275806237668
842570457699

2277821191437
14882151754819

Source: The author.

Table 4 – Coefficients for LSERK(7,4)

s A B

1 0 0.117322146869

2 −0.647900745934 0.503270262127

3 −2.704760863204 0.233663281658

4 −0.460080550118 0.283419634625

5 −0.500581787785 0.540367414023

6 −1.906532255913 0.371499414620

7 −1.450000000000 0.136670099385

Source: The author.

Table 5 – Coefficients for LSERK(13,4)

s A B

1 0 0.0271990297818803

2 −0.6160178650170565 0.1772488819905108

3 −0.4449487060774118 0.0378528418949694

4 −1.0952033345276178 0.6086431830142991

5 −1.2256030785959187 0.2154313974316100

6 −0.2740182222332805 0.2066152563885843

7 −0.0411952089052647 0.0415864076069797

8 −0.1797084899153560 0.0219891884310925

9 −1.1771530652064288 0.9893081222650993

10 −0.4078831463120878 0.0063199019859826

11 −0.8295636426191777 0.3749640721105318

12 −4.7895970584252288 1.6080235151003195

13 −0.6606671432964504 0.0961209123818189

Source: The author.

Making use of the relations given by equations (4), (6)
and (7) the ai, j,b j,ci coefficients and stability regions are
calculated, Figure 1.

Figure 1 – Stability Regions for LSERK and RK4.

Source: The author.

We can observe in Figure 1 that the region where each
method will remain stable if their respective z values are
within the boundary. If z is outside of the boundary, the
solution is not stable. We also can notice from Figure 1
that RK4 includes a small portion of imaginary axis. How-
ever, the LSERK(13,4) includes a much larger stability
region.

Using LSERK and RK4 to solve a ODE

Let us consider the linear IVP



dy
dt

= z

dz
dt

=−4y

y(0) = 0

z(0) = 1.0

(11)

The exact solution can be obtained and is given as
y(t) = 0.5sin(2t).

We can compute the numerical solution of this
ODE from the initial condition, t0 = 0 to a final
time tn = 1.0. All algorithms LSERK and RK4 are
used to solve the above ODE. The code is writ-
ten in Matlab R© language and all are vectorized.
In order to compare the methods, we define the absolute
error as follow

Error= log(|(Method)yi− (Exact)yi|)max . (12)

126
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 2, p. 123-128, July/Dec. 2019

Low storage explicit Runge-Kutta method

The maximum error for different n is shown in
Figure 2 as follow.

Figure 2 – Maximum error, linear OD.

Source: The author.

Observing the Figure 2 as expected the maximum ab-
solute error is due the RK4 method, and the better nu-
merical solution is obtained by LSERR(13,4) com 13
stages.

The second equation is a second order non-linear ODE,
writing in system form



dy
dt

= z

dz
dt

= tcos(t)

y(0) = 0

z(0) = 1.0

(13)

The exact solution is obtained and is given as
y(t) = 2sin(t)− tcos(t).

The maximum error for different n is shown in Figure
3 as follow.

We can observe from Figure 3 that in a complete
different behavior the maximum absolute error is due the
LSERK(13,4) and the minimum error are to LSERK(5,4)
followed by RK4.

Using the linear equation the time simulation is done
consi-dering a sequence of time steps as defined by the set

n = 5001500500011000160002200030000. (14)

Figure 4 shows the average of 5 simulations in order
to decrease the variations caused by the operation system
tasks shared by the CPU when running the code. The
hardware we used is a Dell Inspiron Serie 3000, Intel R©

CoreTM, 4GB RAM and HD of 0.5TB.

Figure 3 – Maximum error, non-linear ODE.

Source: The author.

We also show in Figure 4 the execution time for the
simulation using different methods.

Figure 4 – Execution time.

Source: The author.

The best result, which is provided by the LSERK(13,4)
is the most time consuming and it is related to the 13 stages
performed by the algorithm (5) during the numerical solu-
tion. The computational time consuming cost of a LSRK
or RK4 method is related to the number of times f must be
called. Such issue is especially true for high dimensional
ODEs such as those from the discretization of PDEs.

In order to discuss this time consuming cost, the opera-
tion count (number of f evaluations) for all set value for n

was about 2494000 calls (comes from the profile Matlab R©

command). So, in order to use a larger time step, it is
required to decrease the number of times the code calls f ,
which in consequence will reduce the computational time
consuming cost of solving the problem in study. Consider
what the potential savings for this present problem are.
Taking the number of time steps as for example, n = 1000,
we can show, Table 6, the following results

127
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 2, p. 123-128, July/Dec. 2019

Lobão, D. C.

Table 6 – LSERK and RK4 costs.

LSERK LSERK LSERK RK4
(5,4) (7,4) (13,4)

Calls f 5000 7000 13000 4000
Memoy (Mb) 16.0 16.5 17.0 15.8

Time (s) 0.6 0.8 1.4 0.4

Source: The author.

We can see in Table 6 the costs (Calls, memory and
time) involved in the numerical simulation.

In the present case to numerically solve the second
order ODE given by equation (11) it must be split in
a system of two first orders ODE in order to apply the
methods. Observing when a bigger system is intended to
be solved the required storage for RK4 needed by equation
(3) will be largely increased. This does not happen with
the algorithm given by equation (5), such savings is one
reason why any low storage methods are an attractive
alternative to the standard RK4 method.

Conclusion

We know that the low-storage Runge-Kutta methods
were designed for integration of general nonlinear or time
variant systems, which is efficient in the use of the mem-
ory storage. In the present paper we carried out the im-
plementation of three LSERK methods with low storage
requirements, the properties of them are discussed under
the computational view point and compared with the stan-
dard RK4 method. We also observed that: LSERK(13,4)
admit two storage registers for its implementation, while
requiring significantly more execution time is still a bet-
ter choice for linear ODE. Although the general LSERK
method consumes longer computational time, more than
the forth order classical Runge-Kutta method, its accuracy
pays off.

References

ALLANPALLI, V.; HIXON, R.; NALLASAMY, M.;
SAWYER, S. D. High-accuracy large-step explicit
Runge–Kutta (HALE-RK) schemes for computational
aeroacoustics. Journal of Computational Physics, Orlando,
v. 228, p. 3837–3850, 2009.

BUTCHER J. C. The Numerical analysis of ordinary

differential equations: Runge-Kutta and general linear
methods. New York: Wiley-Interscience, 1987.

BUTCHER J. C. The numerical analysis of ordinary dif-

ferential equations. Chichester: John Wiley Sons, 2003.

CARPENTER, M. H.; KENNEDY C. A. Fourth-order
2N-storage Runge-Kutta schemes. NASA Technical

Memorandum, Hampton, n. 109112, 1994.

KETCHESON, D. I. Runge-kutta methods with mini-
mum storage implementations. Journal of Computational

Physics, Orlando, v. 229, n. 5, p. 1763 – 1773, 2010.

NIEGEMANN, J.; DIEHL, R.; BUSCH, K. Efficient
low-storage Runge–Kutta schemes with optimized stabil-
ity regions. Journal of Computational Physics, Orlando,
v. 231, p. 364–372, 2012.

WILLIAMSON, J. H. Low-storage Runge-Kutta schemes.
Journal of Computational Physics, Orlando, v. 35, n. 1,
p. 48–56, 1980.

Received: May 17, 2019
Accepted: Aug. 17, 2019

128
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 40, n. 2, p. 123-128, July/Dec. 2019

	 Abstract , [-0.3cm] 0.910.5pt -0.5cm
	 Resumo , [-0.3cm] 0.910.5pt -0.5cm
	

