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Abstract
In this work, numerical solutions of the two-dimensional Navier-Stokes and Euler equations using explicit
MacCormack method on multi-block structured mesh are presented for steady state and unsteady state
compressible fluid flows. The multi-block technique and generalized coordinate system are used to develop a
numerical solver which can be applied for a large range of compressible flow problems on complex geometries
without modifying the governing equations and numerical method. Besides that the numerical method is
based on a finite difference approach and the generalized coordinates introduced allow the application of the
boundary conditions easily. The subsonic flow over a backward facing step and supersonic flow over a curved
ramp are presented, and the results are compared with the experimental and numerical data.

Keywords: Navier-Stokes Equations. Generalized Coordinates. Multi-Block Structured Mesh. Explicit
MacCormack Method. Finite Difference Method.

Resumo
Neste trabalho, soluções numéricas das equações bidimensionais de Navier-Stokes e Euler utilizando o método
MacCormack em malha estruturada multi-block é apresentado para regime permanente e não permanente
de escoamentos de fluidos compressíveis. A técnica multi-bloco e o sistema de coordenadas generalizadas
são usados para desenvolver um solver que pode ser aplicado numa grande variedade de problemas de
escoamentos compressíveis em geometrias complexas sem modificar as equações governantes e o método
numérico. Além disso, o método numérico é baseado em diferenças finitas e as coordenadas generalizadas
introduzidas permitem a aplicação facilmente das condições de contorno. O escoamento subsônico sobre um
degrau descendente e o escoamento supersônico sobre uma rampa curva são apresentados e os resultados são
comparados com dados experimentais e numéricos das referências.
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Introduction

Computational Fluid Dynamics (CFD) has become
a powerful tool to analyze different problems that in-
volves compressible fluid flows, such as for applications
in the aerospace and defense industries. Currently, this
computational tool is used to solve numerically the com-
pressible Navier-Stokes equations, which are nonlinear
partial differential equations that describe the flow in ex-
ternal and internal domains (ANDERSON; TANNEHILL;
PLETCHER, 1984).

The main problem to obtain high accuracy in nume-
rical solutions for problems of compressible fluid flow
around complex geometries is the generation of mesh.
This is an important procedure for fluid flow solved by
numerical means because the generation of a quality mesh
is crucial to the accuracy of numerical solutions and also
convergence of the numerical methods.

As stated in (BAIRD; MCGUIRK, 1999) the deve-
lopment of a multi-block structured solver is quicker, has
greater memory efficiency and has better geometry confor-
mity than a single block code. The multi-block approach
allows geometry to be altered easily with only the changed
blocks requiring new mesh generation, reducing lead time
for predictions of evolving geometry. Following the lead
of (ZHANG; BLAISDELL; LYRINTZIS, 2004) other ap-
proach for the solution of the present problem is the use
of high-order compact schemes with a high-order filter on
multi-block domains. As discussed in (ALI et al., 2017)
the search for optimal blocking methods for generating
meshes suitable for flow simulations has been carried
out using an adjoint-based error analysis of the meshes
generated by these block topologies. It is found that, in
general, the medial axis-based approaches provide opti-
mal blocking and yields better accuracy in computing the
functional of interest. In (THAKUR; WRIGHT, 2004) the
authors make clear that the multiblock, non-orthogonal,
body-fitted grids for very complex geometries is a key
technique to enhancement of the solution for flow field in
complex engineering applications such as unsteady rotor-
stator interactions in turbulent, all-speed turbo-machinery
flows.

Several numerical methods are available for obtaining
numerical solution of the governing equations of fluid
dynamics, such as finite difference (FDM), finite element
(FEM), and finite volume methods (FVM). However, in
most engineering problems, numerical simulations of com-
pressible fluid flow usually are performed in domains of
complex geometries, where the finite difference methods
are difficult to use, especially due to the application of the

boundary conditions. Thus, the numerical grid generation,
based on elliptic equations are used in order to discretize
the domain. This make the grid lines to coincide with the
boundary of the domain becoming much easer apply the
boundary conditions (MALISKA, 1995; THOMPSON;
WARSI; MASTIN, 1985). Furthermore, this system al-
lows developing numerical codes that can be used to solve
a large number of different problems without modifying
the very core of the code (MALISKA, 1995; PULLIAM,
2005).

The usage of elliptic mesh generator with generalized
coordinates some times do not yield in a convenient mesh.
See below in figure 1 this specific situation. Around the
corners of this warehouse shown, the mesh lines form
a very distorted volumes which should be avoided. The
multi-block idea comes in order to divide the domain
in two meshes with a better quality of volumes close
to the corners, as can be seen in figure 2 (ALMEIDA,
2015). The multi-block structured meshes are used to
gives more control to refining the mesh locally and con-
sequently improve the mesh quality without increasing
the computational time and the memory requirements
excessively (MALISKA, 1995; THOMPSON; WARSI;
MASTIN, 1985; ERDOGAN, 2004).

Figure 1: Example of elliptic mesh generator with gene-
ralized coordinates.

Source: The authors.

In this work, numerical results are presented for tran-
sient and permanent compressible fluid flow in two-
dimensional geometries. The fully compressible Navier-
Stokes and Euler equations are solved using explicit Mac-
Cormack method (MACCORMACK, 1969) for subsonic
and supersonic flows. The classic second order finite dif-
ference when applied to the Navier-Stokes equation result
in solution which revels typical oscillation near the discon-
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Figure 2: Example of elliptic mesh generator with gene-
ralized coordinates and multi-block idea.

Source: The authors.

tinuity. The MacCormack (MACCORMACK, 1969) two
steps numerical method is established in order to yield
a better solution near the discontinuity even although do
not eliminate such oscillations but attenuates them. So,
the main advantage in use the two steps MacCormack
method is in the easiness to implement it even with the
multi-block domain discretization. The numerical solu-
tions of two-dimensional subsonic laminar flow over a
backward facing step and supersonic laminar flow over a
curved ramp are compared with the results reported in the
literature.

Governing Equations

The two-dimensional compressible Navier-Stokes
equations in generalized coordinates system (ξ ,η) with-
out body forces, mass diffusion, finite-rate chemical re-
actions, or external heat addition can be written in nondi-
mensional conservative law form as (ANDERSON; TAN-
NEHILL; PLETCHER, 1984)

∂ Q̂
∂ t

+
∂ (Êinv−Êvis)

∂ξ
+

∂ (F̂inv− F̂vis)

∂η
= 0, (1)

where Q̂ is the state vector of conservative variables de-
fined by

Q̂ =


ρ

ρU

ρV

Et

 . (2)

Êinv and F̂inv are the inviscid flux vectors, and Êvis and
F̂vis are the viscous flux vectors in the ξ and η directions,
which are given below

Êinv = J−1


ρU

ρuU +ξx p

ρvU +ξy p

(Et + p)U

 , (3)

F̂inv = J−1


ρV

ρuV +ηx p

ρvV +ηy p

(Et + p)V

 , (4)

Êvis = J−1


0

Re−1(ξxτxx +ξyτxy)

Re−1(ξxτxy +ξyτyy)

Re−1(ξxβx +ξyβy)

 , (5)

F̂vis = J−1


0

Re−1(ηxτxx +ηyτxy)

Re−1(ηxτxy +ηyτyy)

Re−1(ηxβx +ηyβy)

 , (6)

where J is the Jacobian of the transformation, ρ is the
density, u and v are the velocity components in the ξ and
η coordinate directions, U and V are the contravariant
velocities, Et is total energy per unit of volume, ξx, ξy,
ηx and ηy are the metrics of transformation, βx = τxxu+

τxyv and βy = τxyu+ τyyv, p is the static pressure and τ

describes the stress components for viscous flow.
The Navier-Stokes equations are based on the univer-

sal law of conservation of mass, conservation of momen-
tum and conservation of energy. However, to complete
this system of equations is necessary to add an equation of
state that can be written as (ANDERSON; TANNEHILL;
PLETCHER, 1984)

p = (γ−1)
(

Et −
1
2

ρ(u2 + v2)
)
, (7)

in which the fluid is considered a perfect gas. In the above
equation (7), γ denotes the ratio of the specific heats.
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The dimensionless of the variables is performed to
eliminate the scale problems and are dimensionless as fol-
lows (ANDERSON; TANNEHILL; PLETCHER, 1984),

t∗ =
tu∞

l∞
, (8)

ρ
∗ =

ρ

ρ∞

, (9)

u∗ =
u

u∞

, (10)

v∗ =
v

u∞

, (11)

p∗ =
p

ρ∞u2
∞

, (12)

E∗t =
Et

ρ∞u2
∞

. (13)

In these expressions as described before, the sub indexes
∞ refers to the free stream flow and the upper index ∗
refers to the dimensionless variables (one could use stag-
nation state in place of free stream). For simplicity the
development of the govern equations, the upper index ∗
will be discarded, because such equations are invariant
to these transformations (ANDERSON; TANNEHILL;
PLETCHER, 1984).

The Reynolds number and Mach number are defined
as Re = ρ∞u∞l0

µ∞
and M = u∞

a∞
, respectively, where a∞ is

the speed of sound of an ideal gas, l0 is a characteristic
length of the domain, and µ is the coefficient of dynamic
viscosity. The free-stream conditions are denoted by the
infinite symbol.

The compressible Euler equations describe the inviscid
compressible flow. This system of equations can be ob-
tained by neglecting the viscous terms from the equation
(1).

Numerical Method

The MacCormack method (MACCORMACK, 1969)
is used for solving the governing equations as given
by equation (1). The numerical method is an explicit
predictor-corrector scheme based on a finite difference

formulation that has been used for compressible flow, and
it has second-order of accuracy in both space and time.

When the method is applied to the two-dimensional
compressible Navier-Stokes equations given by (1), it can
be written as (ANDERSON; TANNEHILL; PLETCHER,
1984; MACCORMACK, 1969)

Predictor:

Q̂n+1
i, j = Q̂n

i, j− ∆t
∆ξ

[
(Ê)n

i+1, j− (Ê)n
i, j

]
− ∆t

∆η

[
(F̂)n

i, j+1− (F̂)n
i, j

]
,

(14)

Corrector:

Q̂n+1
i, j = 1

2

[
Q̂n

i, j + Q̂n+1
i, j − ∆t

∆ξ

(
(Ê)n+1

i, j − (Ê)n+1
i−1, j

)
− ∆t

∆η

(
(F̂)n+1

i, j − (F̂)n+1
i, j−1)

)]
,

(15)

where Ê = Êinv−Êvis and F̂ = F̂inv− F̂vis. The explicit
MacCormack method requires the predictor be calculated
first to n = 0 (initial conditions), so the primitive variables
are obtained from the Q̂n+1

vector by (14). Then the cor-
rector step is finally calculated for the state vector given by
Q̂n+1

in (15). So the entire process goes on to n = 1,2, . . . .
As stated by Roe (ROE, 1981) any flow which goes

through Mach 1.0, the classical numerical methods (Finite
Difference/Finite Volume) present physical discontinu-
ities, so needs special numerical treatment. In the present
work the flow is much greater than Mach 1.0, well de-
veloped supersonic flow. In this case the MacCormack
method does not require such special treatment. Note that
MacCormick method does not carry any special treatment
for the convective terms (inviscid) or any other terms in
the formulation, it is a very naive method.

In this work, the boundary conditions are defined as
follows: inflow, outflow and lower and upper solid wall.
The inflow condition, all variables are prescribed as Dirich-
let boundary conditions in supersonic regime. For outflow
condition, with subsonic flow, the value of the static pres-
sure p is prescribed as Dirichlet boundary conditions and
all other variables are extrapolated, but if the flow is super-
sonic, all other variables are extrapolated. The solid wall
condition are represented by non-slip boundary condition
u = 0 for viscous flow and free-slip boundary condition
U · n = 0 for inviscid flow, where in the last case the
velocity components are calculated through of the con-
travariant velocity components. However, in both cases all
other variables are extrapolated.
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Boundary Conditions

The Dirichlet boundary condition is one of the easiest
to use and implemented computationally. For the compu-
tational codes in compressible fluid flow, they can be of
the type:
• (Inlet): It is the region where the injection of fluid

occurs in the domain, where all properties are provided.
• (Outlet): It is the region that represents the output

of the fluid in the domain. The boundary conditions are
approximated by extrapolation as follows:

ρi, j =
4ρi−1, j−ρi−2, j

3
, (16)

ui, j =
4ui−1, j−ui−2, j

3
, (17)

vi, j =
4vi−1, j− vi−2, j

3
, (18)

pi, j =
4pi−1, j− pi−2, j

3
. (19)

With this, one can determine the total energy:

(Et)i, j =
pi, j

(γ−1)
+

1
2

ρi, j(v2
i, j +u2

i, j). (20)

• (Opening): These boundary conditions allow the
fluid flow from inside towards the outside the domain,
depending only on the flow conditions. The boundary
conditions can be determined according to the following
expressions:

ρi, j =
4ρi, j−1−ρi, j−2

3
, (21)

ui, j =
4ui, j−1−ui, j−2

3
, (22)

vi, j =
4vi, j−1− vi, j−2

3
, (23)

pi, j =
4pi, j−1− pi, j−2

3
, (24)

or by,

ρi, j =
4ρi, j+1−ρi, j+2

3
, (25)

ui, j =
4ui, j+1−ui, j+2

3
, (26)

vi, j =
4vi, j+1− vi, j+2

3
, (27)

pi, j =
4pi, j+1− pi, j+2

3
. (28)

With this, the internal energy can be determined according
to equation (20).

• (Solid Wall ): Represents the solid boundary con-
ditions of viscous and non-viscous flow. For density,
pressure and energy, the boundary conditions can be de-
termined according to the conditions of type Opening.
However, the application of the boundary conditions to
the velocity is different, being classified as Free-Slip for
non-viscous flow and No-Slip for viscous flow.

For the boundary condition of type Free-Slip, the velo-
city on the wall is not zero and can be determined by the
following relationships.

1. Contravariant Velocity V :

|ηx| ≥ |ηy| ⇒

{
v = (4vi, j+1− vi, j+2)/3
u =−ηyv/ηx

, (29)

|ηx|< |ηy| ⇒

{
u = (4ui, j+1−ui, j+2)/3
v =−ηxu/ηy

, (30)

or by,

|ηx| ≥ |ηy| ⇒

{
v = (4vi, j−1− vi, j−2)/3
u =−ηyv/ηx

, (31)

|ηx|< |ηy| ⇒

{
u = (4ui, j−1−ui, j−2)/3
v =−ηxu/ηy

. (32)
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2. Contravariant Velocity U :

|ξx| ≥ |ξy| ⇒

{
v = (4vi−1, j− vi−2, j)/3
u =−ξyv/ξx

, (33)

|ξx|< |ξy| ⇒

{
u = (4ui−1, j−ui−2, j)/3
v =−ξxu/ξy

, (34)

or by,

|ξx| ≥ |ξy| ⇒

{
v = (4vi+1, j− vi+2, j)/3
u =−ξyv/ξx

, (35)

|ξx|< |ξy| ⇒

{
u = (4ui+1, j−ui+2, j)/3
v =−ξxu/ξy

. (36)

In the case of No-Slip boundary condition, the velocity
on the wall is zero according to the boundary layer concept
of the viscous flow.

The implementation of the multi-block solver is reali-
zed dividing the domain into subdomains (blocks), where
the mesh of each block is generated separately. The go-
verning equations are solved in each block independently,
but as the interfaces of each one are connected properly,
the communication with each other are realized and, there-
fore, the physics of the problem is conserved (MALISKA,
1995; ERDOGAN, 2004).

Block Interface

A multi-block structured mesh with two blocks is used
to clarify the block interface boundary condition treatment,
as shown partially in figure 3. The first block, which is in
red, is where the fluid enters. The second block, which is
in blue, is where the fluid from block 1 becomes its inlet.
The mesh of each block has 60×50 nodes.

Figure 3: View at the interface of two blocks.

BLOCK 1 BLOCK 2

Source: The authors.

For the treatment of the boundary between blocks 1
and 2, it is observed that they are physically coincident.
For the exchange of information between the blocks, the
multi-block structured mesh is coincident at the boundary.

At the boundary between the blocks, the boundary of
block 1 is considered as an outflow boundary condition,
since the fluid leaves this block. In block 2, the boundary
is the inlet of the fluid exiting block 1, being considered
an inlet boundary condition. As can be seen in figure 4,
the values of the input variables of block 2 are equal to
the values of the output variables of block 1.

Figure 4: View of boundary interface connection.

Source: The authors.

Analyzing the figure 4, it is observed that the vector
of conserved variables Q̂ is coincident at the boundary for
blocks 1 and 2, where

Q̂B1 = Q̂B2. (37)

In order to avoid a numerical discontinuity of the solution
at the boundary between the blocks, after each iteration
a numerical boundary condition is applied at this border,
where the values of the variables are determined through
the variables neighboring of such boundary.

This numerical condition is applied to the flow
variables according to the following expressions:

ρ̃i, j =
ρi−1, j +ρi+1, j

2
, (38)

ũi, j =
ui−1, j +ui+1, j

2
, (39)

ṽi, j =
vi−1, j + vi+1, j

2
, (40)

p̃i, j =
pi−1, j + pi+1, j

2
, (41)
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(Ẽt)i, j =
p̃i, j

(γ−1)
+

1
2

ρ̃i, j(ṽ2
i, j + ũ2

i, j). (42)

With the input and initial conditions and the boundary
conditions mentioned above, it is possible to obtain satis-
factory numerical results by implementing the MacCor-
mack original method (MACCORMACK, 1969) and the
use of multi-block structured mesh in the cases discussed
as follow.

The monitoring of the stability of the numerical
scheme is performed by observing the residue at all in-
ternal points of the discretized domain, according to the
equation below

residue = log10

[
M−1,N−1

∑
i, j=2,2

√√√√J2(Q̂n−1
i, j − Q̂n

i, j)
2

(M−2)(N−2)

]
. (43)

Among the conserved variables of Q̂, the one used
in the above equation for determining the residue is the
density ρ .

To keep the numerical scheme stable, the value of
the time integration step can be defined by the follow-
ing empirical formula in generalized coordinates (AN-
DERSON; TANNEHILL; PLETCHER, 1984; MACCOR-
MACK, 1969; PEYRET; TAYLOR, 1983)

∆t =
CFL

( 2ν

Re +CFx+CFy)
, (44)

where CFL is the Courant-Friedrichs-Lewy number. For
the explicit MacCormack scheme the CFL must be less
than or equal to 0.5. The values of CFx and CFy for the
above equation can be determined through the following
expressions:

CFx = |ξxu+ξyv|+
√

γ p
ρ

√
ξ 2

x +ξ 2
y , (45)

CFy = |ηxu+ηyv|+
√

γ p
ρ

√
η2

x +η2
y , (46)

where CFx and CFy are maximum values in the domain.

Numerical Results

The capabilities of the methodology adopted in this
work are demonstrated by numerical simulation over two
test cases.

Flow Over a Backward-facing Step

The first test is the well known subsonic flow over a
backward facing step that is often used as benchmark pro-
blem in computational fluid dynamics. The main feature of
this flow is that it has a simple geometry that generates an
interesting and complex flow field, such as flow separation,
reattachment zone and recirculation bubbles on the upper
and lower wall of the channel. These characteristics are
dependent on the Reynolds number and the geometrical
parameters (ARMALY et al., 1983; BISWAS; BREUER;
DURST, 2004; SALEEL; SHAIJA; JAYARAJ, 2013).

For the numerical simulations, the following initial
conditions are assumed: density ρ0 = 1.21kg/m3, pres-
sure p0 = 1.01× 105N/m2, coefficient of dynamic vis-
cosity µ = 1.81×10−5kg/(m.s), and ratio of the specific
heats γ = 1.4. The mesh used in the multi-block solution
of this problem is shown in figure 5. The block 1 (up-
stream block ) has a mesh size of 25×25 and the block 2
(downstream block ) has size of 160×50.

Figure 5: Mesh of two blocks of backward-facing step.

Source: The authors.

The figures 6 and 7 shows the velocity contours of the
steady state flow field for two different Reynolds number
(Re= 50 and 100) for expansion ratio H/h= 1.9423(≈ 2).
In all cases shown in figures, a vortex is found in the
concave corner behind the step and the maximum velocity
is located on the upstream side of the channel, as found
in the experiments performed by (ARMALY et al., 1983;
BISWAS; BREUER; DURST, 2004; SALEEL; SHAIJA;
JAYARAJ, 2013). It can also be seen that the size of the
recirculation region increases with increasing Reynolds
number.

The Table 1 describes the variation of reattachment
length (xr) for two different Reynolds numbers (Re = 50
and 100), which clearly shows that the reattachment length
increase with increasing Reynolds number, as found in
the references. In the second column are presented expe-
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rimental values obtained in (ARMALY et al., 1983), and
denoted by REF-1. The third column presents the results
obtained in this work, and denoted by Authors. The fourth
and fifth columns correspond to values obtained by nume-
rical simulations in (BISWAS; BREUER; DURST, 2004)
and (SALEEL; SHAIJA; JAYARAJ, 2013), and denoted
by REF-2 and REF-3 respectively.

Figure 6: Velocity contours for flow over a backward-
facing step with Re = 50.

Xr

Source: The authors.

Figure 7: Velocity contours for flow over a backward-
facing step with Re = 100.

Xr

Source: The authors.

Table 1: Comparation of the results for flow over a backward-
facing step.

Experimental xr Numerical xr
Re REF-1 Authors REF-2 REF-3
50 1.70 1.61 1.55 1.55
100 3.06 2.82 2.80 2.81

The results obtained by the present work are quite
compatible with results found in the references. As can
be clearly seen in figures 6 and 7 and Table 1, the results
are in agreement with the numerical data of (BISWAS;
BREUER; DURST, 2004; SALEEL; SHAIJA; JAYARAJ,
2013), especially with respect to the reattachment length.

Flow Over a Curved Ramp

The second test case is a transient supersonic flow over
a curved ramp at Mach number 1.5 that can be used as
benchmark problem for the supersonic Euler equations.
This flow is characterized by the formation of a detached

bow shock in front of the curved ramp and of an expan-
sion wave. Moreover, other feature is the wave shock
reflection from the solid wall (LOBAO, 2010; LOBAO,
1992; ALLEN, 1992).

For the numerical simulation, the initial conditions
are as follows: density ρ0 = 1.21kg/m3, pressure p0 =

1.01× 105N/m2, and ratio of the specific heats γ = 1.4.
The mesh for the multi-block solutions of this problem is
given in figure 8. The mesh sizes in the first and second
blocks are 110×80 and 60×80, respectively.

Figure 8: Mesh of two blocks of curved ramp.

Source: The authors.

The pressure and Mach number contour over a curved
ramp are shown in figures 9 and 10, respectively, for
Mach number 1.5. The detached bow shock in front of
the curved ramp can be seen in the figures as well as the
shock reflection from the solid wall. The figure 10 shows
the expansion wave, where is possible to observe the sub-
sonic, transonic and supersonic zones before of the curved
ramp. As can be observed in figures 9 and 10 there is
no spurious oscillation at the interface boundary between
the two blocks even in presence of a very strong shock
wave structure. The numerical interface boundary condi-
tion is well suited for this simulation which demonstrates
its applicability.

Figure 9: Pressure contour over a curved ramp.
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Figure 10: Mach number contour over a curved ramp.
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The present numerical results are compared with the
numerical data presented in (LOBAO, 2010). The two
results are in good agreement.

Conclusions

In this work, the discretization of the Navier-Stokes
and Euler equations on multi-block structured mesh is
realized using explicit MacCormack method. The numeri-
cal results for steady state and unsteady state compressible
fluid flow in two-dimensional geometries are presented
for two different test cases in subsonic and supersonic
regimes, the flow over a backward facing step and flow
over a curved ramp, respectively, which indicated good
agreement with the references data. Therefore, it is shown
the capability of the methodology to obtain numerical re-
sults for these types of subsonic and supersonic flows in
two-dimensional complex geometries.
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