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Swarm Interaction in 2D

Interacao de Multidao em 2D

Diomar Cesar Lobao!

Abstract

In the present work is described a simple minimal model set of ordinary differential system of equations for
simulating the swarming behavior of preys under action of predators. Preys and predators are represented by
a set of ODEs taking in account the Newtonian attraction-repulsion forces. The predators interacts with the
preys through a Newtonian force, which is a nonconservative force (includes friction) that acts in the same
direction for both agents. A perturbing force is introduced for the predators’ dynamics in order to simulate its
behavior among preys. The resulting system of ordinary differential equations is solved numerically by means
of Runge-Kutta of fourth order and the dynamics are discussed in the present work as the swarm’s ability
to realistically avoid the predator. The main goal is to reproduce swarm behavior that has been observed in
nature with the minimal and simple possible model of ODE system.

Keywords: Prey-Predator Swarm Interaction. Runge-Kutta 4 Order. Numerical Simulation. Dynamical
System.

Resumo

No presente trabalho € descrito um modelo simples minimo de equagdes diferenciais ordindrias para simular
o comportamento de enxames de presas sob acao de predadores. Presas e predadores sdo representados por
um conjunto de EDOs levando em conta as for¢as Newtonianas de repulsdo-atracio. Os predadores interagem
com as presas através de uma forga Newtoniana, que € uma forca ndo conservativa (inclui fric¢do) que atua na
mesma dire¢do para ambos os agentes. Uma forga perturbadora € introduzida para a dinamica dos predadores,
a fim de simular seu comportamento entre as presas. O sistema resultante de equacdes diferenciais ordindrias
é resolvido numericamente por meio de Runge-Kutta de quarta ordem e as dindmicas s@o discutidas no
presente trabalho como a capacidade do enxame de evitar realisticamente o predador. O objetivo principal
é reproduzir o comportamento do enxame que foi observado na natureza com o modelo minimo e simples
possivel de sistema EDOs.

Palavras-chave: Interacdo de Enxames Presa-Predador. Runge-Kutta 4 Ordem. Simula¢do Numérica. Dina-
mica de Sistemas.
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Introduction

In nature it is observed for a long time that animal
aggregation is part of the set of individuals behavior (PER-
RISH; EDELSTEIN-KESHET, 1999; MOUSSAD et al,
2009; VICSK et al., 1995; RONER; TU, 1998). In gen-
eral is observed fish schooling (shoaling), bird flocking,
mammal herding, insect/bacterial swarming, and human
crowding dynamics. It is also observed that even preda-
tors have been known to hunt in group in the form of
packs. It is well known that all these aggregations shares
similarities, such as the fact that the group of organisms
act in unison and reacting rapidly to obstacles or threats.
The generality of such features leads to realize models for
its simulation. In the present work, swarming will refer
to any such behavior in which individuals come together
and act in a reasonably coordinated manner to produce an
aggregate set in dynamical motion. Swarming has been
studied in an extensive manner by computer simulation
(REYNOLDS, 1987; OLFATI-SABER, 2006). In several
sources, the models are taken as individual-based, where
swarm individuals are represented as a set of individuals
that interact with other as a function of their positions
(TOPAZ; BERTOZZI, 2005; LETT; MIRABET, 2008).
The use of Newtonian force law and variations of it has
been a general approach for this dynamical system.

In these models, the designed forces consist of a long-
range attractive force that makes the individuals to ap-
proach and form the swarm typical geometry, coupled with
a short-range repulsive force so that they try do not collide
with each other (LIU et al, 2008; DUAN et al, 2005; GAZI;
PASSINO, 2004). A self-propulsive force that pushes each
individual forward toward some preferred velocity is also
often added (D’ORSOGNA et al, 2006), (NISHMURA;
IKEGANI, 1997; LEVINE et al, 2000). A model designed
to align the individuals with each other is present in flock-
ing simulation (LEE, 2006; INADA; KAWACHI, 2001).
All these models successfully reproduced main behavior
aspects of swarming. The well known predator behavior
called confusion (KRAUSE; RUXTON, 2002), which oc-
curs when the predator is confused related to which indi-
vidual to pursue is simulated in the present work. Predator
confusion acts mainly decreasing its ability to hunt their

prey.

Model

A simple but yet robust model is developed in order
to approach swarm dynamics. It is designed to represent

each prey by a particle that moves based on its interac-

D.C.

tions with other prey and its interaction with the predator.
There is a large material available out there about particle
models in biology science, mainly they have been de-
signed to model biological individuals aggregation in gen-
eral (MOGILNER; EDELSTEIN-KESHET, 1999) also lo-
custs (BERNOFF; TOPAZ, 2011) or fish schooling popu-
lations (ZHENG et al, 2005). The model is established
as following (CHEN; KOLOKOLNIKOV, 2014). It is as-
sumed that there are N preys whose positions are given by
P(xj,yj) € R%, j=1,2,..,N, N is the size of the individual
population whereas (x,y) are function of time . Taking
Newton’s law so that
d*P;  dP;
me +u o Fj prey—prey + Fj prey—predator

where Fj prey—prey + Fj prey— predator 1 the total force acting
on the j —th particle, u is the strength of friction force
and m is its mass. Simplification as the mass m is negligi-
ble compared with the friction force u is applied. After
rescaling to set = 1 the model is then simplified as

ap; _

dt Fj,prey—prey + Fj,preyfpredator-

This reduces the second-order ordinary differential sys-
tem model to a first-order model system, so that the prey
moves in the direction of the total force. The prey—prey

interaction is given following the form

1 1
Fj,prey—prey =% Z (2 —Cl> (Pj —Pk).
Nk:l,kyéj |Pj— Pl

P;—P,

The term =
range repulsion that acts in the direction from P; to P,

represents Newtonian-type of short-

whereas a(P; — P;) is a linear long-range attraction in the
same direction. The model for prey—predator interactions
can be established by a similar manner. In order to deal
with more realistic model assume that there is a single
predator, however is possible also consider two and/or
three predators in the present model. The predator posi-
tion is given as PZi(x,y,t), with i = 1,2, 3. It is considered
that the predator acts on the individual’s preys as a repul-
sive particle, it is taken as
Fj,preyfpredator = bw
|Pj — Pz; |2
with b being the strength of the repulsion. Following, the
model for the predator—prey interactions as an attractive

force given in a similar way such as,

dz;

dar Fj prey—prey-
In this case is considered a very simple scenario which
Fj prey—prey 18 the average over all predator—prey interac-

tions and each individual interaction is a power law, which
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Swarm Interaction in 2D

decays at large distances, as consequence the prey moves
in the direction of the average force. Once these assump-
tions are put together the following system of equations
can be written:

de _ 1yvN (Pj*Pk) . Pj*PZ,‘
= N Li=riri e — 4P —R) ) — b

dPz; LzN (Py—Pz;)
dt — N ~k=1|P—Pz|P

)]

As stated before, a is the linear long-range attraction
parameter, b is the predator repulsive parameter and ¢
is the predator-prey attraction control parameter, all are
positive constants. The system of ordinary differential
equations given by equation (1) is then solved numerically
by means of Runge-Kutta of fourth order, and it is need
to know the #;,; for initial time, the end simulation time
t.ng and the number of steps m. This model is also modi-
fied making use of a perturbation function added to the
predator in order to simulate its decision as the dynamical
system evolve in time. The equation (2) are proposed by
the author. It is chosen two perturbation functions which
are given by:

{0 =2 o
b) Fj per = €(cos(P;),sin(P)))

In equation (2a) and equation (2b) € = (0.3;0.2), A =
0.26. Such constants are arbitrary chosen and fitting each
desired simulation.

The present model also implements the density func-

tion and area for the swarm population.

Density

It is presented three models for density and the main
ideas are from (CHEN; KOLOKOLNIKOV, 2014; PELU-
PESSY et al., 2013). Here the Kernel functions as descri-
bed in (GARCIA MARQUEZ, 2014) with modification
proposed by the author which is added in present work as

follow:

M#1 p' =55 Tl s hre? b=

om) [A=E g ifA < R
wRRD B =L et L if B < B
M#3 p* = Y0 s Aslx — il

M#2 p? =

3
With A; = 1.76, ¥, = 1.0, A3 = 15.12, R| and R, are
described below.

Area

The predator in confused situation (KRAUSE; RUX-
TON, 2002) generates a ring in a steady state given by the

system equation (1), as shown in the figure 4. Following
the definition given in (CHEN; KOLOKOLNIKOV, 2014):

b 14+b
R1=\/7, RzZ\/i
a a

where R| and R, are the internal and external radius
defining the steady state annulus for z = 0. The steady state
occurs when the predator is at the centre of the swarm,
surrounded by the prey particles. In such a situation the
predator is trapped at the centre of the prey swarm while
the prey forms a concentric annulus where the repulsion
exerted by the predator cancels out leading to the symme-
try population distribution. So, the analytical area is then
calculated and compared with the area model given as:

Area="3 e Ti—xl? @)
k=1,k#j

Where Fs is scale factor in order to be able to carry on the
comparation with the analytical annulus area and y = 0.12.
Many theoretical and computational papers use a rou-
tine procedure based on a well-documented method. In
such cases, it is sufficient to name the particular variant
(referring to key papers in which the method has been
developed), to cite the computer program used, and to

indicate briefly any modifications made by the author.

Numerical Simulation

The numerical simulation is performed taking the fol-
lowing parameters as constant: p =2.4,a=1,b=0.5,
tini = 0.0, tong = 12.0, N = 400 (particles), m = 480 (time
steps). The first simulation is without perturbation func-
tion. The initial position conditions are generated by ran-
dom number scaled between 0 and 1, as shown in figures
1,5 and 9.

Figure 1: ¢=2.8, t=0.0s.

Runge-Kutta: Pradator Swarm Interactions
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Figure 2: ¢=2.8, t=2.0s.

Runge-Kutta: Predator Swarm Interactions

o?{;f .' _; :

(e,
By
R 430%33}"{?%"'&“"}%
> ; : :o%?o%oo PE3%%
o : ..%.Oo O;?Q
ooooé’%%f &
W0 Shesdees

WS N

1 05 0 x-S 15

Source The author.

Figure 3: ¢=0.8, r=8.0s.
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Figure 4: ¢=0.8, r=12.0s.
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In the figure 1 is depicted the initial distribution of the
400 individuals (black dots). Figure 2 shows an elapsed

time of 2.0s showing the natural repulsive presence of (the

Lobao, D.C.

red dot) the predator and the protective action of the preys
as the predator moves towards the population. In figure 3
the predator is surrounded by the prey and its movement
slow down leading to a confused situation as depicted
in figure 4 after 12.0s in these both case ¢ = 0.8. In this
stage the system becomes stable and the predator is kept
in confused position (CHEN; KOLOKOLNIKOV, 2014).

The following numerical simulation is performed
using the perturbation function given by equation (2a).
It is considered the model parameters as constant: p = 2.4,
a=1,b=0.5, ti; = 0.0, t,ng = 6.0, N = 400 (particles),
m = 480 (time steps).

Figure 5: ¢=2.8, t=0.0s.

Runge-Kutta: Pradator Swarm Interactions
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Figure 6: ¢=2.8, r=2.0s.

Runge-Kutta: Predator Swarm Interactions
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Source The author.

In the figure 5 is depicted the initial distribution of the
400 individuals. Figure 6 shows an elapsed time of 2.0s
showing the invasive movement of the predator towards
the preys its natural repulsive presence of (the red dot) as
the predator and the protective action of the preys forming

a circle leading the predator to a completed surrounded
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Figure 7: ¢=2.8, t=3.0s.

Runge-Kutta: Predator Swarm Interactions
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Figure 8: ¢=2.8, 1=6.0s.
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situation. In figure 7 the predator is already surrounded
by the preys and its attack movement is kept leading to a
final chasing as depicted in figure 8 after 6.0s ending up
to catch up. In this stage the system as propagated in time
tends to regroup the prey population.

The numerical simulation using the perturbation func-
tion given by equation (2b) is performed taking the para-
meters as used for equation (2a).

In the figure 9 is depicted the initial distribution of the
400 individuals. Figure 10 shows an elapsed time of 2.0s
showing the invasive movement of the predator towards
the preys population. In this case the perturbation function
simulates a more aggressive behavior of the predator lead-
ing it to an oscillating movement approaching the preys
faster than for the perturbation function given by equa-
tion (2a). Dynamically in real time processing is visible
the preys evasive actions as time evolves. In figure 11

the predator is already surrounded by the preys and its

Figure 9: ¢=2.8, t=0.0s.

Runge-Kutta: Pradator Swarm Interactions
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Figure 10: ¢=2.8, t=2.0s.

Runge-Kutta: Predator Swarm Interactions
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Figure 11: ¢=2.8, t=3.0s.

Runge-Kutta: Predator Swarm Interactions
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attack movement is continuous as depicted in figure 12
after 6.0s where the preys system becomes more unstable

due more aggressive predator behavior. Qualitatively the
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Figure 12: ¢=2.8, t=6.0s.

Runge- Kutta: Predator Swarm Interactions
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results shown here is in agreement with those of presented
by (CHEN; KOLOKOLNIKOV, 2014). In the figure 13
and figure 14 is shown the density and area calculation,
for the case with perturbation function, extending the final

time to 8.0s.

Figure 13: ¢=2.8, 1=8.0s.
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As defined by equation (3): M.#1 Density =
6781.499598. M .#2 Density = 6753.253767. M .#3 Den-
sity = 6770.577087. Analytical Total Area = 3.141593.
Numerical Total Area = 3.175787.

In the figures 15 and 16 are depicted the external and
internal boundaries making use of the Alpha Shape curve
algorithm as described by (EDELSBRUNNER, 1995).

The last two results depicted in figure 17 and 18 show
the situation where there are three predators acting on the
population. The dynamics of this case is quite interesting
because the predator action leads the preys to take fast
evasive movements producing intricate swarm patterns.

The same perturbation function is also used for all three
104

Figure 14: ¢=2.8, t=8.0s.
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Figure 15: ¢=2.8, 1=6.0s.
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Figure 16: ¢=2.8, 1=8.0s.
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predators as before. The time shown is 4.0s for this swarm

pattern.
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Figure 17: 3 predator and swarm.

Source The author.

Figure 18: Boundaries.
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Conclusion

The numerical simulation is well done even for this
large system of ordinary differential equations (806 equa-
tions), the RK-4 is robust enough to deal with it, since the
time step used is small enough to follow the predator-prey
engagement dynamics. One must care for this fact because
the predator dynamics is more sensitive to the time step
used as for preys’ dynamics. The present model is com-
pletely able to predict the swarm dynamics and through
these simulations became clear that the b and ¢ parame-
ter has deep influence in this dynamics system. Lower ¢
values (< 2.8) also acts in lower down the predator move-
ment towards the prey population. The adoption of the
perturbation function for the predator also revealed that
the function given by equation (2b) makes the predator to
move towards the preys in a irregular path. This causes

the prey population take a fast evasive movement always

keeping the safe population shape of protection which tray
to involve the predator in a confused position. But this
perturbation function leads the prey to change rapidly in
evasive movements. However, the perturbation function
given by equation (2a) implies a smooth path movement
for the predator leading to a stable prey response. So, the
equation (2b) seems to be more realistic even than for
three predators. The density models converge to a stable
value as the area calculation is in good agreement with the

prescribed analytical value.
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