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A numerical model based on the curvilinear coordinate system for the
MAC method simplified

Um modelo numérico baseado no sistema de coordenadas
curvilíneas para o método MAC simplificado
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Abstract
In this paper we developed a numerical methodology to study some incompressible fluid flows without free
surface, using the curvilinear coordinate system and whose edge geometry is constructed via parametrized
spline. First, we discussed the representation of the Navier-Stokes and continuity equations on the curvilinear
coordinate system, along with the auxiliary conditions. Then, we presented the numerical method – a
simplified version of MAC (Marker and Cell) method – along with the discretization of the governing
equations, which is carried out using the finite differences method and the implementation of the FOU
(First Order Upwind) scheme. Finally, we applied the numerical methodology to the parallel plates problem,
lid-driven cavity problem and atherosclerosis problem, and then we compare the results obtained with those
presented in the literature.

Keywords: Finite Differences. Simplified MAC. Curvilinear Coordinates. Parallel Plates. Did-Driven Cavity.
Atherosclerosis.

Resumo
Neste trabalho desenvolvemos uma metodologia numérica para estudar alguns fluxos de fluidos incompres-
síveis sem superfícies livres, usando o sistema de coordenadas curvilíneas e com a geometria do contorno
construída através de splines parametrizadas. Inicialmente discutimos a representação das equações de Navier-
Stokes e de continuidade no sistema de coordenadas curvilíneas, juntamente com as condições auxiliares. Em
seguida, apresentamos o método numérico - uma versão simplificada do método MAC (Marker and cell) -
juntamente com a discretização das equações governantes, que é realizada por meio do método de diferenças
finitas e da implementação do esquema FOU (First Order Upwind). Enfim, aplicamos a metodologia numérica
ao problema de placas paralelas, ao problema de cavidade com tampa móvel e ao problema de aterosclerose,
comparando os resultados obtidos com os apresentados na literatura.
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Introduction

In order to find numerical solutions to a differential
equations it is indispensable to approximate the equations
by a mathematical method that can be programmed in
the computers. There are some techniques used for this
purpose for example - finite differences (GRIEBEL et al.,
1998), finite element (JOHNSON, 1987) , finite volume
(LEVEQUE, 2002), SPH (Smoothed Particles Hydrody-
namics) (MONAGHAN, 2005), among others. We use
finite differences in this work.

In general, the geometry which represent the physi-
cal domain of the problems are irregular forms. That is
why we chose to study the curvilinear coordinate sys-
tem. This system allows to generate mesh that coincides
with the boundary of the domain in the applied problems
(ROMEIRO et al., 2011; PARDO et al., 2012; ROMEIRO
et al., 2017). In addition, we can to represent the differen-
tial equations, to be solved, in this system (THOMPSON
et al., 1985; MALISKA, 2013).

When the partial differential equations are considered
in the formulation of the mathematical model of a specific
problem it is important to know the terms that compose
these equations. The terms can be temporals, convectives,
diffusives and others. The proper way to discretize such
terms, respecting inherent physical of the problem, is ne-
cessary for the success of obtaining the numerical solution.
In particular, the development of approximate methods of
convective terms have been studied by many research in re-
cent years (FERREIRA et al., 2012). The accuracy of the
results obtained from the numerical solutions is directly in-
fluenced by the choice of convection scheme. The upwind

scheme can be used in this purpose. This approach is done
according with the sign of local convection speed. The up-

wind schemes are classified as first order or high order. In
the first category we can mention the FOU scheme (First

Order Upwinding) (COURANT et al., 1952), which is sta-
ble unconditionally and produces a diffusive character
which usually smooths the solution. Among the high-
order we can mention the SOU (Second Order Upwinding)
(PRICE et al., 1966), QUICK (Quadratic Upstream Inter-

polation for Convective Kinematics) (LEONARD,1979),
which contributing to increase the accuracy of the nume-
rical method, but introduce non-physical oscillations that
can compromise the convergence. Finally, the third-order
accurate upwind compact finite difference schemes, which
allowed to obtain accurate numerical results for the bench-
mark flow problems (SHAH et al., 2012).

In this work the objective is propose a versatile nume-
rical method to study some incompressible fluids flow

without surface free, in the curvilinear coordinate system,
using the upwind scheme FOU to approximate the con-
vective terms, with the board interpolated by parametrized
spline, which allows better simulate a greater amount of
complex problems. This numerical method is applied to
the study of three problems of incompressible fluid flows:
parallel plates problem, lid-driven cavity problem, and
atherosclerosis problem. In addition, the work shows that
our numerical methodology accurately reproduces the re-
sults observed in the literature of these three problems
studied.

Curvilinear governing equations

In many cases, when we want to get analytical solu-
tions to the problems under study, many simplifications are
necessary, and this can depart us of the reality. When our
goal is to study a certain physical phenomenon more realis-
tically, we need initially to model the physics problem.
As usually, the equations obtained in this modeling pro-
cess has no analytical solution, numerical methods are
then used to obtain the solution of the problem studied.
Since it isn’t possible to obtain numerical solutions on the
continuous region, as this involves infinite points, we first
discretize the domain, that is, divide it in points and only
in these is that we’ll find the solution of the problem. This
set of points is called mesh. It is important that they are
properly distributed so that the numerical solution repre-
sents satisfactorily the gradients of interest in the problem
studied.

Generally, problems of everyday life are not evaluated
in rectangular coordinates, because are represented by
irregular geometries. Then, the curvilinear coordinate sys-
tem it is more appropriate. Its main function is the repre-
sentation of complex geometries, in these cases the carte-
sian coordinate system leads to a poor fit of the border,
since the physical domain doesn’t match the domain mesh
(THOMPSON et al., 1985).

By means of a transformation (which may be numeric)
between the cartesian coordinate system (x,y) and the
curvilinear coordinate system (ξ ,η), it is possible to map
the domain written in the (x,y) system to other written
on a regular geometry (ξ ,η). The (x,y) system is termed
physical domain, while the (ξ ,η) is called computational
domain.

For example, in the two-dimensional case, the compu-
tational domain is taken in rectangular form, regardless of
the physical geometry, figures 1a and 1b. Thus, the physi-
cal domain is transformed so the computational domain is
always represented by a rectangle. For convenience it is as-
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Figure 1: Representation of the R region

(a) Physical domain

(b) Computational domain

Source: The authors.

sumed elementary volumes with unitary dimensions, i.e.,
∆ξ = ∆η = 1. So, as much as the coordinate lines take ar-
bitrary spacing on the physical plane, in the computational
dimensions are fixed.

The coordinates of an arbitrary point in the curvilinear
coordinate system (ξ ,η) are related with the cartesian
coordinate system (x,y) for transformation equations as
follows

ξ = ξ (x,y, t); η = η(x,y, t); τ = τ(t)

where τ = t, because we are not admitting mesh move-
ment. Therefore, the metric transformation are given by

∂ξ

∂x
= J

∂y
∂η

;
∂ξ

∂y
=−J

∂x
∂η

; (1)

∂η

∂x
=−J

∂y
∂ξ

;
∂η

∂y
= J

∂x
∂ξ

where

J =

(
∂x
∂ξ

∂y
∂η
− ∂x

∂η

∂y
∂ξ

)−1

(2)

is the jacobian of the transformation (THOMPSON et al.,
1985; MALISKA, 2013).

The metrics enabled mapping of the physical do-
main for the computational, implying in the perform of

the required geometric compensations. In this work we
build the mesh as detailed in (CIRILO; DE BORTOLI,
2006; SAITA et al. 2017) and the board was obtained via
the parametrized Spline method. Moreover, mathemati-
cal compensations is also carried out, by chain rule, in
the governing equations of the studied physical problem.
Therefore, the conformity between the computational
mesh and the governing equations allows adequately han-
dle the computational numerical simulation.

Figure 2: Cells

(a) Structure of the mesh and its nomenclature

(b) Pressure and
velocity storage

Source: The authors.

So we can solve the problems of interest. First, it is
need to label the points in the mesh such a way that calcu-
lations are performed correctly by the numerical method.
Considering figure 2, we have that the mesh is composed
by cells where the topological relationships are arranged
and labeled as the cardinal points. The labels P, E, W ,
N, S, NE, SE, NW , SW mean center, east, west, north,
south, northeast, southeast, northwest, southwest, respecti-
vely. The abbreviations in tiny, positioned on the sides, are
cardinal changes from the center of the cell labeled by P.

Assuming by hypothesis a laminar flow, newtonian,
isothermal and incompressible, in two-dimensional, with-
out the existence of the source terms, then the Navier-
Stokes equations described in the curvilinear coordinate
system are written by

89
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 39, n. 2, p. 87-98, jul./dez. 2018



Cirilo, E.R.; Barba, A.N.D.; Natti, P.L.; Romeiro, N.M.L.

∂

∂τ

(
ρu
J

)
︸ ︷︷ ︸

temporal term

+
∂

∂ξ
(ρUu)+

∂

∂η
(ρVu)︸ ︷︷ ︸

convective term

=

[
∂ p
∂η

∂y
∂ξ
− ∂ p

∂ξ

∂y
∂η

]
︸ ︷︷ ︸

pressure term

(3)

+µ

[
∂

∂ξ

(
J
(

α
∂u
∂ξ
−β

∂u
∂η

))
+

∂

∂η

(
J
(

γ
∂u
∂η
−β

∂u
∂ξ

))]
︸ ︷︷ ︸

diffusive term

∂

∂τ

(
ρv
J

)
︸ ︷︷ ︸

temporal term

+
∂

∂ξ
(ρUv)+

∂

∂η
(ρV v)︸ ︷︷ ︸

convective term

=

[
∂ p
∂ξ

∂x
∂η
− ∂ p

∂η

∂x
∂ξ

]
︸ ︷︷ ︸

pressure term

(4)

+µ

[
∂

∂ξ

(
J
(

α
∂v
∂ξ
−β

∂v
∂η

))
+

∂

∂η

(
J
(

γ
∂v
∂η
−β

∂v
∂ξ

))]
︸ ︷︷ ︸

diffusive term

where the viscosity µ is constant. For details of how
to describe this equations in these coordinate system
see (THOMPSON et al., 1976; MALISKA; RAITHBY,
1983). The terms U and V in (3) and (4) are named con-
travariant components of the velocity vector, these are
normal to ξ and η lines respectively, and defined as

U =
1
J

(
u

∂ξ

∂x
+ v

∂ξ

∂y

)
and V =

1
J

(
u

∂η

∂x
+ v

∂η

∂y

)
. As

the incompressibility hypothesis was assumed, the conti-
nuity equation is such that

∂U
∂ξ

+
∂V
∂η

= 0 (5)

therefore the governing equations of our computational
model, in curvilinear coordinates, are given by (3), (4) and
(5).

The choice of auxiliary conditions is critical to the
formulation of any problem described by differential equa-
tions (GRIEBEL et al., 1998; FORTUNA, 2012). As the
Navier-Stokes equations may be used to describe the flow
in many situations, it is important to properly set the initial
and boundary conditions of the problem under study. For
the initial conditions is taken a velocity field that satis-
fies continuity equation. The boundary conditions used in
the resolution of problems considered can be classified
in no-slip and impermeability condition (CNEI), free-slip
condition (CLES), prescribed injection condition (CIPR)
and continuous ejection condition (CECO). The details
about the numerical considerations made on the governing
equations and auxiliary conditions are detailed as follows.

Numerical modeling
For the numerical solution of the fluid equations has

been chosen the MAC (Marker and cell) method formu-
lated by Harlow and Welch (AMSDEN; HARLOW, 1970).
This method has the advantage of permitting the simula-
tion of different types of flow, in the cartesian coordinate
system, with and without free surface (MCKEE et al.,

2008; TOME et al., 2014) and multiphase flows (SAN-
TOS et al., 2012).

In (PATIL; TIWARI, 2009) the authors only describe
the procedure of how to solve the mechanical equations
of fluid via the curvilinear coordinates system. However,
what innovates in this study is that we describe the nume-
rical procedure considering: (1) the governing equations
in dimensional form, (2) to an irregular geometry whose
board is obtained by parametric Spline, and (3) the system
of linear equations for the pressure resolution is solved
by Gauss-Seidel methodology. In this work has been con-
sidered a MAC methodology to confined flow. With this
action has been disregarded any moving marker particles
deduction associated with the method, which results in
simplification of the numerical calculations.

Furthermore it is considered displaced mesh, where the
unknowns are stored in different positions. The displaced
storage for the components of the velocity vector and pres-
sure has a positive impact on numerical calculation, due
to the fact that reduce numerical instability (AMSDEN;
HARLOW, 1970; FORTUNA, 2012). As shown in figures
2a and 2b, the pressure (p) is located in the center of the
cell and the components of velocity vector (u and v) in the
centers of the faces. Note that p refers to the pressure and
P the center of the cell. Rewriting the equations (3) and
(4) as follows

∂

∂τ

(u
J

)
=−C (u)+

1
ρ

Pu +νV (u);

∂

∂τ

( v
J

)
=−C (v)+

1
ρ

Pv +νV (v),

where
∂

∂τ

(u
J

)
and

∂

∂τ

( v
J

)
are the temporal terms, C (u)

and C (v) the convective terms, Pu and Pv the pressure
terms and V (u) and V (v) the diffusive terms and ν =

µ/ρ the viscosity term.
For the temporal term were done first-order approxi-

mation. In the case of convective terms apply approaches
upwind type. The pressure terms are approximated by
central differences. Finally, the diffusive terms are appro-
ximate by central differences, too. The discretization of the
equations on the face e, for every cell within the domain,
in the time level k, is written as

∂

∂τ

(u
J

)∣∣∣∣k
e
=

1
Je

(
u|k+1

e − u|ke
∆τ

)

=−C (u)|ke +
1
ρ

Pu|k+1
e +νV (u)|ke
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analogously

∂

∂τ

( v
J

)∣∣∣∣k
n
=

1
Jn

(
v|k+1

n − v|kn
∆τ

)

=−C (v)|kn +
1
ρ

Pv|k+1
n +νV (v)|kn

Setting F |ke = Je∆τ

[
−C (u)|ke +νV (u)|ke

]
+ u|ke the

cartesian component u of the velocity vector is expressed
as

u|k+1
e = F |ke +

Je∆τ

ρ
Pu|k+1

e (6)

and denoting G|kn = Jn∆τ

[
−C (v)|kn +νV (v)|kn

]
+ v|kn we

have

v|k+1
n = G|kn +

Jn∆τ

ρ
Pv|k+1

n (7)

One of the great difficulties in numerically solving the
Navier-Stokes is about the discretization of the convective
terms, because these terms are not linear. We use the FOU
scheme for these terms. Of course this is not the most
appropriate scheme to very low/high Reynolds number,
but in this study we want to show that the numerical model
is appropriate.

The discretization of the C (u) term on the face e of
the cell centered in the cardinal point P, in a time level k,
using central differences, can be given as

C (u)|ke ≈Uk
Euk

E −Uk
Puk

P +V k
neuk

ne−V k
seuk

se

with convection velocities calculated by arithmetic mean,
and applying FOU scheme to approximate u component in
the corresponding face. On the other hand, the discretiza-
tion of the C (v) on the face n, in time level k, is given
by

C (v)|kn ≈Uk
nevk

ne−Uk
nwvk

nw +V k
Nvk

N−V k
Pvk

P

with the convection velocities calculated by arithmetic
mean, and approaches with the upwind scheme, too. For
more details see (FORTUNA, 2012). The discretization
of the pressure terms on the faces e and n, in time level
k+1, are as follows

(
1
ρ

Pu
)∣∣∣∣k+1

e
≈ 1

ρ

[(
pk+1

ne − pk+1
se

)
∂y
∂ξ

∣∣∣∣
e
−
(

pk+1
E − pk+1

P

)
∂y
∂η

∣∣∣∣
e

]
and(

1
ρ

Pv
)∣∣∣∣k+1

n
≈ 1

ρ

[(
pk+1

ne − pk+1
nw

)
∂x
∂η

∣∣∣∣
n
−
(

pk+1
N − pk+1

P

)
∂x
∂ξ

∣∣∣∣
n

]

Finally, the discretization of the diffusive terms in
faces e and n, in time level k, can be given as

(νV (u))|ke = νe

[
∂

∂ξ

(
J
(

α
∂u
∂ξ
−β

∂u
∂η

))]∣∣∣∣k
e

+νe

[
∂

∂η

(
J
(

γ
∂u
∂η
−β

∂u
∂ξ

))]∣∣∣∣k
e

(νV (v))|kn = νn

[
∂

∂ξ

(
J
(

α
∂v
∂ξ
−β

∂v
∂η

))]∣∣∣∣k
n

+νn

[
∂

∂η

(
J
(

γ
∂v
∂η
−β

∂v
∂ξ

))]∣∣∣∣k
n

with
∂

∂ξ

(
J
(

α
∂u
∂ξ
−β

∂u
∂η

))∣∣∣∣k
e
≈ (Jα)|E

(
uk

eee−uk
e

)
− (Jβ )|E

(
uk

nee−uk
see

)
− (Jα)|P

(
uk

e−uk
w

)
+ (Jβ )|P

(
uk

n−uk
s

)
∂

∂η

(
J
(

γ
∂u
∂η
−β

∂u
∂ξ

))
|ke ≈ (Jγ)|kne

(
uk

nne−uk
e

)
−(Jβ )|kne

(
uk

nee−uk
n

)
− (Jγ)|kse

(
uk

e−uk
sse

)
+(Jβ )|kse

(
uk

see−uk
s

)
∂

∂ξ

(
J
(

α
∂v
∂ξ
−β

∂v
∂η

))
|kn ≈ (Jα)|kne

(
vk

nee− vk
n

)
−(Jβ )|kne

(
vk

nne− vk
e

)
− (Jα)|knw

(
vk

n− vk
nww

)
+(Jβ )|knw

(
vk

nnw− vk
w

)
∂

∂η

(
J
(

γ
∂v
∂η
−β

∂v
∂ξ

))
|kn ≈ (Jγ)|kN

(
vk

nnn− vk
n

)
−(Jβ )|kN

(
vk

nne− vk
nnw

)
− (Jγ)|kP

(
vk

n− vk
s

)
+(Jβ )|kP

(
vk

e− vk
w

)

Since the contravariant components U and V can be

rewritten as U = u
∂y
∂η
− v

∂x
∂η

and V = −u
∂y
∂ξ

+ v
∂x
∂ξ

,

from the expressions (6) and (7) – and similar for the
other faces – we get the compact form for contravariant
components

U |k+1
e =F |ke

∂y
∂η

∣∣∣∣
e
−G|ke

∂x
∂η

∣∣∣∣
e
+

Je∆τ

ρ

{
− ∂ p

∂ξ

∣∣∣∣k+1

e
α|e +

∂ p
∂η

∣∣∣∣k+1

e
β |e

}
(8)

U |k+1
w =F |kw

∂y
∂η

∣∣∣∣
w
−G|kw

∂x
∂η

∣∣∣∣
w
+

Jw∆τ

ρ

{
− ∂ p

∂ξ

∣∣∣∣k+1

w
α|w +

∂ p
∂η

∣∣∣∣k+1

w
β |w

}
(9)

V |k+1
n =−F |kn

∂y
∂ξ

∣∣∣∣
n
+G|kn

∂x
∂ξ

∣∣∣∣
n
+

Jn∆τ

ρ

{
∂ p
∂ξ

∣∣∣∣k+1

n
β |n−

∂ p
∂η

∣∣∣∣k+1

n
γ|n

}
(10)

V |k+1
s =−F |ks

∂y
∂ξ

∣∣∣∣
s
+G|ks

∂x
∂ξ

∣∣∣∣
s
+

Js∆τ

ρ

{
∂ p
∂ξ

∣∣∣∣k+1

s
β |s−

∂ p
∂η

∣∣∣∣k+1

s
γ|s

}
(11)

Approaching by central difference scheme in P cardinal
point, in time level k+1, the continuity equation gives us
the following expression

∂U
∂ξ

∣∣∣∣k+1

P
+

∂V
∂η

∣∣∣∣k+1

P
= 0 ⇒

U |k+1
e −U |k+1

w +V |k+1
n −V |k+1

s = 0 (12)

Replacing the equations (8) to (11) in (12) and grouping
like terms in the same side of equality, we find

Je

{
− ∂ p

∂ξ

∣∣∣∣k+1

e
α|e +

∂ p
∂η

∣∣∣∣k+1

e
β |e

}
+ Jw

{
∂ p
∂ξ

∣∣∣∣k+1

w
α|w−

∂ p
∂η

∣∣∣∣k+1

w
β |w

}

+Jn

{
∂ p
∂ξ

∣∣∣∣k+1

n
β |n−

∂ p
∂η

∣∣∣∣k+1

n
γ|n

}
+ Js

{
− ∂ p

∂ξ

∣∣∣∣k+1

s
β |s +

∂ p
∂η

∣∣∣∣k+1

s
γ|s

}

=
ρ

∆τ

{
−F |ke

∂y
∂η

∣∣∣∣
e
+G|ke

∂x
∂η

∣∣∣∣
e
+F |kw

∂y
∂η

∣∣∣∣
w
−G|kw

∂x
∂η

∣∣∣∣
w

+F |kn
∂y
∂ξ

∣∣∣∣
n
−G|kn

∂x
∂ξ

∣∣∣∣
n
−F |ks

∂y
∂ξ

∣∣∣∣
s
+G|ks

∂x
∂ξ

∣∣∣∣
s

}
(13)

The equation (13) is the pressure evolution equation, that
satisfies the continuity equation (5).
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The initial conditions considered should satisfy the
continuity equation. We performed simulations always
starting from a velocity field and pressure in a state of
quiescence. We understand the quiescence state as the
one with null velocity and pressure fields. The pressure

boundary condition is taken as
∂ p
∂n

= 0. On the boundary
conditions, whatever the two-dimensional problem under
study, there are four kinds of configurations between the
contour and interior cells in the computational domain.
Denoting velt , veln as the tangential and normal velocities
at the border of the cells, vel• (prescribed velocity), velI
(prescribed injection velocity), velE (prescribed ejection
velocity), then the four possible configurations are those
shown in figure 3.

Figure 3: Possible configurations to the boundary condi-
tions

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

Source: The authors.

Case 1: The non-slip and impermeability condition
(CNEI) is defined by the following expressions velt =
0 and veln = 0, so

(a) velt =
v|nww + v|n

2
= 0 ⇒ v|nww =−v|n

veln = u|w = 0 ⇒ u|w = 0

(b) velt =
v|n + v|nee

2
= 0 ⇒ v|nee =−v|n

veln = u|e = 0 ⇒ u|e = 0

(c) velt =
u|e +u|nne

2
= 0 ⇒ u|nne =−u|e

veln = v|n = 0 ⇒ v|n = 0

(d) velt =
u|e +u|sse

2
= 0 ⇒ u|sse =−u|e

veln = v|s = 0 ⇒ v|s = 0

Case 2: The free-slip condition (CLES) is defined by the
following expressions velt = vel• and veln = 0,

(a) velt =
v|nww + v|n

2
= vel• ⇒ v|nww = 2vel•− v|n

veln = u|w = 0 ⇒ u|w = 0

(b) velt =
v|n + v|nee

2
= vel• ⇒ v|nee = 2vel•− v|n

veln = u|e = 0 ⇒ u|e = 0

(c) velt =
u|e +u|nne

2
= vel• ⇒ u|nne = 2vel•−u|e

veln = v|n = 0 ⇒ v|n = 0

(d) velt =
u|e +u|sse

2
= vel• ⇒ u|sse = 2vel•−ue

veln = v|s = 0 ⇒ v|s = 0

Case 3: The prescribed injection condi-
tion (CIPR) has the form velt = 0 and
veln = velI

(a) velt =
v|nww + v|n

2
= 0 ⇒ v|nww =−v|n

veln = u|w = velI ⇒ u|w = velI

(b) velt =
v|n + v|nee

2
= 0 ⇒ v|nee =−v|n

veln = u|e = velI ⇒ u|e = velI

(c) velt =
u|e +u|nne

2
= 0 ⇒ u|nne =−u|e

veln = v|n = velI ⇒ v|n = velI

(d) velt =
u|e +u|sse

2
= 0 ⇒ u|sse =−u|e

veln = v|s = velI ⇒ v|s = velI

Case 4: The continuous ejection con-
dition (CECO) is indicated by
∂

∂n
velt = 0 and

∂

∂n
veln = 0

(a)
∂

∂n
(velt ) =

v|nww− v|n
∆ξ

= 0 ⇒ v|nww = v|n

∂

∂n
(veln) =

u|e−u|w
∆η

= 0 ⇒ u|e = u|w

(b)
∂

∂n
(velt ) =

v|nee− v|n
∆ξ

= 0 ⇒ v|nee = v|n

∂

∂n
(veln) =

u|eee−u|e
∆η

= 0 ⇒ u|eee = u|w

(c)
∂

∂n
(velt ) =

u|nne−u|e
∆η

= 0 ⇒ u|nne = u|e

∂

∂n
(veln) =

v|nnn− v|n
∆ξ

= 0 ⇒ v|nnn = v|n

(d)
∂

∂n
(velt ) =

u|sse−u|e
∆η

= 0 ⇒ u|sse = u|e

∂

∂n
(veln) =

v|n− v|s
∆ξ

= 0 ⇒ v|n = v|s

Numerical results
In this section we present the numerical results ob-

tained from the proposed method in the previous sections.
The first problem relates to the study of the flow between
two parallel plates, the second deals with the flow in a
square cavity with upper wall moving and the third refers
to atherosclerosis. The mesh, for each problem studied,
it was generated exactly as described in (CIRILO; DE
BORTOLI, 2006; SAITA et al. 2017). The edges were
built by Spline, and the mesh via numerical solution of
the grid generation equations. For mesh generation has
been stipulated a maximum of 1000 iterations to solve the
linear system that create the grid, considering an error of
less than 10−4 in this system. The numerical method of
Gauss-Seidel was used to solve the linear system.

With the first problem we show that our code is able
to obtain the numerical solution accurately when com-
pared with analytical solution. The second case in our
study aims at demonstrate that even for Reynolds number
slightly high (Re = 1000), where the term convective is
dominant, it can properly address the problem. Besides
this, with previous cases, show that the proposed nume-
rical model simulates cases whose geometry is cartesian.
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Table 1: Meshes for simulations to first problem.

Mesh Number of lines in Number of lines in
the direction ξ the direction η

P1 9 5
P2 17 9
P3 33 17
P4 65 33
P5 129 65

Source: The authors.

Finally, the third case, detailing the simulation when the
computational mesh is perfect adjusted the geometry of
the problem. In this case, even with the dominant con-
vective term (Re = 900), the results are in accordance
with literature too.

The color maps used in this study range from dark blue
(lower velocity) to dark red (higher velocity), as shown in
the figure 4 below. The results obtained for these problems
are presented in the following.

Figure 4: Color maps to the velocity

Source: The authors.

Parallel plates problem

In this problem we consider a geometry in rectangular
shape with height H and length L = 8H, according figure
5.

Figure 5: Dimensions of the geometry of the problem
laminar flow between two parallel plates (BONO et al.,
2011)

Source: The authors.

The fluid (Re = 100) is injected into the geometry
by edge AD, where the boundary condition is CIPR and
velI = 1.0 m/s. The plates are indicated by edges AB and
CD, where the CNEI conditions is applied. The fluid out-
put occurs by the edge BC, where the boundary condition
is CECO. For the study of the problem we performed five
simulations, taking H = 1 m and varying the amount of
lines considered in the directions ξ and η , as shown in the
table 1.

The initial condition was taken from the state of quies-
cence. The simulation was performed until the steady state
was reached, and this occurred at τ = 30, approximately.
In this study, for convergence of the pressure and velocity

equations we consider the ∆τ = 10−2 to meshes P1 to
P3. But to P4 and P5 the ∆τ taken was equal to 5.10−3.
This difference values in ∆τ occurred because of the mesh
refinement.

Figure 6: Velocity profile in the output section to flow
between two parallel plates for different mesh refinements

(a) In this paper

(b) Presented by (BONO et al., 2011)

Source: The authors.

In figures 6a and 6b the velocity profiles in the output
section, in the edge BC, are presented 1 for the meshes con-
sidered in this work and in (BONO et al., 2011), respecti-
vely. Note that in (BONO et al., 2011) D= 1, then y/D= y.
Likewise, as ve = 1 follows vl/ve = vl = u. Therefore, we
can compare the graphs shown in the figures because both
describe the same relationship.

Looking at the figure 6a, can be observed that further
refinement of the mesh gives better results. In the mesh
P5, for example, the maximum value found for the speed
was equal to 1.4814 m/s. When comparing the profiles ob-

1 In this case we are only analyzing component u of the velocity
because this is perpendicular to the edge where there is fluid output.
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tained by the proposed method in this work and literature
(BONO et al., 2011), note that both are close to the ana-
lytical solution. However, in the literature the maximum
value was 1.4756 m/s with the finite elements method. It is
known in the scientific community which computational
cost of finite differences (our proposal) used is lower than
finite elements. In table 2 is shown that the mesh refine-
ment implies lower error between the theoretical velocity
and the calculated velocity in our code. So there is clearly
a process of convergence to the theoretical velocity, i.e.,
the mesh doesn’t interfere in the solution obtained. Finally,
the velocity field obtained, when the steady state has been
reached, can be seen in the figure 7 below.

Figure 7: Velocity field obtained in this paper to first
problem

Source: The authors.

Lid-driven cavity problem

In this problem we consider a square cavity with edge
measuring 1 m, whose geometry is shown in figure 8. It
is completely fluid filled, the upper wall is moving and
we apply the boundary condition CLES with slip velocity
equal to 1m/s. The others walls are subject to boundary
conditions CNEI.

The aim of this problem is the numerical verification of
algorithm. The convective terms are more evident and the
numerical model is more required numerically. The results
obtained for this problem are compared with those pre-
sented by (GHIA et al.,1982; HOU et al., 1985; GRIEBEL
et al., 1998; GUPTA and KALIT, 2005; MARCHI et al.,
2009; BONO et al., 2011).

This study was carried out from a mesh with 129 lines
ξ and η . The initial condition was taken from the state
of quiescence. The simulation was performed until the
steady state was reached, and this occurred at τ = 50,
approximately. For convergence of the pressure and velo-
city equations, we consider the ∆τ = 10−3 because of the
mesh refinement.

The variations of velocity fields obtained, after steady
state has been reached, can be seen in the Figs. 9a and 9b.
In each of the figures we can see the formation of a pri-
mary vortex near the center of the domain, whose location
varies with Reynolds number considered. Moreover, we
can observe the formation of two other smaller vortices
in the lower regions near to left and right boundaries of
the cavity. In the first case, where Re = 100, there is only

Figure 8: Geometry and dimensions considered in the
problem of square cavity

Source: The authors.

an indication of the formation of secondary vortices. For
Re = 400 we observe a vortex formed in the lower right
corner, and only one beginning of the vortex in the left
corner. It is due to increased Reynolds number.

Figure 9: Velocity fields obtained in solving the problem
of the cavity in steady state

(a) Re = 100

(b) Re = 400

Source: The authors.

From the localization of the vortices, the interest was
to compare the main vortex coordinates obtained with
our methodology in relation to other studies. The table 3
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Table 2: Convergence speed of the numerical code via free stream Vl num

Meshes Vl num hx hy hx×hy Error = |1.5−Vl num|
P1 1.1999 1.0 0.25 0.25 0.3001

P2 1.3380 0.5 0.125 0.0625 0.1620

P3 1.4158 0.25 0.0625 0.015625 0.0842

P4 1.4498 0.125 0.03125 0.00390625 0.0502

P5 1.5068 0.0625 0.015625 0.0009765625 0.0068

Source: The authors.

present these coordinates for cases where Re = 100 and
Re = 400. Note that our results are in agreement with the
literature.

One third case (Re = 1000), the secondary vortices are
very defined in the lower right and left corners. There is
evidence of the formation of another vortex in the upper
left corner. Analogously, it is due to increased Reynolds
number too.

Graphically, the results displayed in figure 10a, com-
pared with that obtained in figure 10b, shows that our
simulation is in accordance with literature (GRIEBEL et
al., 1998). The coordinates of the primary vortex obtained
with our numerical code were (0.5528, 0.5698).

Atherosclerosis problem

Atherosclerosis is a disease associated with accumula-
tion of lipids, complex carbohydrates, blood components,
cells and other elements in large and medium-sized arte-
ries, it is the main cause of heart disease (DE SOUZA,
2005). In general, the development of this problem starts
from accumulation of cholesterol LDL in the artery walls
type, which may be higher or lower depending on the
availability of this substance in the blood (LUSIS, 2000).
The accumulation of these compounds in the walls of an
artery causes the same hardening through the formation
of atherosclerotic plaques, which can lead to stenosis, or
narrowing of the blood vessel, reducing blood flow in the
artery (FUKUJIMA; GABBAI, 1999).

Motivated by this problem, our objective was to repro-
duce a single case of blood flow in the region of a large
caliber artery containing a stenosis. The constriction in the
upper and lower border, both with same size, is located in
the same point as presented in figure 11.

We consider a fluid with Re = 900. This consideration
is acceptable to the scientific community, and we can ap-
proach the blood as a Newtonian incompressible viscous
fluid (LAYEK; MIDYA, 2007). The fluid is injected into
the geometry by edge AD, subject to the boundary condi-
tion CIPR with velI = 0.1467. The output occurs through
edge BC, where applied condition is CECO, and in the

Figure 10: Velocity fields to second problem indicating
the direction of flow to Re = 1000

(a) Profile obtained in this work. Source: The
authors.

(b) Profile presented by (GRIEBEL et al.,
1998)

Source: The authors.

other walls we consider the boundary condition CNEI.
As in previous cases, the initial condition was taken from
the state of quiescence. For the study we consider the
mesh shown in figure 12, constructed from the dimensions
set out above, containing ξ × η = 129× 20 lines, and
∆τ = 5.10−3.

The velocity field obtained after steady state is reached
is shown in figure 13. The fluid enters in the geometry, suf-
fers the performance of CNEI boundary condition, and the
fully developed profile is established. When the fluid be-
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Table 3: Localization of the main vortex center

Reference Re = 100 Re = 400
This work (0.6109,0.7335) (0.5699,0.6033)

BONO et al.,(2011) (0.6157,0.7373) (0.5613,0.6123)
GHIA et al., (1982) (0.6172,0.7344) (0.5547,0.6055)

GUPTA; KALIT, (2005) (0.6125,0.7375) (0.5500,0.6125)
HOU et al., (1985) (0.6196,0.7373) (0.5608,0.6078)

MARCHI et al., (2009) (0.6162,0.7373) (0.5537,0.6054)
Source: The authors.

Figure 11: Geometry and dimensions considered on the
atherosclerosis problem

Source: The authors.

Figure 12: Mesh considered in solving the problem re-
lated to atherosclerosis

Source: The authors.

gins its entry path by stenosis undergoes a continuous drop
in pressure since the Reynolds is moderated, thereby in-
creasing the velocity. The maximum velocity value occurs
in the narrowing region. After passing through narrowing
the fluid velocity decreases and flows throughout the rest
of the geometry, but in a lower level than that of the input.
This pattern in the flow is also observed by (FUKUJIMA;
GABBAI, 1999), which leads to implications for human
health.

In figure 14 are plotted the values of u and v compo-
nents, respectively. From these graphs we can see that
after the stenosis there is occurrence of vortex formation.
Note that although the geometry has symmetry, the velo-
city components are asymmetric in the domain. The vortex
near the top wall, in size and position with respect to the
abscissa, is different from the vortex that is side of the
bottom wall. This asymmetry in the velocity field is due

Figure 13: Velocity field obtained from the simulation of
the problem related to atherosclerosis

Source: The authors.

to the moderate value of the Reynolds number used in the
simulation. This asymmetric behavior was also obtained
by (LAYEK; MIDYA, 2007). For Reynolds values less
than 900 the flow tends to be symmetrical, because the
vortices tend to disappear. But for values greater than 900
the convective terms are strongly dominant, the flow tends
to be asymmetric and vortices increase in size, intensity
and position with respect to abscissa. The simulation here
displayed when Re = 900 is a turbulent presage.

Figure 14: Velocity field for the components u (left) and
v (right) in the forming region of the vortexes

Source: The authors.

The study of the disordered formation of these vortices
beyond the stenosis is critical (LAYEK; MIDYA, 2007),
once they can hinder the continuity of blood flow in ar-
teries and thus, can aggravate health problems that may
lead the patient to death.

Conclusion

The objective of this study was to present an effective
numerical model to solve the equations of fluid dynamics

96
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 39, n. 2, p. 87-98, jul./dez. 2018



A numerical model based on the curvilinear coordinate system for the MAC method simplified

in the case: laminar, newtonian, incompressible, isother-
mal, two-dimensional in curvilinear coordinates system.
In addition, show that even applying a first order scheme
(FOU) in the convective terms, it was possible to obtain
satisfactory results with the numerical model.

In the cases of flows between parallel plates and in the
lid-driven cavity, the numeric code was able to simulate
the velocity field accurately, that is, the numerical model
converged to values of interest does not depend on the
mesh (see table 2) and also for various values of Reynolds
(see figures 6, 9, 10). Furthermore, we show that in the
case of geometries whose cartesian coordinate system
is completely inappropriate, the curvilinear coordinates
system appears as a prominent alternative. This was the
case of atherosclerosis problem. In this problem we show
that the mesh is perfectly adequate to the domain, and that
the proposed numerical model allowed to obtain numerical
solutions in agreement with the literature.

For future work we intend to extend the methodology
adopted in this study. First we will implement a higher-
order convective scheme which solves problems in a more
comprehensive range of Reynolds number, and then ex-
tend the code for three-dimensional cases.
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