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The Mellin Transform and Euler-Maclaurin Summation Rule Applied
to System of N− Independent Harmonic Oscillators

A Transformada de Mellin e o Método de Soma de Euler-Maclaurin
Aplicados a um Sitema de N Osciladores Harmônicos Independentes

Antonio Edson Gonçalves1; Veríssimo Manoel de Aquino2

Abstract
We confront the Mellin and the Euler-Maclaurin summation rule when used in order to calculate N independent
harmonic oscillators thermodynamic potentials, and compare the approximate expressions with the exact ones
for these quantities. The goal of this work is at least twofold: First, to compare the results obtained for the
thermodynamic potentials of a system of N oscillators using the Mellin and the Euler-Maclaurin summation
rule in order to have a discernment on which one is most appropriate for application to more complex systems
with finite and infinite number of components. Second, to present to the reader the ideas of these techniques
in a pedestrian way with the aim of providing one material with detailed calculation that can be useful like a
basic reference to more deep calculation, in particular string theory and supergravity.

Keywords: Partition Function. Harmonic Oscillators. Thermodynamic Potentials. Euler-Maclaurin Formula.
Mellin Transform.

Resumo
Neste trabalho apresentamos as expressões obtidas para os potenciais termodinâmicos de um sistema de
N osciladores independentes calculadas usando dois diferentes métodos. Expressões em forma de séries
para os potenciais são obtidas usando a transformada de Mellin, e, alternativamente, usando a regra da
soma de Euler-Maclaurin. A concordância dos resultados no limite de altas temperaturas é verificada. O
trabalho tem dois objetivos. Primeiro, comparar os resultados obtidos pelos dois caminhos de forma a
verificar qual o mais adequado para aplicação em casos mais complexos, por exemplo, para o estudo do
comportamento dos potenciais termodinâmicos a partir de funções partições sugeridas para buracos negros
ou em modelos de supergravidade. Segundo, apresentar ao leitor de forma simples e didática, as ferramentas
básicas para o cálculo dos potenciais termodinâmicos, preparando-o para aplicação em outros sistemas. Neste
sentido cálculos explícitos são desenvolvidos no decorrer do trabalho. Argumentos em favor da utilização da
transformada de Mellin são apresentados.
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Introduction

In the last times there was a great interest in the cal-
culation of densities of states for some physical system,
mainly black holes (STROMINGER; VAFA, 1996), ther-
modynamic properties of systems in the presence of gra-
vitational field and thermodynamic properties in super-
gravity theories (WITTEN, 1988; WITTEN, 1989; WIT-
TEN, 1990; WITTEN, 2001; WITTEN, 2002; WITTEN,
2007). The reason for that is the directly relation with
gravitational quantization in quantum field theories in
curved spacetime or string theory (POLCHINSKI, 1998a;
POLCHINSKI, 1998b). This challenge of the contempo-
rary physics is not new; this have directly relation with
number theory in mathematics and appear in physics in
the Bohr and Kalckar calculations about the densities of
states of heavy atom nuclei (BOHR; KALCKAR, 1937),
and Van Lier e Uhlenbeck who consider the calculation of
density of energy levels of a nucleus by using the methods
of Darwin-Fowler (saddle point). Actually in many papers
the authors considers many different kinds of partitions
functions, in the physical not mathematical sense, in or-
der to understand, through approximative calculation or
symmetries considerations, the thermodynamic properties
of the physical system associated with these partitions
functions (BOHR; KALCKAR, 1937). As a first steps
in the calculation of the density of states or the entropy
is the calculation of the thermodynamic potentials, that
for the more complex systems can not be get exactly, but
only through approximative methods. In this paper, for
a system of N independent harmonic oscillators, approx-
imate values of thermodynamic potentials in the Mellin
transform (GRADSHTEYN, 1984) approach and using
the Euler-Maclaurin summation rule (ABRAMOWITZ;
STEGUN, 1964) are carried out in order to detect the
most adequate to applications in more complex systems.
In the body of the paper exact expressions to thermody-
namic potentials for a system of N independent harmonic
oscillators and the calculation of the density of states are
presented; approximate expressions for the same quanti-
ties are obtained using the Mellin transform approach and
the Euler-Maclaurin summation rule. Emphasis is given
for the behavior of thermodynamic potentials in the higher
temperature regime in order to compare the approximate
expressions with the exact solution. Finally, in the Conclu-
sions, the advantages to use the Euler-Maclaurin or Mellin
transform methods is given. We present some explicit cal-
culations necessary for a complete understanding of the
paper in the appendices.

Thermodynamics Potentials of System with N−
Independent Harmonic Oscillators

The density of states for the N independent harmonic
oscillator is a basic calculation done in many textbooks
(HUANG, 1987; PATHRIA, 1996) with the use of bino-
mials coefficients. However this system is an appropriated
laboratory in order get experience and to be sure about the
reliability of the Mellin transform and Euler-Maclaurin
methods, when applied to more complicate systems as for
example in the calculation of the partition functions for
the system composed by N− or infinite oscillators with
different frequencies, partition functions in supergravity
and strings theory, and so.

The partition function is defined as (PATHRIA, 1996)

Z(β ) = ∑
r

e−βEr ; β ≡ 1
kBT

. (1)

For one simple harmonic oscillator with energy εn = (n+

1/2)h̄ω is given by (HUANG, 1987; PATHRIA, 1996)

Z1(β ) =
1

2sinh
(

β h̄ω

2

) .
Yet, for a system of N− independents, one dimen-

sional and distinguishable harmonic oscillators we have

ZN(β ) =
e−

N
2 h̄ωβ(

1− e−β h̄ω
)N =

[
2sinh

(
β h̄ω

2

)]−N

. (2)

The thermodynamic potentials: internal energy,
Helmholtz free energy and entropy can be get from the
partition function as

F =− 1
β

lnZ, (3)

E = F +
1

kBβ
S, (4)

S = kBβ
2 ∂F

∂β
. (5)

By using the equation (2) in the equations (3)-(5) we
get the thermodynamic potentials

F =
N
β

ln
[

2sinh
(

β h̄ω

2

)]
=

Nh̄ω

2
+

N
β

ln
(

1− e−β h̄ω

)
,

(6)

S = NkB

{
β h̄ω

2
coth

(
β h̄ω

2

)
− ln

[
2sinh

(
β h̄ω

2

)]}
=

NkBβ h̄ω

eβ h̄ω −1
−NkB ln

(
1− e−β h̄ω

)
, (7)

E =
Nh̄ω

2
coth

(
β h̄ω

2

)
=

Nh̄ω

2
+

Nh̄ω

eβ h̄ω −1
. (8)
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It is more appropriated to rewrite these equations in
terms of exponentials in order to consider the asymptotic
behavior in higher temperatures , β −→ 0. As e−β h̄ω ≤ 1,
it is correct to write

F =
Nh̄ω

2
− N

β

∞

∑
k=1

e−β h̄ωk

k
,

S = NkB
β h̄ω

eβ h̄ω −1
+NkB

∞

∑
k=1

e−β h̄ωk

k
,

E =
Nh̄ω

2
+

Nh̄ω

eβ h̄ω −1
.

These are exact expressions. The expressions of the
thermodynamic potentials for higher temperature, keeping
terms of quadratic order in β , are (Appendix E)

F ≈ N

[
1
β

lnβ h̄ω +
β (h̄ω)2

24

]
, (9)

S≈ NkB

[
1− lnβ h̄ω +

(β h̄ω)2

24

]
, (10)

E ≈ N

[
1
β
+

β (h̄ω)2

12

]
. (11)

Approximate Values of Thermodynamics Poten-
tials in the Mellin Approach

The partition function given by equation (2) is exact.
Take into account our previously comment and in order to
compare one different approach to calculate the partition
function we use, in this section, the Melllin transform
technic. By introducing the dimensionless parameter

µ ≡ β h̄ω, (12)

we write the thermodynamic potentials as

F =− h̄ω

µ
lnZ(µ), (13)

E = F +
h̄ω

kBµ
S, (14)

S = kB
µ2

h̄ω

∂F
∂ µ

. (15)

In order to make easer the calculation of the functions
F and E, it is appropriated to define the notation

X(µ) = lnZN(µ) =−
Nµ

2
−N ln

(
1− e−µ

)
.

As exp{−µ} ≤ 1, we can consider the expansion of the
logarithm function in order to get

X(µ) =−Nµ

2
+N

∞

∑
k=1

e−µk

k
. (16)

By using the inverse Mellin transform (GRAD-
SHTEYN, 1984) we can write

e−µk =
1

2πı

∫ c+ı∞

c−ı∞
Γ(s)(µk)−s ds,

where c > s. So

− ln
(
1− e−µ

)
=

∞

∑
k=1

e−µk

k
=

1
2πı

∫ c+ı∞

c−ı∞

Γ(s)ζ (s+1)
µs ds,

and

X(µ) =−Nµ

2
+

N
2πı

∫ c+ı∞

c−ı∞

Γ(s)ζ (s+1)
µs ds.

The gamma function has simple poles at s=−n,n∈N
with residue (−1)n/(n)! The function ζ (s+ 1) has one
simple pole at s = 0 with residue 1. Once ζ (s+1) is finite
at the point s = −1, the integrand has a simple pole of
the gamma function; as for s = 0 the zeta functions has
a simple pole and also the gamma function, in this form
the integrand has a second order pole at s = 0. For the
cases when s = −2n− 1, with n ≥ 1, with the help of
the reflection formula for the zeta function (BATEMAN,
1953)

ζ (s) =
2Γ(1− s)

(2π)1−s sen
(

πs
2

)
ζ (1− s), (17)

we can prove the analyticity of the integrand. In the points
s =−2n, the gamma function Γ(−2n), has simple poles,
but ζ (1−2n) is finite, therefore the integrand has simple
poles at s =−2n, n≥ 1.

All this considerations result in the simple pole of the
integrand at s = −1 with residue −1ζ (0)µ = µ/2, one
second order pole at s = 0 with residue

f (µ)≡ lim
s→0

d
ds

[
(µ)−s sΓ(s)sζ (s+1)

]
,

where

f (µ) = lim
s→0

(µ)−s

{
− ln µΓ(s+1)s

(
1
s
+

∞

∑
n=0

(−)n

n!
γnsn

)

+
dΓ(s+1)

ds
s

(
1
s
+

∞

∑
n=0

(−)n

n!
γnsn

)
+

+Γ(s+1)
d
ds

[
s

(
1
s
+

∞

∑
n=0

(−)n

n!
γnsn

)]}
=− ln µ + Γ(s+1)ψ(s+1)|s=0

+ (µ)−s
Γ(s+1)γ

∣∣
s=0

=− ln µ,

(here we used the series expansion of the gamma function,
γ is the Euler-Mascheroni constant (BATEMAN, 1953)
and the first order poles at s =−2n, with residue

Res
[

Γ(s)ζ (s+1)
(µ)s

]
s=−2n

= lim
s→−2n

[
(s+2n)Γ(s)ζ (s+1)

(µ)s

]
=

(µ)2n

(2n)!
ζ (1−2n) =− (µ)2n B2n

2n(2n)!
,
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where Bn are the Bernoulli numbers, Appendix C.
By using the previous results in the equation (16) we

have

X(µ) =−Nµ

2
+N

[(
µ

2
− ln µ

)
+

∞

∑
n=1

µ2n

(2n)!
ζ (1−2n)

]

=−N ln µ +N
∞

∑
n=1

µ2n

(2n)!
ζ (1−2n).

These equations are exacts. The thermodynamic potentials,
equations (13)-(15), in terms of the function X(µ) are

F =
Nh̄ω

µ

[
ln µ−

∞

∑
n=1

µ2n

(2n)!
ζ (1−2n)

]
, (18)

S = kBN

[
1− ln µ−

∞

∑
n=1

(2n−1)µ2n

(2n)!
ζ (1−2n)

]
,

E =
Nh̄ω

µ

[
1−

∞

∑
n=1

µ2n

(2n−1)!
ζ (1−2n)

]
.

These expressions can be rewrite whit the help of the
equation (12) and β as

F =
N
β

[
lnβ h̄ω−

∞

∑
n=1

(β h̄ω)2n

(2n)!
ζ (1−2n)

]
,

S = kBN

[
1− lnβ h̄ω−

∞

∑
n=1

(2n−1)(β h̄ω)2n

(2n)!
ζ (1−2n)

]
,

E =
N
β

[
1−

∞

∑
n=1

(β h̄ω)2n

(2n−1)!
ζ (1−2n)

]
.

The main contribution, of β 2 order, is easily to get
from this equations as, (Appendix B):

F ≈ N
[

1
β

lnβ h̄ω +
β

24
(h̄ω)2

]
, (19)

S≈ kBN

[
1− lnβ h̄ω +

(β h̄ω)2

24

]
, (20)

E ≈ N

[
1
β
+

β (h̄ω)2

12

]
. (21)

At this point we can compare the equations (9)-(11)
with equations (19)-(21). The first ones was got as approxi-
mations from the exact results for the partition function.
The second set of equations was obtained by using the
Mellin transform (residue calculation) in order to calculate
the sum over permissible value of the energy of the system.
This procedure provide as a results, the power series repre-
sentation for the partition function, and as a consequence
the power series representation for the thermodynamic
potentials.

The comparison of these equation show us the perfect
agreement for the results obtained using the Mellin trans-
form technic, in the second order approximation in β , with
the series representation, equations (9)-(11), of the exact

equations for the thermodynamic potentials equations (6)
and (7). Taking as example, the exact equivalence of the
expression for the Helmoltz free energy in the Mellin
approach and the exact one expression is presented in
Appendix F.

The Euler-Maclaurin Summation Rules Applied
to Calculation of Approximate Values of the
Thermodynamic Potential

Let

lnZN(µ) = Y (µ) =−Nµ

2
+N

∞

∑
k=1

e−µk

k
. (22)

By using the Euler-Maclaurin summation formula
(ABRAMOWITZ; STEGUN, 1964), (Appendix D) we
have

Y (µ)
N

=−µ

2
+

e−µ

2
+Γ [0,µ]+

1
12

e−µ (1+µ)

+
∞

∑
k=2

B2k

(2k)!

[
f (2k−1) (n)− f (2k−1) (0)

]
,

where
Γ[a,x] =

∫
∞

x
ta−1e−tdt, (23)

is the incomplete gamma function.
The thermodynamic potentials, equations (13)-(15), in

terms of Y (µ) are

F =
Nh̄ω

µ

{
µ

2
− e−µ

2
−Γ [0,µ]− 1

12
e−µ (1+µ)

−
∞

∑
k=2

B2k

(2k)!

[
f (2k−1) (k)

∣∣∣
k→∞

− f (2k−1) (0)
]}

,

S =
NkB

12
e−µ [19+µ (7+µ)+12eµ

Γ [0,µ]]

−NkBµ
2 ∂

∂ µ

{
1
µ

∞

∑
k=2

B2k

(2k)!

[
f (2k−1) (k)

∣∣∣
k→∞

− f (2k−1) (0)
]}

,

E =
Nh̄ω

µ

[
µ

2
+ e−µ

(
1+

µ

2
+

µ2

12

)]
−NkBµ

∂

∂ µ

∞

∑
k=2

B2k

(2k)!

[
f (2k−1) (k)k→∞

∣∣∣− f (2k−1) (0)
]
.

From these equations, in the order of β 2, Appendix G, we
have

F ≈ N
[

1
β

lnβ h̄ω +
β

24
(h̄ω)2

]
,

S≈ NkB

[
1− lnβ h̄ω +

(β h̄ω)2

24

]
,

E ≈ N

[
1
β
+

µ (h̄ω)2

12

]
.

As we can see these expressions agree with previous ones,
equations (19)-(21).
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Comments and Conclusion

The goal of this paper is to compare two technics:
Mellin transform and Euler-Maclaurin summation formula
in order do decide what is the more appropriated, between
these, to calculate finite and infinite characteristics sums
of the thermodynamical systems order to get insight and
experience to consider more involved problems like black-
hole entropy, partitions functions of gas in the presence of
gravitational fields, etc.

To carry out this calculation, we consider one very well
know and exactly soluble systems composite of N identi-
cal simple harmonic oscillators, with energy eigenvalue
(n+ 1/2)h̄ω , in order to exactly calculated the thermo-
dynamic potentials F(β ,N), S(β , N) e E(β , N). In the
sequence, we rewrite these potentials in β power series,
equations (9)-(11), in order to study the mains contribu-
tions at higher temperature, β → 0, at list, until the β 2

order. The logarithm divergent term, typical of this kinds
of models, that immediately appear in this expansion, are
associated with origin divergence.

In this paper, the Mellin transform and the Euler-
Maclaurin summation formula was used in order to cal-
culate the approximate expression of the finite sum, the
partition function Z(β ), and as consequence, approximate
expressions for the thermodynamic potentials that, also,
was expressed as power series in the temperature β as
shown in the equations (19)-( 21).

In technical, not physical, point of view, from com-
parison of equations (9)-(11) with the equations (19)-(21)
is clear the agreement of this equations, even form small
numbers of terms in the expansion in power series of β . It
is a good result, one times we deal with more complicated
systems, we can be sure that the method give quite good
estimations for the calculation of the physical quantities
even for small number of terms, for the both methods.
Also, from the calculation, we conclude that the Mellin
transform methods is more simple to apply in comparison
with the Euler-Maclaurin one. The reason is the diver-
gences in the calculation of the (2k−1)th derivatives of
the function f (k) in the origin, in the Euler-Maclaurin
summation formula, equation (30). It is worthy to point
that we haven’t take into account the thirty order deriva-
tive of the function f (k) since the non null contribution
of this term beginning at 4th order. However, in the Euler-
Maclaurin method, even for second order contribution
there is an interesting result. In the approximate expres-
sion for the entropy S, given by equation (10), calculated
from the exact partition function Z(β ), equation (2) there

is the contribution
1− ln µ,

but in the calculation of the approximate expression for
entropy, carried out in the Appendix G was got the contri-
bution 19

12 − γ in the expression

Nk
[

19
12
− γ− ln µ +

µ2

24

]
.

A simple calculation show us that

19
12
− γ = 1.583333−0.577215 = 1.00611,

meaning that even for expansion until second order in the
calculation of the entropy, with Euler-Maclaurin summa-
tion formula, this result differs only by 0.6% of the exact
value 1. However it should not that the Mellin transform
methods immediately gives the exact value 1.
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Appendix A: The Mellin Transform

The Mellin transform of the function f (x) (GRAD-
SHTEYN, 1984) denoted by f ∗(s), is defined by the inte-
gral

f ∗(s) =
∫

∞

0
f (x)xs−1, s ∈ C. (24)

The functions f (x) and f ∗(s) are called a Mellin trans-
form pair, and knowledge of either one enables the other
to be recovered. The transform exists, provide the integral∫

∞

0
| f (x)|xk−1dx,

is bounded for some k > 0.
The inverse Mellin transform is the integral

f (x) =
1

2πı

∫ c+ı∞

c−ı∞
f ∗(s)xs−1ds, c > k. (25)

The standard notation

f ∗(s) = M [ f (x);s] ,

is used to represent the Mellin transformation.

Appendix B: The Riemann Zeta, and Related
Functions

The Riemann zeta function, firstly introduced by Euler
for real s > 1 as the series

1+
1
2s +

1
3s +

1
4s · · · ,
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is defined as

ζ (s) =
∞

∑
n=1

1
ns , s ∈ C, ℜ(s)> 1. (26)

Riemann had extended the definition of the zeta function
for complex number s by analytic extension of the Euler
representation, equation (26). There are many ways to
analytically extended this function, all of them valid as
the results is independent of the technic by taking into
account the unicity of methods. There is too the so called
Dirichlet eta function, associated to infinite alternating
series,

η(s) =
∞

∑
n=1

(−)n−1

ns , (27)

analytic for ℜ(s) > 0. If the complex number s satisfy
ℜ(s)> 1, we have

ζ (s)−η(s) =
∞

∑
n=1

1
ns −

∞

∑
n=1

(−)n−1

ns =
∞

∑
n=1

(
1
ns +

(−)n

ns

)
=

(
1
1s −

1
1s

)
+

(
1
2s +

1
2s

)
+

(
1
3s −

1
3s

)
+ · · ·

= 2
1
2s +2

1
4s +2

1
6s + · · ·

= 2
(

1
2s +

1
4s +

1
6s + · · ·

)
= 2

∞

∑
n=1

1
(2n)s .

This expression can be rewrite as

ζ (s)−η(s) =
2
2s

∞

∑
n=1

1
ns = 21−s

ζ (s) =⇒

η(s) =
(
1−21−s)

ζ (s). (28)

This is a basic and very useful equation relating
the both, the zeta and eta functions. The Riemann zeta
function in the integral representation is

ζ (s) =
1

Γ(s)

∫
∞

0
dt

ts−1

et −1
.

The integral representation shows that ζ (s) can be analyti-
cally continued and that is one-value everywhere except
for s = 1 where it has a single pole with residue 1. One
useful representation of the zeta function, obtained from
Laurent series, is

ζ (s) =
1

s−1
+ γ +

∞

∑
n=1

γn (s−1)n ,

where

γn = lim
m→∞

[
m

∑
l=1

(ln l)n

l
− (lnm)n+1

(n+1)

]
,

are the so called Stieltjes constants.

Some useful values of the Riemann zeta function (GRAD-

SHTEYN, 1984)

ζ (2m) =
2m−1π2m |B2m|

(2m)!
, ζ (1−2m) =−B2m

2m
,

ζ (−2m) = 0,

dζ (s)
ds

∣∣∣∣
s=0

=−1
2

ln2π, ζ (−1) =− 1
12

,

ζ (0) =−1
2
, ζ (1) = ∞.

Appendix C: The Bernoulli Numbers

The Bernoulli numbers, Bn, are a sequence of signed
rational numbers that can be defined by the generat-
ing function (ABRAMOWITZ; STEGUN, 1964; GRAD-
SHTEYN, 1984)

t
et −1

=
∞

∑
n=0

Bn
tn

n!
,0 < |t|< 2π,

as the coefficients in the power series of tn/n!.

Some useful values of Bernoulli numbers (GRADSHTEYN,

1984)

B0 = 1 , B1 =−
1
2
, B2 =−

1
6
, B1 =−

1
30

B2n+1 = 0 , n = 1, 2, · · ·

Appendix D: The Euler-Maclaurin Summation
Formula

The Euler-Maclaurin summation formula has several
representations, one of which is (ABRAMOWITZ; STE-
GUN, 1964)

n−1

∑
k=1

fk =
∫ n

0
f (k)dk− 1

2
[ f (0)+ f (n)]

+
1

12
[

f ′(n)− f ′(0)
]
− 1

720
[

f ′′′ (n)− f ′′′ (0)
]

+
1

30240
[

f V (n)− f V (0)
]
+ · · ·

(29)

or in terms of Bernoulli numbers as

n−1

∑
k=1

fk =
∫ n

0
f (k)dk− 1

2
[ f (0)+ f (n)]

+
1

12
[

f ′(n)− f ′(0)
]

+
∞

∑
k=1

B2k

(2k)!

[
f (2k−1) (n)− f (2k−1) (0)

]
.

(30)
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Appendix E: Detailed Calculation of the Thermo-
dynamic Potentials in the Quadratic Approxima-
tion

The free energy power series in β can be get from
the series representation of the hyrpebolic sin or from
the exponential representation, what have some subtlety.
Of course both way give from the equation (3) the same
expression for the free energy

F =
Nh̄ω

2
+

N
β

ln
(

1− e−β h̄ω

)
≈ Nh̄ω

2
+

N
β

lnβ h̄ω

− Nh̄ω

2
+

Nβ (h̄ω)2

24
=

N
β

lnβ h̄ω +
Nβ (h̄ω)2

24
.

For the entropy, S, we have from the equation (5)

S = NkB
β h̄ω

eβ h̄ω −1
+NkB

∞

∑
k=1

e−β h̄ωk

k

≈NkB

[
1− µ

2
+

µ2

12
− ln µ +

µ

2
− (µ)2

24

]

= NkB

[
1+

µ2

24
− ln µ

]
.

The internal energy of the system can easer be get
from the equation (8), that have the form of the generat-
ing function of the Bernoulli numbers (GRADSHTEYN,
1984)

E =
Nh̄ω

2
+

Nh̄ω

eβ h̄ω −1
= Nh̄ω

[
1
2
+

(
1
µ
− 1

2
+

µ

12

)]
+O(µ3)≈ Nh̄ω

[
1
µ
+

µ

12

]
.

Appendix F: Equivalence Between the Expres-
sions for the Helmholtz Free Energy in Different
Approaches

The second term in the free energy, equation (6),

F =
Nh̄ω

2
+

N
β

ln
(
1− e−µ

)
,

can be write as

N
β

ln
(
1− e−µ

)
=

N
β

[
ln
(

1+ e−µ/2
)
+ ln

(
1− e−µ/2

)]
.

(31)
Let as consider the function ln

(
1+ e−µ/2

)
. As e−µ ≤ 1,

and by define

α ≡ µ/2, (32)

it is correct to write

ln
(
1+ e−α

)
= e−α − e−2α

2
+

e−3α

3
− e−4α

4
+ · · · .

By expanding each one of the exponentials in the power
series, we have

ln
(
1+ e−α

)
=

(
1
1

)[
1−α +

α2

2!
− α3

3!
+ · · ·

]
−
(

1
2

)[
1−2α +

4α2

2!
− 8α3

3!
+ · · ·

]
+

(
1
3

)[
1−3α +

9α2

2!
− 27α3

3!
+ · · ·

]
−·· · . (33)

Collecting the commons terms in the α power, we have

ln
(

1+ e−µ/2
)
=1− 1

2
+

1
3
− 1

4
+ · · ·︸ ︷︷ ︸

η(1)

−α

1+1−1+1−·· ·︸ ︷︷ ︸
η(0)


+

(α)2

2!

1−2+3−4+ · · ·︸ ︷︷ ︸
η(−1)

 · · ·
= η(1)−αη(0)+

(α)2

2!
η(−1)+ · · ·

(34)

Now, consider the function ln
(
1− e−µ/2

)
in the equation

(31); we also can write

ln
(
1− e−α

)
= ln

[(
1+ e−αł/2

)(
1+ e−α/4

)
(

1− e−α/4
)]

= ln
(

1+ e−α/2
)
+ ln

(
1+ e−α/4

)
+ ln

(
1− e−α/4

)
, (35)

and, by continue this process N times, we have

f (α)≡ ln
(
1− e−α

)
=

N

∑
n=1

ln
(

1+ e−α/2n
)

+ ln
(

1− e−α/2N
)
. (36)

We can substitute for each term in the sum of the equation
(36) the expansion, equation (34), taking into account that
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each term of this sum contributes with µ/2N , then

f (α) =
N

∑
n=1

[
η(1)− α

2n η(0)

+
1
2!

(
α

2n

)2
η(−1)+ · · ·

]
+ ln

(
1− e−α/2N

)
= η(1)N−η(0)(α)

1
2

N

∑
n=1

1
2n−1

+
(α)2

2!
η(−1)

1
23

N

∑
n=1

1
22n−1

− (α)3

3!
η(−2)

1
24

N

∑
n=1

1
23n−1 + · · ·

+ ln
(

1− e−α/2N
)

(37)

By taking the limit where N goes to infinity and evaluating
each geometric series we have

f (α) = lim
N→∞

Nη(1)−η(0)(α)
1
2

2

+
(α)2

2!
η(−1)

1
23

2
3

− (α)3

3!
η(−2)

1
24

2
7
· · ·

+ ln
(

1− e−α/2N
)

(38)

By using this results, the values of η(−2) = 0, η(−1) =
1/4, η(0) = 1/2, η(1) = ln2,. . . , the equation (38) can
be rewrite as

f (α) = lim
N→∞

N ln2− 1
2
(α)

+
(α)2

2!
1
24

1
3
−0+ · · ·

+ ln
(

1− e−α/2N
)

(39)

For large value of N we have the approximation

1− e−α/2N ≈ α

2N ,

and therefore imply that

ln
(

1− e−α/2N
)
≈ lnα−N ln2.

By using this results in the equation (39) we have

f (α) = lnα− α

2
+

α2

2!
1
24

1
3
−0+ · · · . (40)

With the help of the equations (31), (34), (40), the equation
(6) can be rewrite as

F =
Nh̄ω

2
+

N
β

[
η(1)−αη(0)+

(α)2

2!
η(−1)+ · · ·

+ lnα− α

2
+

α2

2!
1
24

1
3
−0+ · · ·

]
. (41)

By using the relation between the eta and zeta functions,
η(s) = (1− 21−s)ζ (s), and the equations (12),(32), the
expression of the Helmholtz fee energy, equation (41),
result totally equivalent to the expansion obtained by using
the Mellin transform approach, equation (18),

F =
Nh̄ω

µ

[
ln µ−

∞

∑
n=1

µ2n

(2n)!
ζ (1−2n)

]
.

Appendix G: The Approximated Expressions
for Thermodynamic Potentials in the Euler-
Maclaurin Approach

The Free energy F in the approximation µ2 without the

B4 contribution

F ≈ Nh̄ω

[
1
2
− e−µ

2µ
− Γ [0,µ]

µ
− 1

12
e−µ

µ
(1+µ)

]

= Nh̄ω

 ����
1©

1
2
−

 1
2µ
−
�
�
��
1©

1
2
+
�
���

2©
µ

4
− µ2

12


+

 γ

µ
+

1
µ

ln µ−���
1©

1+
�
���

2©
µ

4
− µ2

18

 − 1
12

(
1
µ
− µ

2
+

µ2

3

)

≈ N
β

lnβ h̄ω +
Nβ

24
(h̄ω)2 .

Exact Entropy S

S = kB
µ2

h̄ω

∂F
∂ µ

=
NkB

12
e−µ [19+µ (7+µ)+12eµ

Γ [0,µ]]

− kBµ
2

{
∂

∂ µ

1
µ

∞

∑
k=2

B2k

(2k)!

[
f (2k−1) (n)− f (2k−1) (0)

]}
.

Approximated Entropy S, with contribution of

(1/12) [ f ′(n)− f ′(0)]

S =
NkB

12
e−µ [19+µ (7+µ)+12eµ

Γ [0,µ]]+O(B4)

≈ NkB

12

(
19−12µ +

7µ2

2

)
+NkB

(
−γ− ln µ +µ− µ2

4

)
≈ NkB

[
1− lnβ h̄ω +

(β h̄ω)2

24

]
.
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