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Application and comparison of numerical methods in the solution of
systems of linear equations in space trusses problems
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sistemas de equações lineares em problemas de treliças espaciais
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Abstract
One of the interesting civil engineering applications is space truss, a three dimensional element, particularly
used as roof for industrial and commercial structure, covering large open areas with few or no internal
supports. This paper aims to compare different numerical methods implemented computationally for the
solution of the linear equations systems generated from the Newton-Raphson iterations in the incremental
process. The numerical solution of such linear systems are computationally costly, thus it is of our interest
to determine which numerical methods best suit the problem. To compare the computational cost of the
algorithms, a study of complexity is performed. Numerical simulations with the Matlab software are made of
space truss problems with geometric nonlinear behavior. The system of nonlinear equations is solved using
the Standard Newton-Raphson method associated with the Linear Arc-Length path-following technique. The
structures are discretized by the Finite Element Positional Method, whose fundamental variables are the nodal
positions of the finite element. For the processing time, the numerical results indicate a better performance
of the iterative methods compared to direct methods, especially for large orders problems, which are most
commonly found in the structural area.
Keywords: Space Truss. Finite Element Positional Method. Conjugate Gradient.

Resumo
Uma das aplicações interessantes da engenharia civil é a treliça espacial, um elemento tridimensional,
particularmente utilizado como cobertura para estruturas industriais e comerciais, cobrindo grandes áreas
abertas com poucos ou nenhum apoio interno. Este artigo tem como objetivo comparar diferentes métodos
numéricos implementados computacionalmente para a solução do sistema de equações lineares gerado
da iteração de Newton-Raphson no processo incremental. A solução numérica de tais sistemas lineares é
computacionalmente onerosa, portanto é do nosso interesse determinar quais métodos numéricos melhor se
adéquam ao problema. Para comparar o custo computacional dos algoritmos, um estudo da complexidade é
realizado. Simulações numéricas com o programa Matlab são feitas de problemas de treliças espaciais com
comportamento não linear geométrico. O sistema de equações não lineares é solucionado com o método de
Newton-Raphson Padrão associado a técnica de continuação Comprimento de Arco Linear. As estruturas
são discretizadas por meio do método dos Elementos Finitos Posicional, cujas variáveis fundamentais são
as posições nodais do elemento finito. Para o tempo de processamento, os resultados numéricos indicam
um melhor desempenho dos métodos iterativos em comparação com métodos diretos, especialmente para
problemas de ordem maior, que são comumente os mais encontrados na área estrutural.
Palavras-chave: Treliça Espacial. Método Posicional de Elementos Finitos. Gradiente Conjugado.
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Introduction

Trusses represent an efficient structural system that
can sustain considerable loads with a smaller amount of
materials. Since the beginning of its commercial use, this
system has been increasingly popular, especially in large
open areas with few or no intermediary support. Succes-
sful applications of lattice structural systems include re-
sidential and public buildings, bridges, tanks, television
towers, industrial buildings, and a great variety of other
types of structures (SEÇER, 2009). See an arc of an hangar
in Figure 1.

Figure 1: Arc of a hangar.

Source: (PERELMUTER; FIALKO, 2005).

Spatial trusses combine structural efficiency and a sig-
nificant cost reduction. The development and utilization
of spatial trusses in Brazil had a big boost with the cons-
truction, in São Paulo city, of the Anhembí Exposition
Center in the late 60’s. About 48000 aluminum tubular
bars compose its spatial truss, projected by the Canadian
engineer Cedric Marsh to a covered area of 62500 m2. In
the upcoming decades, the use of trusses in spatial struc-
tures multiplied in Brazil with constructions of relevance
importance and international repercussion. See for exam-
ple the covered structure of the brewery Brahma, in Rio
de Janeiro, with 132000 m2 of covered area (30 m to 60
m of free span) and the Brasilia Fair Trade Pavilion with
57000 m2 of covered area, assembled in only 100 days
(SOUZA, 2003).

One step in the practical computation of the finite
element approximation is the solution of a nonlinear al-
gebraic equations system, frequently containing a large
number of degrees of freedom. This system is commonly
solved using the Newton-Raphson method, in an incre-
mental and iterative procedure, requiring the solution of
an equally large linear system of algebraic equations on
each iteration (WHITELEY, 2017).

Structural analysis may involve models and schemas

which are quite typical and the finite element mesh can
contain from 20 to 30 thousand nodes, 30 to 50 thousand
elements of various types (bars, plates, shells, elastics
links), and have more than one hundred of stiffness pro-
perties sets (PERELMUTER; FIALKO, 2005).

The quick solvers in the Finite Element Method (FEM)
analysis available today include direct methods for sparse
matrices and highly efficient iterative methods. Should
the number of degrees of freedom of a linear system of
algebraic equations be sufficiently large, it is not feasi-
ble to solve the system using direct methods, such as LU
factorisation. Hence it is preferable to use the iterative
methods. The choice of iterative method depends on the
properties of the linear system being solved. The Conju-
gate Gradient method (CG) is one of the most efficient
iterative methods for the linear system solution, whose
coefficient matrix (stiffness matrix) is symmetric and posi-
tive definite (PAPADRAKAKIS; GANTES, 1988; GREENBAUM,
1997; WHITELEY, 2017; DVORNIK; LAZAREVIĆ, 2017).

We perform in this paper a numerical analysis com-
paring the computational efficiency of direct and iterative
methods algorithms for the solution of linear equations
systems, generated at each iteration of the FEM formula-
tion in the incremental process, from static problems of
spatial trusses with geometric nonlinear behavior.

In the discretization of these structures, we use the Fi-
nite Element Positional formulation (CODA, 2003), which
is based on the principle of minimum potential energy, and
it is classified as a Total Lagrangian Formulation. The fun-
damental unknowns of the problem are the nodal position
of the finite element instead of the displacements, which
are the unknowns in standard Finite Element Method for
solids. The material constituting the bars has a linear-
elastic constitutive relation. The structural problem, de-
scribed by a nonlinear equations system, is solved by the
Newton-Raphson method (NR) associated to the Linear
Arc-Length path-following technique.

Numerical simulations were carried out in Matlab en-
vironment, and were implemented direct methods (LU
Factorization and Gauss Elimination Method – GEM)
and iterative methods (Conjugated Gradient – CG; Pre-
conditioned Conjugated Gradient – PCG; and Stabilized
Bi-Conjugate Gradient – Bi-CGSTAB). The algorithms
are compared according to the following parameters: CPU
time (in seconds); and, for CG, PCG and BI-CGSTAB,
the average number of iterations necessary to solve the
linear systems for each iteration of NR method (kav). All
methods provide the same displacement at a nodal point
of the structure, and the solution of nonlinear problems is
achieved with the same number of load steps and accumu-
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lated iterations.

Time complexity of algorithms

The complexity study is a set of important mathe-
matical calculations used for developing and analyzing
algorithms. This study consists of counting the number of
operations in an algorithm, such as additions, subtractions,
multiplications, divisions, and comparisons. It allows us
to compare, for the same problem, the computational cost
of different algorithms and to identify their characteris-
tics. Using this approach, we can choose a numerical
method that is more practical and computationally less
costly (SEDGEWICK; FLAJOLET, 2013). The addition and
subtraction of real numbers are approximately equally
costly, as well as multiplication and division. Therefore,
in the study of the numerical methods of this text, we do
the counting of the operations in these pairs.

To calculate the complexity of an algorithm, we write
the computational cost of the operations as a function
of n, which represents the dimension of the algorithm
entry object. For our study specifically, n represents the
dimension of the linear system we want to solve. Small
values of n represent problems that are easy to solve by
different methods and do not show a relevant difference
in processing time or computational cost. Therefore, we
direct time complexity to problems of large order. They
represent a more critical and delicate situation, since in
some cases the computational cost grows exponentially
on n. This could make the problem intractable from the
computational point of view. In this context, the concept of
limit as n approaches infinity is an important aspect in the
area, evidencing the importance of asymptotic calculations
in the complexity study of algorithms (KOZEN, 2012).

The numerical algorithms may take different proces-
sing time, even for the same algorithm running multiple
times on the same computer. This is due to different fac-
tors that arise from the computer itself, which can vary
continuously, varying the time as well. For this reason, the
complexity study is useful in the comparison of numeri-
cal methods, providing theoretical support to numerical
evidence. It explains why some methods are faster than
others are (SEDGEWICK; FLAJOLET, 2013).

The complexity is of great importance to determine
which routine of a numerical method has the higher com-
putational cost. By identifying this routine, it is possible to
focus in this part of the algorithm, since a modification in
it will result in a more effective improvement of the whole
algorithm. We can also modify the most costly routine
specifically for the input system, reducing unnecessary

operations and increasing the algorithm speed. In some
special cases, as a sparse matrix, there are many unne-
cessary operations that we can avoid and so optimize the
algorithm. From the analysis of complexity and theore-
tical comparison, we can analyze whether the theoretical
behavior matches the practical behavior to culminate with
the choice of the best method.

Numerical methods for solution of linear sys-
tem

Let us consider the linear equations set:

Ax = b, (1)

where A is a symmetric positive definite sparse matrix
arising when the Finite Element Method is applied to
problems of structural mechanics. The direct methods and
iterative methods can be applied to solve this system. The
direct methods find the exact solution of the problem,
disregarding rounding errors. The ones of most common
use are the Gaussian Elimination and LU Factorization.

Gaussian Elimination method (GEM) is a systematic
application of elementary row operations to a system of
linear equations in order to convert the system to upper
triangular form. Once the coefficient matrix is in upper
triangular form, substitution is used to find a solution
(MON; KYI, 2014). We use this algorithm frequently to
solve linear systems since it can solve any system on the
form equation (1) such that det(A) 6= 0. However, this
method becomes slower for the systems obtained from
structural problems, since these are of great order and due
to the row-by-row matrix operations.

The LU Factorization (LU) consists, in turn, of the
factorization of the matrix A in two different matrices
L and U. These matrices are lower and upper triangular,
respectively. This factorization occurs in such a way that
the product from L and U equals the matrix A : A = LU.
As the resulting system and the initial system are mutually
dependent, their solution is equivalent. Since Ax = b, by
doing y = Ux and Ly = b, we return to equality A = LU.
An advantage of LU is that the same factorization can
be used for different vectors b (BANDARA; RANASINGHE,
2011).

GEM and LU algorithms have similar computational
cost with respect to the number of operation pairs. In both
cases, if A is an n× n matrix, the number of multiplica-
tions and divisions is given by n3/3+ f (n), where f (n)

is a quadratic polynomial in n; the number of additions
and subtractions is also given by n3/3+ f (n). For large
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values of n the higher order terms stand out, hence both
algorithms have approximately the same computational
cost. Indeed, if f (n) and g(n) are quadratic polynomials,
f (n) for GEM and g(n) for LU, then:

lim
n→∞

n3/3+ f (n)
n3/3+g(n)

= 1, (2)

justifying the same approximate computational cost for
large values of n.

Iterative methods are extremely important for linear
algebra, since direct methods have complexity close to
O(n3), and it is extremely expensive to solve them with
very large values of n. Iterative methods require less me-
mory and have lower computational cost compared to
direct methods in large problems (SAAD, 2003).

The Conjugate Gradient method (CG) attempts to ob-
tain an approximation of the vector x in Ax = b. The
updates of the vector x(k−1) to x(k) are made through the
equation (RODRIGUEZ, 2013; GOŚCIK, 2008):

x(k) = x(k−1)+ t(k)v(k), (3)

until finding a satisfactory approximation for it. The pa-
rameter t(k) and the search direction v(k) are chosen using
the fact that a vector x* is a solution of a linear system
Ax = b if and only if it minimizes:

g(x) = 〈x,Ax〉−2〈x,b〉 , (4)

where the notation 〈a,b〉 indicates the inner product bet-
ween a and b. Through the direction vector and with v 6= 0,
the CG method defines a search direction than decreases
the values of g in each iteration: g(x(k+1))< g(x(k)). For
ill conditioned matrices, the results of the CG can diverge
very easily, due to rounding errors that appear from these
matrices. In these cases, we can multiply the matrix A by
another matrix to reduce rounding errors, but in a way that
we can find the original solution easily. More precisely,
let C be a n×n matrix and let:

Ã = C−1A
(
C−1)T

, (5)

where C−1 is the inverse of C and CT is the transposed
of C. With equation (5) we find an equivalent new linear
system:

Ãx̃ = b̃, (6)

where x̃ = CT x and b̃ = C−1b. Thus, if we choose C−1

so that equation (6) is a better conditioned system, we can

find its solution and then find the solution of the origi-
nal system, only by multiplying x̃ by matrix

(
C−1)T

. By
doing so, we are preconditioning the matrix and this mo-
dification shall not change its symmetry, even after apply-
ing the preconditioner (FORTES, 2008). We can solve the
new system by the Conjugate Gradient method; however,
we shall call it now the Preconditioned Conjugate Gra-
dient method (PCG), since we apply the preconditioner
to improve the matrix and optimize the solution (ZHANG;

ZHANG, 2013).
The Stabilized Bi-Conjugate Gradient method (Bi-

CGSTAB) (VORST, 1992) is an iterative method to solve
linear systems that does not require any hypothesis on the
matrix A, other than det(A) 6= 0 (FORTES, 2008; HAJARIAN,
2013). We obtain this method through the Bi-Conjugate
Gradient method and it does not use the conjugated matrix
(MOTTA, 2010).

We can calculate the time complexity of iterative me-
thods similarly to direct methods. We count the operations
for a single iteration and then multiply by the number k

of iterations that the algorithm performs. We recall that
n denotes the number of columns in A. The number of
multiplications and divisions in the Conjugated Gradient
method, for example, is:

(k+1)(n2 + f (n)), (7)

where f (n) is a linear polynomial in n. We can combine
this expression with the one from the direct methods to de-
termine a condition involving k and n so that the Conjugate
Gradient method converges faster than a direct method.

So, ignoring the terms of lower degree, we obtain:

(k+1)n2 < n3/3,
k+1 < n/3,
k < n/3−1.

(8)

Usually, for the linear systems in structural engine-
ering, the number of iterations k is much smaller than the
matrix dimension n. For better-conditioned matrices, we
expect to find a good approximation in about

√
n steps.

For large values of n,
√

n is much smaller than the quan-
tity n/3− 1 given in equation (8), as evidenced by the
equation:

lim
n→∞

√
n

n/3−1
= 0. (9)

With these concepts, we can understand clearly why
the iterative methods are more effective for large values
of n.
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Formulation of the space truss finite element

This section describes an element in the truss structure
using the Finite Element Positional formulation (CODA,
2003). Such an element transmits only axial load and
has a constant cross-sectional area A. The coordinates
(X1,Y1,Z1) and (X2,Y2,Z2) represent the initial configura-
tion of the bar element (also known as reference coordi-
nates). After a configuration change due to truss displace-
ments, the bar will have new coordinates (x1,y1,z1) and
(x2,y2,z2) (LACERDA; MACIEL; SCUDELARI, 2014). The ini-
tial (or reference) length L0 and the current length of the
bar L are calculated, respectively, by:

L0 =
√
(X2−X1)2 +(Y2−Y1)2 +(Z2−Z1)2, (10)

L =
√

(x2− x1)2 +(y2− y1)2 +(z2− z1)2. (11)

The tangent stiffness matrix Kel and the elementary
internal forces vector Fel are given by:

Kel =
EA
L3

0
B+

EA · εG

L0
C, (12)

Fel =
EA · εG

L0
d, (13)

where EA is the axial stiffness and the Green strain εG is
the given by:

εG =
L2−L0

2

2L0
2 . (14)

In equations (12) and (13), the matrices B and C are
defined as follows:

B =

[
I3 −I3

−I3 I3

]
, (15)

C = ddT , (16)

where d = [x1− x2,y1− y2,z1− z2,x2− x1,y2− y1,z2−
z1]

T and I3 is the identity matrix of order 3.

Method for the solution of nonlinear pro-
blems

The basic problem of nonlinear analysis is to find
the equilibrium configuration of a structure that is under
the action of an applied load. In this section we present
the formulation and the algorithm for Newton-Raphson
method adapted to the nonlinear structural problem.

Nonlinear structural problem

The nonlinear equations system that governs the static
equilibrium of a structural system can be written by:

g = λFr−Fint(d) = 0, (17)

where g represents the unbalanced forces vector, Fr is a
reference vector characterizing the external load direction,
λ is the load parameter and Fint is the internal forces
vector, which is a function of the nodal coordinates vector
d.

The Newton-Raphson method has been one of the
most utilized in the solution of equation (17). This method
only provides the solution of one point in the equilibrium
path. For other points, the iterations of this method are
combined with an iterative and incremental procedure.
The procedure is given as follows (BATHE, 2006; SOUZA et

al., 2017):

K
(

d( j−1)
)

δd( j) = δλ
( j)Fr−g( j−1), (18)

d( j) = d( j−1)+δd( j), (19)

with j = 1,2, ..., where K is the tangent stiffness matrix,
δd( j) is the sub-incremental nodal coordinates vector and
δλ ( j) is the load sub-increment. Note that the right super-
script j is used herein to refer to the current iteration and
( j−1) previous iteration. The load total parameter λ ( j) is
update by:

λ
( j) = λ

( j−1)+δλ
( j). (20)

Linear Arc-Length method

The methodology for the solution of nonlinear struc-
tural problems must be able to trace the complete equili-
brium path, identifying and computing the limit points.
For this purpose, an incremental-iterative process is used
and it consists of two steps (LEON et al., 2011):

1) From the last equilibrium configuration of the struc-
ture, an increment of load is selected (defined as initial
load sub-increment - δλ (0)), aiming to satisfy some cons-
traint equation imposed on the problem. After selecting
this parameter, the initial increment of nodal coordinates
is determined δd(0); and

2) The second solution step seeks, by means of a path-
following strategy, to correct the incremental solution,
initially proposed in the previous step, in order to restore
the structure equilibrium. If the iterations involve nodal
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coordinates (d) and the load parameter (λ ), then an ad-
ditional constraint equation is required. The format of
this equation is what distinguishes the various iteration
strategies.

In the Linear Arc-Length method (RIKS, 1972; RIKS,
1979), the iteration path is always kept orthogonal to the
initial tangent at each step. The expression for the initial
load sub-increment (predicted solution) is given by:

δλ
(0) =

∆l
‖tδdr‖

, (21)

where ∆l represents the arc-length increment and tδdr is
the part of δd( j) related to the vector Fr in the previous
time step. The arc-length ∆l can be used as the control
parameter in the current time step as follows (CRISFIELD,
1991):

∆l = t
∆l
(

Nd
t j

)(1/2)

, (22)

where t∆l represents the arc-length increment in the pre-
vious time step, Nd is the number of desired iterations
for the convergence of the current iterative process, and
t j is the number of iterations that were required to con-
verge in the previous time step. In the subsequent iterative
process, the constraint equation used to calculate δλ ( j)

is obtained making the iterative solution (δd( j),δλ ( j)Fr)

results orthogonal to the predicted incremental solution
(∆d(0),∆λ (0)Fr). More precisely, we have:

δd( j)T
∆d(0)+δλ

( j)
∆λ

(0)Fr
T Fr = 0. (23)

Assuming that the inverse of the matrix K exists, the
equation (18) can be rewritten by isolating the vector
δd( j):

δd( j) = δλ
( j)K

(
d( j−1)

)−1
Fr−K

(
d( j−1)

)−1
g( j−1).

(24)
From equations (23) and (24), an expression is ob-

tained for the determination of the load sub-increment
parameter δλ ( j) ( j > 1):

δλ
( j) =− ∆d(0)T

δd( j)
g

∆d(0)T
δd( j)

r +∆λ (0)FT
r Fr

. (25)

The vectors δd( j)
g and δd( j)

r are obtained by, respec-
tively:

δd( j)
g = K

(
d( j−1)

)−1
g( j−1), (26)

δd( j)
r = K

(
d( j−1)

)−1
Fr, (27)

where g( j−1) = λ ( j−1)Fr−Fint

(
d( j−1)

)
. Neglecting the

second term in the denominator of equation (25), namely,
FT

r Fr = 0, the parameter δλ ( j) results:

δλ
( j) =−∆d(0)T

δd( j)
g

∆d(0)T
δd( j)

r

. (28)

The correct choice of the signal is so important in
definition of the sequences of solutions (d,λ ) that allow
continuous advancement in load-displacement response.
The displacements vector (u) is determined as follows:

u( j) = d( j)− 0d, (29)

where 0d is the nodal coordinate vector at time 0 (un-
deformed structure). The signal of the initial load incre-
ment (∆λ (0)) can be positive or negative. The procedure
used in this paper consists of the analysis of the internal
product between the sub-incremental nodal coordinates
obtained in the previous load step (t∆d) and the initial
nodal coordinates increment (δd(0)

r ). If t∆dT
δd(0)

r < 0,
then ∆λ (0)←−∆λ (0) and the predictor ∆d(0) will have
opposite direction of δd(0)

r ; otherwise, the predictor will
have the same direction. The convergence criterion is de-
termined by the residual load norm and the reference load
norm applied by:

‖g( j)‖= tol · ‖Fr‖, (30)

where tol is the tolerance provided by the user. The algo-
rithm for the standard Newton-Raphson method associated
with Linear Arc-Length Method (RIKS, 1972; RIKS, 1979;
WEMPNER, 1971) is shown below. The parameters conside-
red in the algorithm input are: initial arc length (∆l(0));
maximum number of iterations in each step load ( jmax); re-
quired number of iterations (Nd); tolerance (tol); load in-
crement (∆P); and maximum number of load steps (lsmax).
The algorithm outputs are: nodal coordinate vector (d); to-
tal load parameter λ ; total number of load steps (ls); total
number of iterations ( j); and nodal displacement vector
(u).

Numerical simulation of spatial trusses

In this section, we apply the direct (GEM and LU) and
iterative (CG, PCG and Bi-CGSTAB) methods in space
trusses with geometric nonlinearity, analyze their perfor-
mance and compare them to find the most effective one
for the problem. The algorithms are implemented with the
Matlab software version 8.6 R2015b (MATHWORKS, 2015).
The computational tests were performed in a computer
Core i7 with 8 GB of memory.
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Algorithm - Newton-Raphson Method associated with the
Linear Arc-Length Method (Riks-Wempner algorithm)

Input: d(0), lsmax, jmax,Nd,∆l(0), tol,∆P
1. ∆d← 0, λ ← 0
2. For ls← 1, ..., lsmax do
3. δdr ←K(d)−1Fr

4. ∆λ ← ∆l/‖δdr‖
5. If ∆dT

δdr < 0 then
6. ∆λ ←−∆λ

7. End-if
8. ∆d(0)← ∆λδdr

9. ∆d← ∆d(0)

10. g← (λ +∆λ )Fr−Fint(d+∆d)
11. For j← 1, ..., jmax do
12. δdg←K(d+∆d)−1g
13. δλ ←−

(
∆d(0)T

δdg

)
/
(

∆d(0)T
δdr

)
14. δd← δdg +δλδdr

15. ∆d← ∆d+δd
16. ∆λ ← ∆λ +δλ

17. g← (λ +∆λ )Fr−Fint(d+∆d)
18. If ‖g‖ ≤ tol · ‖Fr‖ then
19. Break
20. End-if
21. δdr ←K(d+∆d)−1Fr

22. End-for
23. d← d+∆d
24. λ ← λ +∆λ

25. ∆l← ∆l(Nd/t j)0.5

26. End-for
27. u← d−0 d
Output: u,d,λ , ls, j

Circular truss dome

Consider the circular truss dome illustrated in Fi-
gure 2a-b, constructed in steel with elasticity modulus
of 206.0GPa. The transversal section area for all bars is
2.16x10−4m2. At the base of the truss, there are pinned
supports and we applied a vertical load P at its apex.
This structure has 73 nodes, 168 elements and 219 de-
grees of freedom. The numeric results (kav and t) obtained
from the implementation of the methods are presented
in Table 1. The parameters considered in the simulations
are: ∆l = 0.01; jmax = 100; Nd = 3; tol = 1.0x10−6; and
∆P = 37.5kN. The graph, which relates the vertical dis-
placement in the apex and the load obtained with the algo-
rithm, is shown in Figure 2c with two load limit points. We
compare our graph with the numerical results in (REZAIEE-

PAJAND; SARAFRAZI; REZAIEE, 2012). The simulations per-
formed with the codes developed in this paper were con-
ducted beyond the equilibrium points obtained by these
authors. We applied to this structure 105 load steps and
obtained a vertical deflection of −502.7091mm.

Figure 2: The circular truss dome: a) superior view; b)
lateral view; and c) equilibrium path.

Source: The Authors.

Table 1: Numeric results from the circular truss dome
(number of variables: n = 219).

Methods kav t(s)
LU - 3.96

GEM - 5.56
CG 30.7 2.70

PCG 38.7 3.31
Bi-CGSTAB 27.1 2.75

Source: The Authors.

Space trusses with pyramidal structures

Figure 3 shows the schematic drawing of one square-
on-square truss module, with pyramidal structures mea-
suring 2.5m×2.5m and height of 1.5m. This truss is sub-
jected to concentrated load of intensity P at the top. The
bars have tubular cross-section Φ76x2 for the bottom bars
and Φ60x2 for the remaining bars, and all bars have elas-
ticity modulus E = 200.0GPa. In the analysis, three struc-
tures were considered by varying the number of modules
in the directions x and y:

(a) 1 module in the axis x and 1 module in the axis y

(61 nodes, 200 elements and 183 degrees of freedom);
(b) 2 modules in the axis x and 2 modules in the axis

y (221 nodes, 800 elements and 663 degrees of freedom);
and

(c) 3 modules in the axis x and 3 modules in the axis y

(481 nodes, 1800 elements and 1443 degrees of freedom).
As described above, we consider structures of in-
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creasing size in (a), (b) and (c). This generates increa-
sing linear systems, which allow us to verify the perfor-
mance of the methods in problems of different dimension.
We consider for the simulations the following parame-
ters: ∆l = 0.5; jmax = 100; Nd = 3; tol = 1.0x10−6; and
∆P = 0.01N. The numerical results (kav and t) are pre-
sented in Table 2.

Figure 3: Representation of one truss module with pyra-
midal structures.

Source: The Authors.

Table 2: Numerical results for the spatial trusses (number
of variables: n = 183 (1x1); n = 663 (2x2); n = 1443 (3x3)).

Methods
Modules

1x1 2x2 3x3
kav t(s) kav t(s) kav t(s)

LU - 0.46 - 13.74 - 333.02
GEM - 0.61 - 29.07 - 716.65
CG 27.9 0.30 60.9 1.68 86.1 10.01

PCG 25.3 0.34 52.3 2.63 73.9 20.89
Bi-CGSTAB 24.0 0.31 46.9 1.87 65.1 13.56

Source: The Authors.

Arc-shaped space truss

Figure 4 shows an arc-shaped space truss with 902
nodes and 3801 bars. This structure is analyzed under
loads P applied vertically (in the z direction) at its top,
and at its base (z = 0) the displacements are restricted.
The axial stiffness (EA) of its members is 1.0×104kPa.
The parameters adopted in the analyzes are: ∆l = 5.0;
jmax = 100; Nd = 3; tol = 1.0x10−6; and ∆P = 100kN.

The numerical results (kav and t) obtained from the
analysis with the PCG and CG methods are shown in Table
3. Figure 5 shows the equilibrium path (curve deflection in
the direction z versus load at node 433). The incremental-
iterative process with the Newton-Raphson method was
completed with 50 load steps and 165 iterations. Figure
6 illustrates the arc-shaped space truss deflections and
indicates the compression (red color) and traction (black
color) in the bars .

Figure 4: Structural model of the arc-shaped space truss.

Source: The Authors.

Figure 5: The load–deflection curve at top of the arc-
shaped space truss.

Source: The Authors.

Table 3: Number of iterations and processing time (num-
ber of variables: n = 2706).

Methods kav t(s)
CG 387.8 314.67

PCG 299.3 827.46

Source: The Authors.

Analysis of the numerical results

For large values of n, the iterative methods (CG, PCG
and BI-CGSTAB) performed much better than the direct
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Figure 6: Deflections of the arc-shaped space truss.

Source: The Authors.

methods (LU and GEM), as shown in Tables 1 and 2.
Despite the first simulation in Table 2 (1x1 module) sho-
wing us some difference in the processing time between
the direct and iterative methods, it is in the second (2x2
modules) and third (3x3 modules) simulations that this
difference becomes evident, due to the higher value of
n. The iterative methods require less memory and, as our
simulations suggest, have lower computational cost in
large dimension problems.

The efficiency of the iterative methods observed in
Table 2 is yet supported by the time complexity of the
algorithms. See for example the third problem in Table
2 (3x3 modules), where the size n of the matrix is given
by the product between the number of nodes and the free-
dom degree: n = 1443; the CG reached the solution with
a mean number of iterations equal to 86.1. Since equa-
tion (8) determines that for this problem k < 480, the
average number of iterations satisfies this condition and
supports our results. The numerical results of the CG
method present the shortest processing time (CPU time)
in Tables 1 and 2. Despite the fact that the BI-CGSTAB
method requires fewer average iterations (k), the proces-
sing time was higher. Hence, the reduction in the iteration
number does not compensate the higher computational
cost in the BI-CGSTAB method, when compared to CG.
Indeed, the number of multiplications and divisions in the
BI-CGSTAB method is:

k2(2n2 +h(n)), (31)

where k2 is the number of iterations in the execution and
h(n) a linear polynomial in n. Let k1 be the number of
iterations in the execution of the CG method. Equations
(7) and (31) suggest that CG is more efficient than BI-
CGSTAB if:

(k1 +1)(n2 + f (n))< k2(2n2 +h(n)). (32)

Ignoring the terms of lower degree, we obtain:

(k1 +1)n2 < 2k2n2,

k1 < 2k2−1.
(33)

Table 2 shows that this condition is verified in our ex-
periments. Once again, we observe the time complexity
of the algorithms providing theoretical support for our
numerical results. We can accelerate even more the con-
vergence of the CG method by using preconditioners. In
the simulation with the PCG, we use the diagonal precon-
ditioner or Jacobi’s preconditioner, which is constructed
with the elements of the main diagonal of the stiffness
matrix K (ALMEIDA; PAIVA, 1999):

Mi j =

{
Ki j, i f i = j

0, i f i 6= j
. (34)

In the second problem (Table 2), the solution with the
PCG was reached with less iterations when compared to
the CG, but with higher CPU time. We highlight the low
cost in the construction of the diagonal preconditioner,
once there are only used the elements of the main diag-
onal of the stiffness matrix. It is important to emphasize
that the construction of a preconditioner can be expen-
sive. A careful implementation shall be realized to obtain
competitive numerical results, both in terms of speed and
robustness.

The problem of the spatial trusses in Figures 2 and
3 are enough to reach the conclusion that the iterative
methods perform far better than the direct methods (Tables
1 and 2). Hence only iterative methods were used in the
solution of the problem of the spatial truss in Figure 4.
It is interesting to note that in this problem we also have
better performance from the CG method. One can use the
pre-conditioned version of the Bi-CGSTAB method in
order to improve the matrix conditioning, increasing the
convergence rate.

Figure 7 shows the structure of the stiffness matrix K
(obtained with the "spy" function of Matlab) for the arc-
shaped space truss problem. Note that this matrix is sparse
of the band type, whose non-zero elements appear on the
main diagonal and on parallel diagonals, with a sparsity
of 99.007 %. Large matrices require a large storage space
and, even if there are computers with the greatest capac-
ity memory currently, it is usually not enough to store
square matrix. In order to make the storage of the ma-
trix and the operations on it less computationally costly,
we can use techniques based on the storage of non-zero
values, such as CSC (Compressed Sparse Column) and
CSR (Compressed Sparse Row) (FILHO; XAVIER, 2015).
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In the program developed we used the "sparse" function,
which stores the non-null elements of the original matrix,
disregarding the elements equal to zero.

The main attraction in the use of iterative methods for
the solution of sparse linear equations system is that these
procedures perform on the matrix K only two operations:
multiplication of K and KT by a vector. The CG method
seeks the solution of the system by minimizing the error
from the solution found in each iteration k.

Figure 7: Structure of the stiffness matrix K with nz =
72712 non-zero elements.

Source: The Authors.

Final considerations

The increasing simulation of complex structural mo-
dels through the Finite Elements Method requires handling
large amounts of data. As well as attempting to decrease
the response time for solving the structural problem, han-
dling these data is fundamental in the method, although
with today’s computers, this remains a challenge.

Solving the generated linear systems for each iteration
is, usually, the step that requires greater computational
effort during the nonlinear simulations of structural pro-
blems. If the linear systems in hand are small, then one
may use whatever method one feels more comfortable
with. However, if one is handling larger matrices, then
iterative methods appear to be more efficient from the
perspective of processing time. In particular, the time
complexity analysis of the algorithms and our numeri-
cal simulations suggest that the CG method represents a
robust and efficient method.

The stiffness matrix in a structural problem is charac-
terized by a high sparsity index. It is possible to obtain

in this case a better performance of the methods through
algorithms that can store the nonzero coefficients in the
matrix and make operations between matrices and vec-
tors with these coefficients. This avoids the redundant
calculations with null elements.

We indicate as a possibility of future work the identifi-
cation of the sparsity pattern of the matrices generated in
the solution of the problems treated in this work. In addi-
tion, we consider an interesting problem to study trusses
with physical nonlinearity and to adapt the implemented
code for studies in dynamic analysis. We also suggest
the implementation of other preconditioners, for exam-
ple, LU incomplete factorization or Cholesky incomplete
factorization.
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