
75
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Novo módulo IEEE 802.11 para o NS 2

New IEEE 802.11 MAC module for NS 2

Eduardo Henrique Molina da Cruz1; Elvio João Leonardo2

Resumo

Este artigo apresenta uma nova implementação para o protocolo de controle de acesso ao meio do
IEEE 802.11 para ser utilizado no simulador NS 2. É de conhecimento geral que a implementação
corrente desse protocolo no NS 2 é semanticamente e sintaticamente incorreto. Esse fato motivou-nos a
projetar e implementar uma alternativa que fosse mais próxima do protocolo especificado, e, além disso,
oferecer algo de entendimento e manutenção mais fácil. O módulo proposto está baseado em máquinas
de estados finitos, onde as relações entre eventos e procedimentos são facilmente identificáveis. As
mudanças propostas foram inseridas no NS 2 e verificadas em comparação à implementação original. O
desempenho do novo módulo mostrou-se bom, sendo que as diferenças de comportamento encontradas
devem-se às falhas existentes na implementação atual.
Palavras-chave: MAC. Simulador NS 2. IEEE 802.11.

Abstract

This article presents a new implementation of the IEEE 802.11 Medium Access Control (MAC) protocol
to be used with the network simulation tool NS 2. It is well known that the current implementation of
this protocol is faulty both semantically and syntactically. This fact has motivated us to design and
implement an alternative that is closer to the protocol specified by the standards, and that it is easier
to understand and to change. The proposed module is based on a few finite state machines, with links
between events and procedures easily understood. The proposed changes were added to NS 2 and tested
against the original implementation. The new module performed well and the differences found can be
justified by the faults present in the original implementation.
Key words: MAC. Network Simulator 2. IEEE 802.11.

1 Undergraduate student, Computer Science, State University of Maringa; E-mail: eduardohmdacruz@gmail.com.
2 Assistant Professor, Informatics Department, State University of Maringa, E-mail: elvio.leonardo@din.uem.br.

76
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Cruz, E. H. M. da; Leonardo, E. J.

Introduction

Network simulation is commonly used to obtain
information about the behavior of networks prior
to its deployment, mimicking an environment as
close as possible to the real one. The information
acquired can be used in several ways: to help
design the network, to find its optimum parameters
and topology, or its bottlenecks, to evaluate new
ideas and test new solutions, as well as academic
purpose.

The Network Simulator 2 (FALL, 1999)
is a powerful toolkit for simulating networks.
Unfortunately, its implementation of the MAC 802.11
protocol disappoints in many ways. The results it gives
are not necessarily correct (HENDERSON et al.,
2006; SCHMIDT-EISENLOHR; LETAMENDIA-
MURUA; TORRENT-MORENO, 2006; CHEN,
2007) because it has semantic issues, the code is
badly written and, although it is coded in C++, it
does not follow the idea of Object Orientation
(OO).

In our solution, we have focused in the IEEE
specification, following it whenever it was possible.
By taking advantage of OO, we have programmed
each finite state machine that composes the MAC
Layer separately. By doing this we have achieved
clean and compact software module for the IEEE
802.11.

This article is organized as follows: Section 2
presents an overview of the IEEE 802.11 protocol.
Section 3 discusses the problems of the current
implementation of the protocol, and Section 4
presents the new implementation. A conclusion is
given in Section 5.

Overview of 802.11 MAC protocol

Wireless networks are much more flexible than
the traditional wired ones. They allow networks
to be deployed without the hard work and the
expensive costs associated to the installation of
wires and building modifications. Besides, wireless

networks allow communication at places that would
not be practical with wired ones, such as airports,
restaurants and other public areas.

The IEEE 802.11 standards (CROW, 1997; IEEE,
1999) support both ad-hoc and infra-structured
network configurations. In ad-hoc networks, stations
can directly connect to another one. On the other
hand, in infra-structured networks, a usually fixed
point, called AP (Access Point) works as a base
station and centralizes all communication between
terminals.

The BSS (Basic Service Set) comprehends
a group of stations that are under control of a
coordination function, and it is the base of the IEEE
802.11 architecture. The protocol specification
covers functions in several layers, such as the
Physical Layer and the MAC Sublayer. The focus
of this study is with the MAC Sublayer.

There are two modes of operation in a BSS: the
DCF (Distributed Coordination Function) and the
PCF (Point Coordination Function). The DCF is
designed for asynchronous data transfers and it is
able to guarantee the integrity of the delivered data.
It is used in ad-hoc networks. PCF is a mode of
operation suited to the quick transmission of delay
sensitive data, such as media streaming. It is based
on polling stations, with the right of transmission
and the synchronism controlled and centralized in
the AP. This work’s concern is limited to the DCF
mode since this is the only one available in current
implementation of the network simulator.

The DCF is the standard access method for
exchanging data. It operates alone in ad-hoc networks
and together with the PCF in infra-structured ones.
The DCF is based on a carrier sense with collision
avoidance mechanism referred to as virtual carrier
sense.

The MPDU (MAC Protocol Data Unit) contains
in its header information about the packet, like the
transmission duration and a 32-bit number (CRC)
used to check data integrity. The duration field is
used by stations to perform the virtual carrier sense,

77
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Novo módulo IEEE 802.11 para o NS 2

updating their NAV (Network Allocate Vector) with
the period of time that the environment will stay
busy.

If the medium is busy at the start of a transfer,
or it does not remain idle for at least DIFS (DCF
Interframe Space), the station must wait the medium
to become idle and then it should go to backoff state.
Otherwise, transfers may begin. A hand-shaking is
performed whenever the size of an MPDU exceeds
a constant known as RTS Threshold. The RTS
(Request To Send) is a small packet sent to test if the
destination station can accept transfers. If it does,
it sends back to the source station a CTS (Clear
To Send) packet after a period known SIFS (Short
Interframe Space). After this is done, the MPDU
transfer may begin after another SIFS. If it completes
successfully, the destination checks the integrity of
received data by looking at the 32-bit CRC. If it
is correct, it sends an ACK (Acknowledgment) to
the source after a SIFS time. If any of these steps
fails, the source station waits for an EIFS (Extended
Interframe Space) period and then goes to backoff
state. Please, note that broadcast packets do not have
handshake and acknowledgment.

It is important to say that the backoff procedure
must be called only if the medium stays idle for an
IFS (Interframe Space) period. When a station goes
to backoff state, it stays idle for a time randomly
generated and then try to re-send the packet. The
backoff timer is paused whenever the medium
becomes busy. Note that, theoretically, all the other
stations in the BSS hear the packets and set up their
NAV, avoiding collisions if they receive a packet
from the transmitting station.

Figure 1. Code samples of current implementation: (a)
Method that checks if the MAC is idle; (b) Method called
when backoff timer expires.

Problems of the original implemen-tation

The NS version of the MAC 802.11 described
here is version 2.29, so there might be some
divergences for other releases.

In the original code, the class named Mac802_11
is the “kernel” of everything. All the states machines
are programmed inside it, creating a disorganized
environment. An explanation of the design can be
found in (FALL, 2006; LIU, 2008). The code is
hard to understand and in some cases it does not
simulate the protocol as specified by IEEE, possibly
generating incorrect results.

There are other classes, mostly of them just timer
handle classes, of which we will talk about later.
Here, we will present some sections of code and
comment them, showing the importance in creating
a replacement for the official implementation.

The Code. The class Mac802_11 mentioned
earlier takes care of all the State Machines, controls
the timers and sends and receives the packets; this

looking at the 32-bit CRC. If it is correct, it sends an ACK (Acknowledgment) to the source after a SIFS

time. If any of these steps fails, the source station waits for an EIFS (Extended Interframe Space) period and

then goes to backoff state. Please, note that broadcast packets do not have handshake and acknowledgment.

It is important to say that the backoff procedure must be called only if the medium stays idle for an

IFS (Interframe Space) period. When a station goes to backoff state, it stays idle for a time randomly

generated and then try to re-send the packet. The backoff timer is paused whenever the medium becomes

busy. Note that, theoretically, all the other stations in the BSS hear the packets and set up their NAV,

avoiding collisions if they receive a packet from the transmitting station.

Figure 1. Code samples of current implementation: (a)
Method that checks if the MAC is idle; (b)
Method called when backoff timer expires.

Problems of the original implemen-tation

The NS version of the MAC 802.11 described here is version 2.29, so there might be some

divergences for other releases.

In the original code, the class named Mac802_11 is the “kernel” of everything. All the states

machines are programmed inside it, creating a disorganized environment. An explanation of the design can

be found in (FALL, 2006; LIU, 2008). The code is hard to understand and in some cases it does not simulate

the protocol as specified by IEEE, possibly generating incorrect results.

There are other classes, mostly of them just timer handle classes, of which we will talk about later.

Here, we will present some sections of code and comment them, showing the importance in creating a

replacement for the official implementation.

The Code. The class Mac802_11 mentioned earlier takes care of all the State Machines, controls

the timers and sends and receives the packets; this is not Object Orientation. According to (AMBLER, 2001),

the concept of OO is to divide and conquer, programming separate different modules that, independently,

solves small problems, but, together, solves a common and larger one.

Inline int Mac802_11::is_idle() {
 if(rx_state_ != MAC_IDLE)
 return 0;
 if(tx_state_ != MAC_IDLE)
 return 0;
 if(nav_ > Scheduler::instance().clock())
 return 0;
 return 1;
}

(a)

Void Mac802_11::backoffHandler() {
 if(pktCTRL_) {
 assert(mhSend_.busy()||mhDefer_.busy());
 return;
 }
 if(check_pktRTS() == 0)
 return;
 if(check_pktTx() == 0)
 return;
}

(b)

78
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Cruz, E. H. M. da; Leonardo, E. J.

is not Object Orientation. According to (AMBLER,
2001), the concept of OO is to divide and conquer,
programming separate different modules that,
independently, solves small problems, but, together,
solves a common and larger one.

There are two classes, PHY_MIB and MAC_
MIB, which purpose of existence is a dilemma,
because the only thing they do is to store and return
values.

One of the concepts of a well written function is
to avoid too many return statements, as well as to use
more conditional clauses than it is actually needed.
For instance, in Fig. 1a, the target test values are
the same in the first two tests. Therefore, applying
some Boolean test would improve the performance
by transforming these two conditional statements
into a single one. Besides, the three clauses lead to
the same result, so only one if statement is really
necessary, helping saving some processing time. In
Fig. 1b, a 10-line procedure has 3 return statements,
which should be avoided.

Timers. Timers are used during the simulation
to measure the transfer and interframe spaces
time intervals. The NS takes care of the low level
programming, but it is MAC’s responsibility to
configure properly the duration of the timer and the
callback procedure invoked when timer expires.

The official source implements a class named
MacTimer that contains a big part of the logic. For
each timer required by any event, the programmer
should designate separated classes that inherit the
MacTimer class. So, as the simulation has lots of
different components with diverse purposes, there
are a lot of timer classes, and, basically, the only
thing that differs one from another is what they do
when the timer expires.

Although this is an efficient mechanism, it is not
the best solution. When a sector asks for a timer,

someone who is reading the code has to search the
appropriate class that handles the timer to check
what is done when it expires. After this, the person
must search the routine called by the handler. In
other words, it is not an easy task to understand
what exactly is happening and in fact it is too much
effort for such a little procedure.

Semantic Bugs. Besides the below standard
coding practice issues, there are some logic errors
too.

When sending packets, as explained before,
the environment must be idle for a DIFS period;
otherwise the station must wait the transmission to
finish and when the medium stays idle for an IFS
period, backoff is started. In the original source
code, when the medium is not idle and a packet is
ready to be sent, it goes to backoff directly with
the timer paused. This is wrong, and in a collision
situation, it may cause fake results.

When receiving a packet, if it arrives with error,
nothing can be done. However, the built-in code
read its duration field to set up the NAV. How, in real
conditions, the MAC could possibly read anything
from corrupted data?

Something similar happens in some collision
situations. When a packet is being received, and
another one arrives from the lower layer, the protocol
checks their power levels, and then decides which
one should be received. In the analyzed code, when
the packet already being received has greater signal
strength, it might happen that the NAV gets set using
the duration field of the weaker packet. The problem
is that this packet has not arrived yet and, therefore,
no data can actually be extracted from it.

All the mistakes and bad project design mentioned
here has motivated us to develop a better simulation
module, more reliable, easier to understand and
more faithful to the IEEE specification.

79
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Novo módulo IEEE 802.11 para o NS 2

Figure 2. Use of member function pointers: (a) incorrect;
(b) correct.

The Proposed Module

In the proposed code (CRUZ, 2008), we took
the original flowchart presented in the ANSI/IEEE
Standard 802.11 as the base design. The state
machines described there are almost the same we
use in our solution. The classes used to implement
them are listed below.

mac_802_11_backoff: the backoff state •
machine; it has the states given below.

NO_BACKOFF: When backoff is not ○
being performed.

BACKOFF: When backoff is being ○
performed.

PAUSED: When the backoff timer is ○
paused due to medium (channel) activity.
When the medium becomes idle again,
the state machine returns to BACKOFF.

mac_802_11_tx_coord: the tx_coordination •
machine. It handles the transmission of
outgoing packets (RTS and MPDU). It is
the most complex of the protocol’s states
machines and receives signals from the
other machines when some events occur.
See below for more details. It has the states
given below.

IDLE: When no packet is being ○
transmitted.

WAIT_RECVED: When a packet is in ○
send procedure, but the MAC is receiving
a packet from the Physical Layer.

WAIT_NAV: When a packet is in send ○
procedure, but the MAC is halted due to
NAV.

WAIT_IFS_BACKOFF: Interframe ○
space before going for backoff.

WAIT_BACKOFF: Assumed when ○
the backoff machine is not in the NO_
BACKOFF state.

WAIT_DIFS: DIFS interframe space ○
before sending a packet.

WAIT_CTS: State assumed after the ○
RTS was sent.

WAITSIFS_CTS: When the CTS is ○
received, this state remains active for a
SIFS period.

WAIT_ACK: State called after the ○
MPDU is sent.

WAIT_TX: Assumed when a reception is ○
under way (MAC is sending or will send
a CTS/ACK) and a packet is requested
to be sent (by LLC).

SENDING_MPDU: State that begins ○
when an MPDU is being sent but no ACK
is required (e.g., broadcast packets).

BACKOFF_TXDONE: Backoff that is ○
performed after a transmission process
ends.

Figure 2. Use of member function pointers: (a) incorrect;
(b) correct.

The Proposed Module

In the proposed code (CRUZ, 2008), we took the original flowchart presented in the ANSI/IEEE

Standard 802.11 as the base design. The state machines described there are almost the same we use in our

solution. The classes used to implement them are listed below.

mac_802_11_backoff: the backoff state machine; it has the states given below.

o NO_BACKOFF: When backoff is not being performed.

o BACKOFF: When backoff is being performed.

o PAUSED: When the backoff timer is paused due to medium (channel) activity. When the

medium becomes idle again, the state machine returns to BACKOFF.

mac_802_11_tx_coord: the tx_coordination machine. It handles the transmission of outgoing

packets (RTS and MPDU). It is the most complex of the protocol’s states machines and receives signals from

the other machines when some events occur. See below for more details. It has the states given below.

o IDLE: When no packet is being transmitted.

o WAIT_RECVED: When a packet is in send procedure, but the MAC is receiving a packet

from the Physical Layer.

o WAIT_NAV: When a packet is in send procedure, but the MAC is halted due to NAV.

o WAIT_IFS_BACKOFF: Interframe space before going for backoff.

o WAIT_BACKOFF: Assumed when the backoff machine is not in the NO_BACKOFF state.

class class_test {
 protected:
 int test;
 public:

 class_test() {
 this->test = 12345;

 }

 void method_test() {
 printf(“test %i\n”, this->test);
 }

 };

 class_test t;
 void (*callback)();

 callback = t.method_test;
 (*callback)();

(a)

 class class_test {
 protected:
 int test;
 public:
 class_test() {
 this->test = 12345;
 }

 static void method_test(class_test *thiss) {
 printf(“test %i\n”, thiss->test);
 }
 };

 class_test t;
 void (*callback)(class_test*);

 callback = &class_test::method_test;
 (*callback)(&t);

(b)

80
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Cruz, E. H. M. da; Leonardo, E. J.

Figure 3. General timer.

Figure 4. Configuration of the simulated network.

mac_802_11_rx_coord: the rx_coordination •
machine. It takes care of the incoming
packets. It has the states given below.

IDLE: When no packet is being treated ○
by the machine.

WAITSIFS_CTS: SIFS period before ○
sending a CTS.

WAITSIFS_ACK: SIFS period before ○
sending an ACK.

COLL: State assumed when a collision ○
occurs.

mac_802_11_ch_state: the channel_state •
machine. It has the states given below.

IDLE: No NAV. ○

NAV: NAV timer is running. ○

mac_802_11_tx: transmission machine, •
used to send all the packets. Has an internal
Boolean parameter known as tx_active that
is TRUE if a packet is being sent or FALSE
otherwise.

mac_802_11: integrates all the state machines •
and controls the packet receiving (only the
transmission), and calls mac_802_11_rx_
coord or mac_802_11_tx_coord depending
of the nature of the packet (incoming or
outgoing). It also takes care of collision
detection of incoming packets.

Signals and Event Table. The tx_coordination
machine must be warned by the other ones about
the events that happen in the MAC. This is done
through some standard signals:

INTERRUPT RECEIVE: when the first bit •
of a packet arrives from the Physical layer.

RECEIVED: when the packet that arrived •
from the Physical layer is fully received.

INTERRUPT TX: when a CTS or ACK is •
about to be sent.

TX DONE: when the CTS or ACK finishes •
transmission.

CH IDLE: NAV timer expiration.•

o WAIT_DIFS: DIFS interframe space before sending a packet.

o WAIT_CTS: State assumed after the RTS was sent.

o WAITSIFS_CTS: When the CTS is received, this state remains active for a SIFS period.

o WAIT_ACK: State called after the MPDU is sent.

o WAIT_TX: Assumed when a reception is under way (MAC is sending or will send a

CTS/ACK) and a packet is requested to be sent (by LLC).

o SENDING_MPDU: State that begins when an MPDU is being sent but no ACK is required

(e.g., broadcast packets).

o BACKOFF_TXDONE: Backoff that is performed after a transmission process ends.

Figure 3. General timer.

Figure 4. Configuration of the simulated network.

mac_802_11_rx_coord: the rx_coordination machine. It takes care of the incoming packets.

It has the states given below.

o IDLE: When no packet is being treated by the machine.

class class_test {
 protected:
 int test;
 public:
 class_test() {
 this->test = 12345;
 }

 static void method_test(void *obj) {
 class_test *thiss = (class_test*) obj;
 printf(“test %i\n”, thiss->test);
 }

 };

 class general_timer {
 public:
 void (*callback)(void *);
 void *myowner;

 void finished_timer () {
 (*this->callback)(this->myowner);
 }
 };

 general_timer timer;
 class_test c;

 timer.callback = &class_test::method_test;
 timer.myowner = &c;

 TIMER.FINISHED_TIMER();

o WAIT_DIFS: DIFS interframe space before sending a packet.

o WAIT_CTS: State assumed after the RTS was sent.

o WAITSIFS_CTS: When the CTS is received, this state remains active for a SIFS period.

o WAIT_ACK: State called after the MPDU is sent.

o WAIT_TX: Assumed when a reception is under way (MAC is sending or will send a

CTS/ACK) and a packet is requested to be sent (by LLC).

o SENDING_MPDU: State that begins when an MPDU is being sent but no ACK is required

(e.g., broadcast packets).

o BACKOFF_TXDONE: Backoff that is performed after a transmission process ends.

Figure 3. General timer.

Figure 4. Configuration of the simulated network.

mac_802_11_rx_coord: the rx_coordination machine. It takes care of the incoming packets.

It has the states given below.

o IDLE: When no packet is being treated by the machine.

class class_test {
 protected:
 int test;
 public:
 class_test() {
 this->test = 12345;
 }

 static void method_test(void *obj) {
 class_test *thiss = (class_test*) obj;
 printf(“test %i\n”, thiss->test);
 }

 };

 class general_timer {
 public:
 void (*callback)(void *);
 void *myowner;

 void finished_timer () {
 (*this->callback)(this->myowner);
 }
 };

 general_timer timer;
 class_test c;

 timer.callback = &class_test::method_test;
 timer.myowner = &c;

 TIMER.FINISHED_TIMER();

81
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Novo módulo IEEE 802.11 para o NS 2

Table I. mac_802_11_tx_coord state transition.

INTERRUPT
RECEIVE

RECEIVED
INTERRUPT

TX TX DONE CH IDLEno-error
error

My packet Not mine
IDLE n n n n n n n

WAIT_
RECVED *

If will send
cts/ack

WAIT_TX,
else

WAIT_IFS_
BACKOFF

WAIT_NAV WAIT_IFS_
BACKOFF * * n

WAIT_NAV n n n n n n WAIT_IFS_
BACKOFF

WAIT_IFS_
BACKOFF

WAIT_
RECVED * * * * * *

WAIT_
BACKOFF

If running
pause

Resume if
won’t send

cts/ack
n If NAV off

resume n resume resume

WAIT_DIFS WAIT_
RECVED * * * * * *

WAIT_CTS n n n n n n *

WAITSIFS_
CTS * * * * * * n

WAIT_ACK n n n n n n *

WAIT_TX * * * * n WAIT_IFS_
BACKOFF n

SENDING_
MPDU * * * * * * *

BACKOFF_
TXDONE

If running
pause

Resume if
won’t send

cts/ack
n If NAV off

resume n resume resume

Legend: * = should not happen, kill execution; n = do nothing

82
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Cruz, E. H. M. da; Leonardo, E. J.

When a signal arrives, the mac_802_11_tx_
coord checks its current state, behaving differently
for each one. Table I shows the state transition.

New timer mechanism. As explained before, the
timers of the original implementation are efficient,
but it is hard to understand. In the new module, we
use the concept of callback functions.

According to (DEITEL; DEITEL, 2006), it is
not possible to create “function pointers” pointing
to member methods if the class type is not known.
However, if the method is declared as static it is
possible to do it. On the other hand, there is another
problem: static methods can only access static
parameters and methods. The solution is simple: you
pass the object as a parameter to the static method,
as illustrated in Fig. 2.

At this point, one may see another obstacle: the
function pointer uses the class type in the declaration.
This way it is not possible to create a general callback
pointer. However, to the callback, it does not matter
the type in its functionality. Therefore a void pointer
as a parameter would work perfectly here.

For the general_timer class, in Fig. 3, the type of
object is not important and the solution may work
for every situations.

This way of handling timers leads us to an easy
understanding code, because when an event needs to
be scheduled, there is no need to create a new class.
All that have to be done is to set up the method and
object called when the timer expires, and obviously,
the timer’s desired time.

Tests and results

To verify the integrity of the simulator with the
new MAC 802.11 module, simulation runs were
performed and the results were compared to those
obtained using the original implementation. The
configuration of the simulated network consists of
a sequence (chain) of terminals with two, three,
five and ten nodes, each 200 meters away from its
neighbours (see Fig. 4). The reception range and
the sensing range were set to 250 meters and 550
meters, respectively. Up to 5 CBR (Constant Bit
Rate) data flow were set up, always having node 0
as source and node (n-1) as destination, where n is
the number of nodes. The flows starting times were
randomly selected between 0 and 1 second and each
simulation run lasted for 180 seconds.

Table II. Execution time, in seconds. Average of 5 180-second simulation runs.

Number of Nodes Number of Flows
Average Execution Time [s] Difference

(Ref. Original)
Original Proposed

2
1 0.592 0.594 0.2%

3 1.781 1.717 -3.6%
5 2.939 2.865 -2.5%

3 1 1.144 1.106 -3.4%
3 3.430 3.335 -2.8%

5 1 2.518 2.459 -2.3%
3 5.128 5.480 6.9%

10 1 6.565 6.217 -5.3%

83
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Novo módulo IEEE 802.11 para o NS 2

Table III. Delay, in milliseconds. Average of 5 180-second simulation runs.

Number of Nodes Number of Flows
Average Delay [ms] Difference

(Ref. Original)Original Proposed

2
1 2.65 2.35 -11.3%

3 2.78 2.78 0.3%
5 4.71 4.36 -7.4%

3 1 5.57 5.59 0.2%
3 8.42 7.25 -13.9%

5 1 11.4 12.1 -3.6%
3 597 576 6.9%

10 1 26.2 28.3 -8.3%

Table II presents the average execution time.
Although it represents the execution elapsed time, it
gives an indication of the amount of processor cycles
used in each simulation run. Table III presents the
average delay time between source and destination
at the application layer; Table IV presents the
average packet loss rate; and Table V presents the
throughput. It can be seen from these results that

the original and the proposed implementations have
similar performance.

The results in Table II show that there is no
meaningful difference in performance between the
two implementations. Tables III, IV and V expose
similar results from both simulations, indicating
that the proposed module is working properly.

Table IV. Packet loss rate, in percentage. Average of 5 180-second simulation runs.

Number of Nodes Number of Flows
Average Packet Loss [%] Difference

(Ref. Original)
Original Proposed

2
1 0.0% 0.0% equal

3 0.0% 0.0% equal
5 0.0% 0.0% equal

3 1 0.0% 0.0% equal
3 0.0% 0.0% equal

5 1 0.0% 0.0% equal
3 45.2% 40.0% -11.4%

10 1 0.0% 0.0% equal

84
Semina: Ciências Exatas e Tecnológicas, Londrina, v. 30, n. 1, p. 75-84, jan./jun. 2009

Cruz, E. H. M. da; Leonardo, E. J.

Table V. Throughput, in kilobits per second. Average of 5 180-second simulation runs.

Number of Nodes Number of Flows
Throughput [kbps] Difference

(Ref. Original)Original Proposed

2
1 49.9 49.9 equal

3 49.9 49.9 equal
5 49.9 49.9 equal

3 1 49.8 49.8 equal
3 49.9 49.8 -0.2%

5 1 49.9 49.8 -0.2%
3 27.2 29.8 9.6%

10 1 49.8 49.9 0.2%

Conclusion

This article presents a new implementation of
the IEEE 802.11 MAC protocol to be used with the
network simulation tool NS 2. Its intention is to offer
an alternative design that avoids the shortcomings
and faults found in the original NS 2 implementation.
Results indicate that the proposed code performs as
well as the original implementation in regards to
the execution time and the protocol performance.
However, it adds quality to the simulation tool in the
sense that the protocol implementation is closer to
the standards, it is easier to understand and modify.

References
AMBLER, S. The Object Primer, 2nd. Ed., Cambridge:
Cambridge University Press, 2001.

CHEN, Q.; SCHIMIDT-EISENLOHR, F.; TORRENT-
MORENO, M.; DELGROSSI, L.; HARTENSTEIN,
H. Overhaul of IEEE 802.11 modeling and simulation
in ns-2. In: INTERNATIONAL WORKSHOP ON
MODELING ANALYSIS AND SIMULATION OF
WIRELESS AND MOBILE SYSTEMS, 2007, Chania.
Proceedings…Chania, 2007. p. 159–168.

CROW, B. P.; WIDJAJA, I.; KIM, L. G.; SAKAI, P.
T. IEEE 802.11 Wireless Local Area Networks. IEEE
Communications Magazine, New York, v. 35, n. 9, p.
116-126, 1997.

CRUZ, E. H. M. Source code. Available at: http://
perfectsoftware.org/eduardocruz/ns. Access on: 2 Feb.
2008.

DEITEL, P. J.; DEITEL, H. M. C++ How to Program.
5th. Ed., Upper Saddle River: Prentice Hall, 2005.

FALL, K. R. Network Emulation in the Vint/NS
Simulator. In: IEEE SYMPOSIUM ON COMPUTERS
AND COMMUNICATIONS, 4th., 1999, Sharm El Sheik.
Proceedings… Sharm El Sheik, 1999. p. 244-250.

FALL, K.; KANNAN, V. (Ed.) The ns Manual. 2006.
Available at: http://www.isi.edu/nsnam/ns/doc/. Access
on: 2 Feb. 2008.

HENDERSON, T.; ROY, S.; FLOYD, S.; RILEY, G. F.
ns-3 project goals. In: 2006 WORKSHOP ON NS-2: THE
IP NETWORK SIMULATOR, 2006, Pisa. Proceedings…
Pisa, 2006.

IEEE STANDARDS. ANSI/IEEE Standard 802.11:
Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) Specifications, 1999 Ed.,
Piscataway: IEEE-SA Standards Board, 2003.

LIU, K. Understanding the implementation of IEEE MAC
802.11 standard in NS-2, date unspecified. Available at:
http://www.cs.binghamton.edu/~kliu/research/ns2code.
Access on: 2 Feb. 2008.

SCHMIDT-EISENLOHR, F.; LETAMENDIA-MURUA,
J.; TORRENT-MORENO, M. Bug Fixes on the IEEE
802.11 DCF module of the Network Simulator ns-2.28.
Tech. Rep: Department of Computer Science, University
of Karlsruhe, 2006.

