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Uma nova generalização para as séries de fibonacci

Another type of generalized fibonacci series

 Gil Bazanini1; Júlio Pureza2

Resumo

A sequência de Fibonacci, importante no estudo da natureza e nas artes, é discutida neste trabalho. É
proposta uma generalização da série de Fibonacci, através do emprego de um coeficiente na relação de
recorrência da série. Segundo critérios de convergência usuais, demonstra-se que tais séries são
divergentes quando o coeficiente é a raiz quadrada de um número positivo. No entanto, a relação entre
dois termos consecutivos da série é convergente, sendo o coeficiente um número real.
Palavras-chave: Fibonacci. Séries. Convergência.

Abstract

The Fibonacci sequence, with many applications and occurrences in nature and arts is discussed in the
present work. It is considered a generalization of the Fibonacci series by the introduction of a real
coefficient in the recurrence relation. The analysis shows the divergence of the generalized series when
the coefficient is the square root of a positive number, although the relation between two consecutive
terms converges to a finite number when the coefficient is a real number.
Key words: Fibonacci. Series. Convergence.

Introduction

The Fibonacci sequence, found by the
mathematician Leonardo Pisano in 1202, and so
named by Edouard Lucas in 1877 (HUNTLEY,
1970), has been related to many occurrences in nature
(BASIN, 1963), such as the growth of the nautilus
shell, the packing of sunflower seeds and pineapple
spirals. This sequence is also present in Geometry
and Art (HUNTER, 1963; HUNTLEY, 1964;
RAPHAEL, 1970).

The Fibonacci sequence is very well illustrated
by the rabbit problem, proposed by Pisano, and

described by Agostini (1987): how many pairs of
rabbits will be produced, beginning with a single pair
(male and female), considering that every month each
pair bears a new pair, which becomes productive from
the second month on? The answer is the Fibonacci
sequence (0,1,1,2,3,5,8,13,...), that obeys the
recurrence relation:

where  F(0) = 0; F(1) = 1; n > 1
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Each term is obtained by the sum of the preceding
two. As the sequence proceeds, the ratio between
two consecutive terms approaches to the golden ratio
ø, as seen in Dunlap (1997):

Which is the positive root of the characteristic
equation (HUNTLEY, 1970):

For the Fibonacci series , the general term is given
by the Binet’s Formula (HUNTLEY, 1970):

Although the ratio of two consecutive Fibonacci
terms converges to ø, the Fibonacci series is
divergent. This can be proved using known necessary
conditions for convergence, seen in classical
mathematical books as Piskunov (1964) and Poussin
(1940). In the next section, these necessary
conditions for convergence of numerical series will
be applied to the generalized series.

The Generalized Fibonacci Series

According to Palladino and Ferreira (2000), the
Fibonacci sequence may be generalized introducing
a coefficient in one of the terms of the recurrence
relation:

where δ is taken to be the square root of a positive
integer k. The characteristic equation becomes:

and the general term of the sequence is given by:

where k > 1 and n = 0,1,2,... . The general term of
this generalized sequence is, for large n (the second
term takes the difference between the square roots,
while the first term takes the addition of both. So the
second term becomes negligible when compared to
the first one, as n becomes large):

that diverges as n goes to infinity. This divergence
may also be proved by using the D’Alembert’s test,
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Since the limit is greater than one, the series diverges.
This series can be set in another form, as proposed
by Palladino and Ferreira (2000), where and α is a
real number. If F(0) = 0 and F(1) = 1, the general
term becomes

And now, for the extended case, where the seed
values F(0) and F(1) are non-fixed (PALLADINO;

FERREIRA, 2000),
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Results

Vorobiev (1973) used the linear combination
procedure to obtain the general term for the usual
Fibonacci series. That will be done now for the
generalized Fibonacci series. Another generalization
of the series can be done by setting the coefficient δ
as a real number. In this case, the general term is the
linear combination of the roots of the characteristic
equation (5):

where A and B are functions of the seed values F(0)
and F(1). Considering the choice F(0)=F(1) =1,
results:

where

In fact, the ratio of two consecutive terms of the
generalized series is given by

Figures 1 to 7 relate the ratio (F(n+1)/F(n)) to
the index n of the sequence. It can be seen that this
ratio converges to a real number that depends on the
coefficient coefficient δ and some interesting shapes
can be found depending on the sing of the coefficient.
Also, as the  coefficient goes larger the ratio goes to

the same value of the coefficient, leading to the
relation shown in figure 8.

As a matter of fact, the ratio (F(n+1)/F(n)) leads
to a limit similar to the golden ratio ø. The
D’Alembert’s test gives for the generalized sequence
the limit,

where the index k is defined in section 2 and
characterizes the generalized Fibonacci sequence.
This limit  conforms to agree with the Figures 1 to 7
and the relation shown in Figure 8.

Conclusions
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Figure 2. Ratio of two consecutive terms for coefficient -0.1
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Figure 5. Ratio of two consecutive terms for coefficient 1
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Figure 3. Ratio of two consecutive terms for coefficient 0.5
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Figure 4. Ratio of two consecutive terms for coefficient -0.5
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Figure 6. Ratio of two consecutive terms for coefficient 50

0 2 4 6 8 10
Term of number n, of the generalized series.

-50.4

-50.0

-49.6

-49.2

-48.8

R
at

io
 o

f t
w

o 
co

ns
ec

ut
iv

e 
te

rm
s.

-50.4

-50.0

-49.6

-49.2

-48.8

0 2 4 6 8 10

Figure 7. Ratio of two consecutive terms for coefficient -50
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Figure 8. Correlation between the ratio and the coefficient.
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As seen in the present work, it is possible to
generalize the Fibonacci series through the use of a
coefficient δ in one of the terms of the recurrence
relation, which is set as the unity for the usual
Fibonacci series, that becomes then a particular case
of the generalized one.

It was also demonstrated that, although the
generalized series diverges as n goes to infinity, the
ratio of two consecutive terms converges. The
smaller is the coefficient, slower is the convergence
of the sequence. Also, for greater values of the
coefficient, closer is its value to the ratio of two
consecutive terms, after the convergence is aimed.
This leads to the correlation seen in Equation (17)
and Figure 8.

The convergence value of the ratio of two
consecutive terms, as seen in Figures 1 to 8,
resembles an attractor, as described in Alligood,
Sauer and Yorke (1996) and Ricieri (1992). In fact,
attractors were already obtained by Caruso and
Marotta (2000), when working with the complex
numbers in the generalization of the Fibonacci series,
named as “The Vibonacci Series”.
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