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Highlights

Video-based sex recognition exceeds 90% accuracy with swift inference.

Optimized model cuts parameters by 5%, boosting poultry industry efficiency.

Video methodology enhances reliability, reducing manual workload for scalable sexing.

Abstract

Conventional image-based techniques for discerning the sex of chicks have inherent drawbacks, such 

as the subjectivity involved in image selection and limited applicability to industrial contexts. In order to 

tackle these challenges, we employ videos in this study as an alternative to images, and present a more 

pragmatic approach that is suited to industrial applications. By leveraging an optimized PicoDet model, 

this methodology identifies telltale reflective attributes within the cloacae region of chicks. This approach 

also suggests that the sex of the chicks can be determined by calculating the proportion of male chick 

identifications in the video relative to the total number of images. Experimental findings demonstrate the 

superior performance of the proposed approach over the YOLO algorithm in terms of both cloacae and 

chick sex recognition. Optimal recognition efficiency is achieved when the aforementioned proportion 

falls within the range 60–70%. The accuracy rates for identifying female and male chicks were recorded 

as 90.34%, 91.33%, and 90.83%, respectively. The scheme developed in this study also achieves a 

reduction of 5.01% in model parameters, while the running time is shortened to less than 1 s, while 

maintaining comparable recognition efficiency to that of the PicoDet model. In summary, the method 
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proposed in this paper exhibits enhanced proficiency in regard to recognizing both chick cloacae and 

their respective sexes. It successfully overcomes the limitations encountered by traditional image-

based methodologies, and minimizes model space requirements. Furthermore, by harnessing the 

power of video, this approach has increased recognition accuracy and operational efficiency, ultimately 

improving the practicality and dissemination potential of this cutting-edge technology.

Key words: Machine vision. Chick. Sex recognition. Cloaca.

Resumo

As técnicas convencionais baseadas em imagens para determinar o sexo dos pintos apresentam 

desvantagens inerentes, como a subjetividade envolvida na seleção das imagens e a aplicabilidade 

limitada em contextos industriais. Para enfrentar esses desafios, neste estudo utilizamos vídeos 

como alternativa às imagens, apresentando uma abordagem mais pragmática, adaptada a aplicações 

industriais. Ao utilizar um modelo otimizado do PicoDet, essa metodologia identifica atributos reflexivos 

característicos na região da cloaca dos pintos. Esta abordagem também sugere que o sexo dos pintos 

pode ser determinado calculando a proporção de identificações de pintos machos no vídeo em relação 

ao número total de imagens. Os resultados experimentais demonstram o desempenho superior da 

abordagem proposta em comparação com o algoritmo YOLO, tanto no reconhecimento da cloaca 

quanto no reconhecimento do sexo dos pintos. A eficiência ideal de reconhecimento é alcançada 

quando a proporção mencionada varia entre 60% e 70%. As taxas de precisão para identificar pintos 

fêmeas e machos foram registradas como 90,34%, 91,33% e 90,83%, respectivamente. O esquema 

desenvolvido neste estudo também resulta em uma redução de 5,01% nos parâmetros do modelo, 

enquanto o tempo de execução é reduzido para menos de 1 segundo, mantendo uma eficiência de 

reconhecimento comparável à do modelo PicoDet. Em resumo, o método proposto neste artigo 

demonstra uma maior proficiência no reconhecimento tanto da cloaca dos pintos quanto de seus 

respectivos sexos. Ele supera com sucesso as limitações das metodologias tradicionais baseadas em 

imagens e minimiza os requisitos de espaço do modelo. Além disso, ao aproveitar o poder dos vídeos, 

essa abordagem aumentou a precisão do reconhecimento e a eficiência operacional, melhorando, em 

última instância, a praticidade e o potencial de disseminação dessa tecnologia de ponta. 

Palavras-chave: Visão computacional. Pintinho. Reconhecimento de sexo. Cloaca.

Introduction

Determining the gender of chicks 
is a pivotal task in both traditional and 
contemporary poultry husbandry. Depending 
on whether the birds are breeders, broilers, 
or laying hens, distinct rearing and marketing 
strategies are employed for each sex. Thus, 
early knowledge of the chicks' sex and 
efficient sorting hold the key to optimizing 
production layout, exploiting the full 

commercial potential of the operation, and 
improving industrial efficacy (Rahman et al., 
2021; Biederman & Shiffrar, 1987).

At present, the art of chick sexing 
encompasses two distinct phases: one during 
egg incubation, and the other post-hatching. 
Among the post-hatching techniques, the 
cloacae detection method, feather speed 
approach, and feather color approach are 
of paramount significance in determining 
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the chicks' gender. The cloacae detection 
method, as the most widely used approach, 
has the virtue of universality, as it transcends 
the constraints of chick breeds and offers 
practicality by allowing for sex identification 
within 5 to 6 h after hatching. Nonetheless, 
in real-world operations, the accuracy of 
chick sex identification through cloacae 
detection remains reliant upon the expertise 
and experience of the testing personnel. 
Even skilled technicians can only achieve an 
accuracy of approximately 95%, which tends 
to diminish with prolonged identification time 
(Kaixuan et al., 2022; Escamilla-García et al., 
2022).

In recent years, a few scholars 
have ventured into exploring the use of 
machine vision technology to determine 
chick sex. While these efforts have yielded 
moderate accuracy, they are bound by the 
cumbersome process of manually screening 
images, making them unsuitable for the 
demands of industrial implementation. The 
feather speed approach and feather color 
approach rely on the hue of plumage or 
the growth of wing feathers to differentiate 
between male and female chicks. However, 
although this approach seems relatively 
simple, it necessitates the development 
of a meticulous genetic characterization 
system. Constructing such a system through 
feather speed phenotyping demands a 
minimum of two or three generations, and 
given its reliance on advanced breeding 
techniques, its practicality on a commercial 
scale is questionable (Robertson et al., 1984; 
Buitenhuis et al., 2003).

Parallel to these endeavors, numerous 
scholars have explored the applicability of sex 
detection methods to hatched eggs, which 
encompass molecular-based techniques 

(Harrisson & Vakaet, 1989; Weissmann et al., 
2014; Clinton et al., 2001; Weissmann et al., 
2013), spectral-based techniques (Rahman et 
al., 2021; Preusse et al., 2022; Galli et al., 2016; 
Corion et al., 2022; Göhler et al., 2017; Alin et 
al., 2019), morphological-based techniques 
(Zhi et al., 2018; Yilmaz & Dikmen, 2013; 2018; 
Salgado et al., 2022) and volatile organic 
compound-based techniques (Webster et 
al., 2015; Xiang et al., 2021). However, these 
approaches predominantly target the later 
stages of incubation, necessitate stringent 
experimental environments, and entail the 
use of expensive equipment, which often 
compromises the integrity of the eggs, thus 
hindering their broad applicability.

This investigation of the literature 
illuminates a multifaceted landscape 
concerning chick sex identification, where 
the process of determining the chick's sex is 
intertwined with crucial attributes such as the 
precision of identification, processing time, 
cost-effectiveness, and the technology's 
potential for widespread dissemination. 
Machine vision, with its vast potential in 
diverse domains, offers great promise when 
harnessed for chick sex identification, as 
this approach is not merely anchored in 
theoretical underpinnings but can also 
increase the operational simplicity through 
a heightened level of semi-automation. 
Nonetheless, the reliance on image-based 
approaches for discerning chick gender 
and the absence of comprehensive cost-
effectiveness evaluation diminish the 
practicality and ubiquity of this cutting-
edge technology. To address these gaps, 
we propose a semi-automatic technique for 
chick sex identification utilizing the PicoDet 
framework. A comprehensive evaluation of 
the model's performance is conducted in 
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terms of model size, number of parameters, 
execution time, recognition accuracy, 
and relevant evaluation criteria, thereby 
representing an in-depth investigation into 
the feasibility of the method. 

Materials and Methods

Ethics statement

This experiment strictly adhered 
to ethical standards, and no livestock 
slaughtering activities were involved. All data 
collection related to livestock was conducted 
in full compliance with the ethical guidelines 
set forth by the Animal Ethics Committee 
of Hebei Normal University of Science and 
Technology. The experiment received official 
approval from the committee, confirming that 
the ethical requirements for conducting the 
study were met. This approval is documented 
under certificate number 2024032308.

In order to avoid causing unnecessary 
pain or stress to the chicks during the anal 
turning process, the study was performed 
by professionals with five years of work 
experience.

To protect data and privacy, data 
access permissions were strictly limited, and 
only authorized researchers were allowed to 
access and process the data, thus ensuring 
that they were used only for predetermined 
research or industrial applications. In addition, 
rigorous privacy and data protection training 
were provided to all researchers taking part 
in data processing. The personnel involved 
needed to understand and follow all data 
processing policies and procedures to 
ensure that data processing complied with 
legal and ethical standards.

Data acquisition

Video data pertaining to the 
reproductive organs of chicks were 
acquired through a carefully crafted system 
comprising an operating table (JIESHIPAI 
80cm60cm75cm), a camera device (Apple 
iPhone 12, HUAWEI nova 10, MI 13), and an 
illuminating LED desk lamp (MT001CH-11DX). 
The camera equipment was positioned 40 
cm away from the operating table during the 
video acquisition process.

In order to increase the generalization 
ability of the model and verify its generality, 
repeatability and stability, video data on the 
reproductive organs of 2,000 laying hens 
of different species were collected in four 
batches in different production environments 
between April and August 2023 at Hebei 
Angel Poultry Breeding Co., Ltd. To adhere as 
closely as possible to industrial application 
scenarios, to minimize unnecessary pain 
and stress to the chicks, and to minimize 
the impact of prolonged video acquisition 
time on the birds, the video duration for 
each chick was set to 2 s. The resolution was 
1080×1920 pixels, and the frame rate was 
30 frames per second. Professionals were 
also invited to examine and record the sex 
of the chicks. In order to avoid the influence 
of manual discrimination error on the test, 
multi-strain hybrid chicks were used, as the 
sex of chicks can be determined according 
to the color of the feathers, and the accuracy 
can reach 100%.

Data preprocessing and labeling

Although the video recordings 
captured the technicians' anal-flip operations, 
for the purposes of this study, these specific 
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segments were deemed inconsequential 
and removed, leaving only the images of the 
complete chick's anus. Artificial identification 
mainly relies on observing the micro-white 
globular projection at the junction of the 
second and third folds on the lower wall of 
the cloacae, which can be used to judge the 
sex of chicks based on the refractive effect. 
When exposed to light, there is a relative 
relationship between the second and third 
folds of the lower wall and the white globular 
projection in male chicks. Specifically, if the 
second and third folds of the lower wall are 
bright, the white globular projection will 
appear dark, and if the second and third folds 

of the lower wall are dark, the white globular 
projection will appear bright. It is therefore 
possible to distinguish the sex of chicks 
based on these two characteristics of light 
reflection, and the sex of each chick can 
be judged according to the degree of light 
reflection of the two characteristics. Figure 
1 shows four images representing different 
frames of a video of the same chick. The two 
images in the first row show the reflection 
characteristics of the male chick's cloaca 
in the red box, while the two images in the 
second row do not include the reflex features 
of the male chick's cloaca.

 

 
 
Figure 1. Sex criteria for chicks. 

 

To ensure that the reflective region of each chick's genital organs was appropriately emphasized 

and to mitigate the impact of noise in the shaded regions on the features, we applied a series of processing 

steps. Firstly, the genital images of male chicks were subjected to binarization using OpenCV, in order to 

highlight the reflective region and simplify subsequent feature extraction. Next, the binarized images were 

converted into 24-bit depth images to facilitate uniformity in the dataset. 

To establish ground truth annotations for the genital region and the circular protruding reflections 

of the genitals in the color images, we sought the expertise of experienced technicians. These technicians 

manually annotated the relevant regions using the LabelImg annotation tool (version 1.8.6), ensuring 

accurate and reliable annotations for our dataset. Finally, 25,200 images meeting the criteria were manually 

screened to form the chick sex identification dataset. The ratio between the samples in the training, 

validation and test sets was 5:3:2. 

 

Lightweight target detection model 

To address the inherent trade-off between detection accuracy and speed in target detection tasks, 

Yu et al. (2021) introduced the PicoDet model in 2021. By innovatively enhancing the backbone network 

structure and optimizing the label assignment strategy (LAS) and loss function, PicoDet achieves an 

impressive balance between detection speed and accuracy. Comparative evaluations against YOLOX-Nano 

demonstrate its superiority, with an absolute improvement of 4.8% in mean average precision and a 

remarkable 55% reduction in mobile CPU inference latency. 

The PicoDet model adopts a novel backbone, ESNet, based on the lightweight feature extraction 

Figure 1. Sex criteria for chicks.
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To ensure that the reflective region of 
each chick's genital organs was appropriately 
emphasized and to mitigate the impact of 
noise in the shaded regions on the features, 
we applied a series of processing steps. 
Firstly, the genital images of male chicks were 
subjected to binarization using OpenCV, in 
order to highlight the reflective region and 
simplify subsequent feature extraction. Next, 
the binarized images were converted into 
24-bit depth images to facilitate uniformity in 
the dataset.

To establish ground truth annotations 
for the genital region and the circular 
protruding reflections of the genitals in the 
color images, we sought the expertise of 
experienced technicians. These technicians 
manually annotated the relevant regions 
using the LabelImg annotation tool (version 
1.8.6), ensuring accurate and reliable 
annotations for our dataset. Finally, 25,200 
images meeting the criteria were manually 
screened to form the chick sex identification 
dataset. The ratio between the samples in the 
training, validation and test sets was 5:3:2.

Lightweight target detection model

To address the inherent trade-off 
between detection accuracy and speed 
in target detection tasks, Yu et al. (2021) 
introduced the PicoDet model in 2021. 
By innovatively enhancing the backbone 
network structure and optimizing the label 
assignment strategy (LAS) and loss function, 
PicoDet achieves an impressive balance 
between detection speed and accuracy. 

Comparative evaluations against YOLOX-
Nano demonstrate its superiority, with an 
absolute improvement of 4.8% in mean 
average precision and a remarkable 55% 
reduction in mobile CPU inference latency.

The PicoDet model adopts a novel 
backbone, ESNet, based on the lightweight 
feature extraction network ShufleNetV2. 
The key innovation lies in the integration 
of a squeeze-and-excitation (Hu et al., 
2018) module within the network blocks, 
which allows the network channels to be 
dynamically weighted. This enhancement 
significantly improves the quality of the 
features, particularly in the C3–C5 layers, 
which play a crucial role in generating the 
ultimate detection outcomes. The feature 
maps generated by the backbone are 
efficiently guided through the network neck 
for further processing.

As depicted in Figure 2, the network 
architecture of the PicoDet model has an 
elegant design and seamless integration of 
its components. The powerful combination 
of the ESNet backbone, optimized label 
assignment strategy, and loss function 
optimization positions PicoDet as an 
exceptional solution for lightweight target 
detection. It strikes a harmonious balance 
between detection precision and inference 
speed, making it an ideal choice for real-
time applications on resource-constrained 
devices. The empirical results presented in 
convincingly demonstrate the effectiveness 
of PicoDet and its potential to advance the 
field of target detection in agriculture and 
other related domains.
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The neck of PicoDet is based on a 
pyramid attention network (PAN) (Liu et al., 
2018) structure, and plays a pivotal role in 
acquiring multilevel feature maps. The model 
also uses a cross stage partial (CSP) structure 
to facilitate seamless feature splicing and 
fusion between adjacent feature maps.

A crucial consideration in lightweight 
target detection is the computational cost 
associated with the number of channels 
in the network. To mitigate this challenge, 
PicoDet strategically employs 1×1 
convolutions to homogenize the channel 
numbers of the output feature maps with 
the minimum channel number originating 
from the backbone. This approach helps to 
streamline computations, ensuring a more 
efficient model.

Furthermore, to enhance feature 
fusion while simultaneously reducing the 
computational overhead, PicoDet employs 
a top-down and bottom-up feature fusion 
strategy via the CSP structure. This strategy 
guarantees robust feature fusion capabilities, 

Figure 2. Network architecture of the PicoDet model.
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Figure 2. Network architecture of the PicoDet model. 

 

The neck of PicoDet is based on a pyramid attention network (PAN) (Liu et al., 2018) structure, 

and plays a pivotal role in acquiring multilevel feature maps. The model also uses a cross stage partial (CSP) 

structure to facilitate seamless feature splicing and fusion between adjacent feature maps. 

A crucial consideration in lightweight target detection is the computational cost associated with the 

number of channels in the network. To mitigate this challenge, PicoDet strategically employs 1×1 

convolutions to homogenize the channel numbers of the output feature maps with the minimum channel 

number originating from the backbone. This approach helps to streamline computations, ensuring a more 

efficient model. 

Furthermore, to enhance feature fusion while simultaneously reducing the computational overhead, 

PicoDet employs a top-down and bottom-up feature fusion strategy via the CSP structure. This strategy 

guarantees robust feature fusion capabilities, and allows for effective integration of information across 

different levels of the network, without incurring a substantial increase in computational burden. 

and allows for effective integration of 
information across different levels of the 
network, without incurring a substantial 
increase in computational burden.

By combining the PAN and CSP 
structures in the neck, PicoDet achieves 
a synergistic effect that strikes an optimal 
balance between detection accuracy and 
computational efficiency.  This is of great 
importance, particularly in agricultural 
applications, where real-time, resource-
efficient target detection is paramount.

This study focuses on chick cloaca 
detection and recognition as a binary 
classification task, meaning that feature 
extraction is relatively straightforward. 
Although PicoDet is already a lightweight 
solution, we go a step further by optimizing 
the network structure, and particularly the 
relatively cumbersome neck part of PicoDet. 
The objective is to obtain a model that is 
better suited to actual target detection 
scenarios. The optimized neck stage is 
illustrated in Figure 3.
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Figure 3. Optimized neck architecture.
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The features extracted from the network's feature maps at different depths exhibit distinct 

tendencies. Specifically, high-level feature maps have a pronounced focus on the overall attributes of objects, 

such as shapes and edges, while low-level feature maps prioritize the representation of intricate object 

details, including texture patterns. To enhance the discriminative capabilities of high-level feature maps in 

regard to detecting large targets with prominent shape features, we employ a bottom-up path aggregation 

module known as PAN, which facilitates the transmission of information from low-level to high-level feature 

maps. The spatial concentration of the chick cloaca region within the images enables efficient extraction of 

the relevant features. As a result, we made the strategic decision to remove the P6 branch from the original 

structure, which was originally intended for detecting large targets. This optimization contributes to a 

reduction in parameters and computational operations, thereby enhancing the efficiency of the detection 

process. 

 

The features extracted from the 
network's feature maps at different depths 
exhibit distinct tendencies. Specifically, high-
level feature maps have a pronounced focus 
on the overall attributes of objects, such as 
shapes and edges, while low-level feature 
maps prioritize the representation of intricate 
object details, including texture patterns. To 
enhance the discriminative capabilities of 
high-level feature maps in regard to detecting 
large targets with prominent shape features, 
we employ a bottom-up path aggregation 
module known as PAN, which facilitates 
the transmission of information from low-
level to high-level feature maps. The spatial 
concentration of the chick cloaca region 
within the images enables efficient extraction 
of the relevant features. As a result, we made 

the strategic decision to remove the P6 
branch from the original structure, which 
was originally intended for detecting large 
targets. This optimization contributes to a 
reduction in parameters and computational 
operations, thereby enhancing the efficiency 
of the detection process.

Evaluation criteria

Evaluation criteria for chick cloaca 
identification

(1) Precision and Recall

Precision and recall are two widely 
used metrics in various domains, including 
machine learning, recommender systems, 
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information retrieval, natural language 
processing, and multimedia vision, among 
others, to evaluate the quality of results.

Precision represents the percentage 
of true positives in the recognized images. In 
this case, it indicates the proportion of true 
cloacae regions among all recognized chick 
cloacae. The formula for calculating the 
precision is as follows:

Recall represents the proportion of 
all positive samples in the test set that are 
correctly identified as positive samples. In 
this case, it is the ratio between the number 
of correctly identified cloacae and the total 
number of true cloacae in the test set under 
this hypothesis, and is calculated using the 
following formula:

In this context, TP refers to the 
number of pixels where positive samples are 
correctly recognized as positive, signifying 
the accurate identification of cloacae 
pixel points. FP represents the number 
of pixels where negative samples were 
incorrectly identified as positive, indicating 
the misclassification of non-cloacae pixel 
points as cloacae. FN denotes the number 
of pixels where positive samples were 
incorrectly recognized as negative, reflecting 
the erroneous identification of cloacae pixel 
points as non-cloacae. TN corresponds to 
the number of pixels where negative samples 
were correctly identified as negative, 
representing the accurate recognition of 
non-cloacae pixel points as non-cloacae.

(2) Number of Parameters

The number of parameters refers to 
the total count of parameters involved in the 
model, which directly impacts the disk space 
required for execution of the model. It is often 
considered as part of the access volume, 
which does not directly affect the model's 
inference performance; however, the number 
of parameters does influence the memory 
footprint and program initialization time.

(3) Inference Time

Inference time serves as a crucial 
reference index for measuring model 
performance. Due to the asynchronous 
execution of deep learning inference on 
GPUs and the specific characteristics of 
GPU warm-up, conventional methods cannot 
directly calculate the model inference time. 
To address this issue, we used a sample 
program to complete GPU warm-up before 
the actual measurements were made. The 
asynchronous mode was also converted to 
synchronous mode, and timing was halted 
only after the GPU reasoning of the current 
round was complete.

Evaluation criteria for chick sex identification

(1) Accuracy Rate

The accuracy rate represents the 
ratio of samples correctly classified by the 
classification model (including both positive 
and negative examples) to the total number of 
samples. In other words, it is the percentage 
of correctly recognized videos among all 
chick videos to the total number of videos. 
The calculation formula is as follows:
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Evaluation criteria for chick cloaca identification 

(1) Precision and Recall 

Precision and recall are two widely used metrics in various domains, including machine learning, 

recommender systems, information retrieval, natural language processing, and multimedia vision, among 

others, to evaluate the quality of results. 

Precision represents the percentage of true positives in the recognized images. In this case, it 

indicates the proportion of true cloacae regions among all recognized chick cloacae. The formula for 

calculating the precision is as follows: 

 

Precision = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

Recall represents the proportion of all positive samples in the test set that are correctly identified as 

positive samples. In this case, it is the ratio between the number of correctly identified cloacae and the total 

number of true cloacae in the test set under this hypothesis, and is calculated using the following formula: 

 

Recall = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

In this context, TP refers to the number of pixels where positive samples are correctly recognized as 

positive, signifying the accurate identification of cloacae pixel points. FP represents the number of pixels 

where negative samples were incorrectly identified as positive, indicating the misclassification of non-cloacae 

pixel points as cloacae. FN denotes the number of pixels where positive samples were incorrectly recognized 

as negative, reflecting the erroneous identification of cloacae pixel points as non-cloacae. TN corresponds to 

the number of pixels where negative samples were correctly identified as negative, representing the accurate 

recognition of non-cloacae pixel points as non-cloacae. 

(2) Number of Parameters 

The number of parameters refers to the total count of parameters involved in the model, which 

directly impacts the disk space required for execution of the model. It is often considered as part of the access 

volume, which does not directly affect the model's inference performance; however, the number of parameters 

does influence the memory footprint and program initialization time. 

(3) Inference Time 

Inference time serves as a crucial reference index for measuring model performance. Due to the 

asynchronous execution of deep learning inference on GPUs and the specific characteristics of GPU warm-up, 

conventional methods cannot directly calculate the model inference time. To address this issue, we used a 

sample program to complete GPU warm-up before the actual measurements were made. The asynchronous 

mode was also converted to synchronous mode, and timing was halted only after the GPU reasoning of the 

 

current round was complete. 

 

Evaluation criteria for chick sex identification 

(1) Accuracy Rate 

The accuracy rate represents the ratio of samples correctly classified by the classification model 

(including both positive and negative examples) to the total number of samples. In other words, it is the 

percentage of correctly recognized videos among all chick videos to the total number of videos. The 

calculation formula is as follows: 

 

Accuracy = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 

 

(2) Female Chick Identification Rate 

The female chick identification rate (FCIR) represents the percentage of correctly identified female 

chick videos out of the total number of female chick videos. 

(3) Male Chick Identification Rate 

The male chick identification rate (MCIR) denotes the percentage of correctly recognized male chick 

videos out of the total number of male chick videos. 

(4) Running Time 

Running time is the duration taken by the program, from the moment the image is input to the output 

of the chick sex result. 

 

Results and Discussion 

Results of chick cloacae identification 

Chick cloacae identification is the first step in chick sexing. In this study, we compared the results 

based on the four metrics of precision, recall, number of parameters, and inference time, using YOLOV3-tiny 

(Fu et al., 2021), YOLOV4-tiny (Jiang et al., 2020), YOLOV5s (Zhang & Li, 2022), PicoDet, and the method 

proposed in this study. The results are shown in Table 1. 

 

Table 1 
Results of chick cloacae identification 

 Precision Recall Number of parameters Inference time 
YOLOV3-tiny 0.575 0.710 47.60M 71.42 ms 
YOLOV4-tiny 0.723 0.827 32.73M 52.77 ms 
YOLOV5-tiny 0.826 0.837 28.81M 38.01 ms 

PicoDet 0.992 0.998 11.80M 8.13 ms 
Our scheme 0.959 0.923 10.01M 7.81 ms 

 

The precision rates for chick cloaca recognition were evaluated using five algorithms, 
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(2) Female Chick Identification Rate

The female chick identification rate 
(FCIR) represents the percentage of correctly 
identified female chick videos out of the total 
number of female chick videos.

(3) Male Chick Identification Rate

The male chick identification rate 
(MCIR) denotes the percentage of correctly 
recognized male chick videos out of the total 
number of male chick videos.

(4) Running Time

Running time is the duration taken by 
the program, from the moment the image is 
input to the output of the chick sex result.

The precision rates for chick cloaca 
recognition were evaluated using five 
algorithms, YOLOV3-tiny, YOLOV4-tiny, 
YOLOV5-tiny, PicoDet, and the novel algorithm 
proposed in this study. The precision values 
obtained for these algorithms were 0.575, 
0.723, 0.826, 0.992, and 0.959, respectively, 
while the recall rates were 0.710, 0.827, 
0.837, 0.998, and 0.923, respectively.

Results and Discussion

Results of chick cloacae identification

Chick cloacae identification is the 
first step in chick sexing. In this study, 
we compared the results based on the 
four metrics of precision, recall, number 
of parameters, and inference time, using 
YOLOV3-tiny (Fu et al., 2021), YOLOV4-tiny 
(Jiang et al., 2020), YOLOV5s (Zhang & Li, 
2022), PicoDet, and the method proposed in 
this study. The results are shown in Table 1.

Table 1
Results of chick cloacae identification

Precision Recall Number of parameters Inference time

YOLOV3-tiny 0.575 0.710 47.60M 71.42 ms

YOLOV4-tiny 0.723 0.827 32.73M 52.77 ms

YOLOV5-tiny 0.826 0.837 28.81M 38.01 ms

PicoDet 0.992 0.998 11.80M 8.13 ms

Our scheme 0.959 0.923 10.01M 7.81 ms

Compared to the YOLO algorithms, 
which achieved precision and recall values 
of lower than 0.9, the method proposed 
in this study demonstrated significant 
improvements in both metrics. Moreover, 
our novel algorithm significantly reduced the 
number of parameters, by 78.97%, 69.42%, 
and 65.26% compared to YOLOV3-tiny, 
YOLOV4-tiny, and YOLOV5-tiny, respectively. 
The proposed method had faster inference 
times, with reductions of 89.06%, 85.20%, and 
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Table 2
Accuracy results for different thresholds

Threshold(%) /
Method(%)

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

YOLOV5-tiny 0.548 0.555 0.557 0.558 0.612 0.760 0.783 0.773 0.758 0.617

PicoDet 0.603 0.617 0.617 0.642 0.787 0.890 0.922 0.885 0.835 0.660

Our scheme 0.573 0.573 0.573 0.592 0.745 0.857 0.908 0.883 0.830 0.638

Table 3
FCIR results for different thresholds

Threshold(%) /
Method(%)

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

YOLOV5-tiny 0.950 0.930 0.913 0.900 0.883 0.870 0.863 0.803 0.677 0.297

PicoDet 0.990 0.970 0.953 0.943 0.933 0.930 0.913 0.837 0.727 0.323

Our scheme 0.973 0.943 0.923 0.910 0.900 0.883 0.903 0.827 0.703 0.303

79.45% compared to the YOLO algorithms, 
respectively. We can conclude that the 
proposed method outperformed the YOLO 
algorithms in all aspects of performance.

Although the proposed method 
achieved precision and recall values that 
were reduced by only 3.32% and 7.51%, 
respectively, compared to PicoDet, it 
excelled in terms of the two most important 
performance metrics: the number of 
parameters and the inference time. The 
parameter count for the proposed method 
was 10.01M, significantly lower (by 15.16%) 
than the 11.80M parameters for PicoDet 
model. The proposed method also had an 
inference time of 7.81 ms, 3.93% faster than 
PicoDet's 8.13 ms. Overall, the proposed 
method demonstrated superior running 
speed and execution efficiency compared to 
all other algorithms considered in this study.

Results of sex identification of chicks

The determination of chick sex relies 
on identifying chick cloacae reflections, 
and the frames containing male chick 
cloacae features in the video represent 
only a specific percentage of the entire 
recording. To address this issue, we explored 
the recognition accuracy of our model with 
various thresholds, defining a video as 
containing a male chick when the proportion 
of frames recognized as a male chick fell 
within specific threshold ranges.

For the study, 300 videos each of male 
and female chicks were carefully selected, 
with each video lasting 2 s. The thresholds 
were established in intervals of 10% (e.g., 
0–10%, 10–20%, and so on, up to 90–100%). 
Tables 2 to 4 show the results for accuracy, 
FCIR and MCIR for these different thresholds.



Li, K. et al.

142 Semina: Ciênc. Agrár. Londrina, v. 46, n. 1, p. 131-148, jan./fev. 2025

Table 4
MCIR results for different thresholds

Threshold(%) /
Method(%)

0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

YOLOV5-tiny 0.147 0.180 0.200 0.217 0.340 0.650 0.703 0.743 0.840 0.937

PicoDet 0.217 0.263 0.280 0.340 0.640 0.850 0.930 0.933 0.943 0.997

Our scheme 0.173 0.203 0.223 0.273 0.590 0.830 0.913 0.940 0.957 0.973

The performance of YOLOV5-
tiny, PicoDet and Our scheme in terms of 
chick sex recognition was investigated for 
these varying threshold values. Notably, at 
threshold values of 0–10%, Our scheme 
achieved the highest values of MCIR, with 
results of 95.00%, 99.00%, and 97.33%, 
respectively, thus indicating the high 
accuracy of the algorithms in recognizing 
male chicks. However, corresponding FCIR 
values at the same threshold were relatively 
low, at 14.67%, 21.67%, and 17.33%, 
respectively. This suggests a considerable 
misidentification rate for female chicks in the 
recognition process.

The high misidentification rate for 
female chicks has significant implications 
for practical applications involving chick 
sex recognition. As a consequence of the 
algorithms' misrecognition of female chicks, 
the overall chick sex recognition accuracy 
was adversely affected, resulting in values of 
55.50%, 61.67%, and 57.33% for the three 
algorithms, respectively. Such inaccuracies 
may render the algorithms unsuitable 
for real-world applications. It is therefore 
imperative to address this issue and to 
reduce the misidentification rate of female 
chicks while simultaneously improving the 
overall accuracy of chick sex recognition.

Figure 4. Results from the three evaluation methods for different thresholds.
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Table 5
Numbers of parameters and run times for the models

Number of parameters Running time

YOLOV5-tiny 57.13M 4.22 s

PicoDet 22.16M 1.09 s

Our scheme 21.05M 0.91 s

Figure 4 shows plots of the results 
from the three evaluation methods under 
different thresholds. As the threshold 
values were gradually increased, the 
MCIR underwent a decline, whereas the 
FCIR demonstrated a steady increase. At 
threshold values of between 60% and 70%, 
the algorithms reached relative optimality, 
with MCIR values of 86.33%, 91.33%, and 
90.34%, and FCIR values of 70.33%, 93.00%, 
and 91.33%, respectively. The accuracy was 
also correspondingly high, reaching values 
of 78.33%, 92.16%, and 90.83% for the three 
algorithms, respectively. These findings 
indicate that within this specific threshold 
range, the algorithms achieved more 
consistent performance in recognizing the 
sex of chicks, effectively striking a balance 
between the recognition of male and female 
chicks.

However, as the threshold values 
continued to rise, the FCIR showed continued 
improvement, while the MCIR and accuracy 
gradually decreased. At a threshold range 
of 90–100%, the MCIR values for the three 
algorithms were 29.67%, 32.33%, and 
30.33%, respectively, while the FCIR reached 
values of 93.66%, 99.56%, and 97.33%, 
respectively. Similarly, the accuracy values 

decreased to 61.67%, 66.00%, and 63.83%, 
respectively. In this case, there was a clear 
reduction in misidentification of female 
chicks due to the higher FCIR; however, this 
improvement came at the expense of lower 
MCIR and accuracy, indicating a decline in 
the identification of male chicks.

In this experiment, a thorough 
comparison of three chick sex recognition 
models, namely YOLOV5-tiny, PicoDet, and 
the algorithm proposed in this research, was 
also conducted based on their final sizes and 
runtimes. As shown in Table 5, the YOLOV5-
tiny model had the highest number of 
parameters and running time, with values of 
57.13 M and 4.22 s, respectively. The PicoDet 
model had 22.16 M parameters and a runtime 
of 1.09 s, while the proposed method had a 
parameter count of 21.05 M and a running 
time of 0.91 s. These findings indicate that the 
proposed approach successfully reduced 
the runtime to less than 1 s, while maintaining 
equivalent recognition efficiency, specifically 
when using a 2-s chick video as the study's 
subject. Furthermore, in comparison to the 
PicoDet model, the algorithm proposed in 
this research achieved a 5.01% reduction in 
the number of parameters.
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These outcomes are of great 
significance for real-world applications, 
as more efficient models allow for faster 
processing of substantial data quantities, 
thereby enhancing the recognition speed and 
overall efficiency. The algorithm proposed in 
this study exhibits superior efficiency and 
ease of deployment in practical scenarios, 
rendering it well-suited for application to 
real-world production environments.

In addition, the use of 2-s chick 
videos as research objects in this study 
adds relevance to the practical application of 
chick gender recognition. Unlike single static 
images, videos provide a wealth of information, 
particularly in dynamic environments, leading 
to more accurate and reliable chick sex 
identification. Consequently, the selection 
and utilization of video data in this study 
enhance its practicality and applicability.

It is essential to highlight that the 
success of the proposed algorithm in terms 
of reducing running time and parameters 
does not involve compromised accuracy. 
Accuracy remains a critical metric, particularly 
in chick sex identification applications. As 
demonstrated by the results, the proposed 
algorithm effectively shortens the running 
time and reduces the parameters while 
maintaining high accuracy levels, which can 
significantly benefit real-world applications.

Conclusion and Future Work

This study has introduced a 
novel semi-automated method for chick 
sex recognition that offers significant 
advancements over traditional approaches. 
The proposed innovations address 
challenges related to workload, efficiency, 

and applicability, positioning the method 
as a valuable contribution to the field. The 
integration of video streams, threshold-
based gender recognition, and optimized 
model features enhances the accuracy and 
efficiency of chick sex identification, with 
promise for broader practical applications 
and widespread adoption in the poultry 
industry. The method introduces several key 
innovations, which are outlined as follows:

(1) Adoption of a video stream: Rather 
than relying solely on images, the proposed 
method leverages video streams of chick 
cloacae for sex identification. This approach 
reduces the manual workload associated with 
image screening, making the method more 
suited for industrial-level applicability and 
facilitating wider promotion and adoption.

(2) Threshold-based gender 
recognition: We introduce a threshold-
based approach for chick sex recognition, 
which enables evaluation of the model's 
performance under different threshold 
values. The evaluation criteria applied here 
included accuracy, FCIR, MCIR, number 
of parameters, and operation time, thus 
ensuring a comprehensive assessment of 
the model's effectiveness.

(3) Feature extraction and model 
modification: The proposed method extracts 
color images of chick cloacae and binary 
image features, which effectively reflect 
the reflective properties of chick cloacae. 
These features serve as input to the model, 
and maximize the accuracy of chick gender 
recognition. In addition, the model is modified 
based on the PicoDet framework by removing 
the P6 branch from the CSP-PAN structure, 
resulting in fewer model parameters and 
faster running times, thereby facilitating ease 
of deployment.
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These innovations contribute to 
the advancement of chick sex recognition 
technology, and enhance its efficiency, 
accuracy, and practicality. The use of 
video streams enables more streamlined 
and automated processing, reducing 
manual efforts and enabling wider-scale 
implementation in industrial settings. 
The threshold-based approach provides 
flexibility in regard to fine-tuning the model's 
performance, and allows for optimal gender 
recognition under different conditions. 
Moreover, the integration of color and 
binary image features improves the model's 
discriminative capabilities, and further 
enhances the accuracy of chick gender 
identification. The modification to the model 
based on the PicoDet framework ensures 
efficient parameter utilization and faster 
processing times, making it more accessible 
for real-world deployment.

Future research in this field will focus 
on two main aspects. Firstly, a concerted 
effort will be made to enhance the collection 
and labeling of chick cloacae data. This 
will involve gathering video data on chick 
cloacae at various distances to investigate 
the model's performance in recognizing 
chick sex at different proximities. This data 
collection process will provide valuable 
insights into how the model's effectiveness 
varies with the distance between the camera 
and the subject. Secondly, since this study 
has successfully validated the feasibility 
of using chick cloacae videos for chick sex 
recognition, future research will prioritize the 
development of industrialized software for 
practical application in relevant scenarios. 
This will involve refining the algorithms and 
integrating them into user-friendly software 
systems for easy implementation and 

deployment in real-world environments. 
Furthermore, efforts will be made to 
accelerate the model's performance through 
optimization and acceleration techniques, 
thereby ensuring efficient and rapid 
processing of large-scale chick cloacae 
video data.
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