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Abstract

The methodology proposed herein for identifying potentially productive zones from yield data captured 

by harvester onboard sensors aims to establish a viable and easy-to-implement method for defining 

management zones by running statistical procedures on data from the harvest monitor. To do this, 

yield data from maize (2018 winter/second growing season) and soybean (2019 growing season) 

were converted into ɀ-score values and compared at a 99.8% confidence interval of standard normal 

distribution ɀ. Simultaneously, the degree of linearity was evaluated and Jackknife resampling, for 

removing data outside the range (outliers) established by the ɀ table (<-3.09 and >3.09). Next, yield 

ɀ-score algebraic mapping was performed to obtain a mean crop map, then applying three classes from 

the probability intervals of a plus and minus deviation, resulting in a map of potentially productive zones 

(below average, average and above average yield). Using this method, 5.72% of the area exhibited low 

yield potential, 90.71% average potential and 3.57% high yield potential. This analysis method was easy 

and quick to perform and provided summarized information, facilitating additional field surveys and 

providing a basis for decision-making.
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Resumo

A proposta desta metodologia para estimativa de zonas de potencial produtivo a partir de dados de 

produtividade obtidos por sensores instalados em colhedoras, tem como objetivo estabelecer um 

método viável e de fácil execução para a definição de zonas de manejo, empregando procedimentos 

estatísticos em dados obtidos por monitor de colheita. Para tanto, foram utilizados dados de produtividade 

das culturas de milho (inverno/safrinha 2018) e soja (safra 2019) convertidos em escore-ɀ e comparados 

com o intervalo de confiança de 99,8% da distribuição normal padrão ɀ. Simultaneamente, foi avaliado o 

grau de linearidade e o método Jackknife, removendo-se os dados fora do intervalo estabelecido pela 

tabela ɀ (<-3,09 e >3,09). Após este procedimento, foi realizado a álgebra dos mapas de escore-ɀ de 

produtividade para obtenção de um mapa médio das culturas, no qual se aplicou três classes a partir 

dos intervalos de probabilidade de um desvio para mais e para menos, resultando no mapa de zonas de 

potencial produtivo em três áreas, abaixo da média, na média, e acima da média de produtividade. Com 

a aplicação do método, obteve-se 5,72% da área com baixo potencial produtivo, 90,71% com potencial 

médio e, 3,57% com alto potencial produtivo. Este método de análise demonstrou-se de fácil e rápida 

execução e proporcionou informação resumida, facilitando ações complementares de levantamento à 

campo e tomadas de decisão.

Palavras-chave: Análises de dados. Álgebra de mapas. Mapa de colheita. Monitor de colheita.

Introduction

Precision Agriculture (PA) is an 
integrated management system that aims 
to improve agricultural activity based 
on the spatial and temporal variability of 
crops (Ministério da Agricultura, Pecuária e 
Abastecimento [MAPA], 2009). This concept, 
widely applied with the development of 
computing and embedded electronics, 
allowed farmers to observe the relationship 
between soil variations and crop yield. 
According to Pedersen and Lind (2017), and 
Souza et al. (2016), it is the result of a number 
of several factors, such as soil properties 
and characteristics, use of fertilizers, 
topographical attributes, climatic conditions 
and the occurrence of pests and diseases.

When dealing with this spatial 
variability, the most common approach 
involves subdividing the area into similar plots, 

referred to as differentiated management 
units (DMU) or management zones, based on 
predetermined characteristics or attributes 
obtained by collecting soil samples in order 
to apply localized treatment and improving 
performance (Speranza et al., 2022; Maldaner 
et al., 2019). 

The aim of subdividing areas into 
DMUs is to cut input costs and this can 
be achieved by collecting soil based on a 
georeferenced grid, or generating theme-
based maps from geostatistics. These 
methodologies help farmers and technical 
assistance teams to detect the dynamics 
of the crop’s spatial variability and thereby 
estimate localized input application, 
minimizing the possibility of applying too 
much or too little. Inferences can be made 
regarding the results and observed variability 
in the field and amendments proposed 
according to localized soil conditions and 
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plant variability (Richart et al., 2016) in order 
to boost crop yield (Camicia et al., 2018) and 
profitability (Carneiro et al., 2016).

The use of harvest maps generated 
by harvest monitors onboard grain combine 
harvesters is considered one of the best 
ways of detecting variability in the field and 
proposing management initiatives, since 
it is based on the crop’s response to the 
management and production environment 
and high sampling rates are achieved at 
low cost. However, errors can occur in 
data collection by harvester sensors, and 
these errors must be eliminated to obtain 
more reliable maps. Nonetheless, current 
methodologies are heavily dependent on the 
skill of the analyst. They are not easily applied 
to the data generated and are difficult to run 
on the data from the harvest monitors and 
obtain a summarized map of management 
zones or DMUs (Menegatti & Molin, 2004; 
Michelan et al., 2007; Delalibera, et al., 2012; 
Souza et al., 2016; Pedersen & Lind, 2017).

Thus, the aim of this study was to 
establish a viable and easy-to-implement 
method for defining management zones, 
using established statistical procedures in 
order to analyze crop yield data collected by 
harvest monitor.

Material and Methods

With the aim of establishing a viable, 
easy-to-implement method for defining 
management zones based on crop yield 
data from a harvest monitor, data obtained 
from maize (2018) and soybean (2019) 
second crops were used for the purpose of 
this study. The aim of this methodology is 
to thoroughly analyze yield data output by 

harvest monitors, discarding data that do 
not statistically belong to the population, 
facilitating the generation of algebraic yield 
maps for different crops and creating a 
summarized map of management zones, 
based on historical information on crop yield 
in a given agricultural area.

The data was sourced from an 
agricultural area of 17 hectares under the 
no-till management system (NTS), in clayey 
textured Distroferric Red Latosol soil (Santos 
et al., 2018) in the municipality of Cambé 
- Parana State, Brazil (23° 8’ 29.99” S, 51° 
20’ 48.51” W), at an elevation of 521 m. The 
climate is classified as Cfa - Subtropical with 
hot summers (Köppen, 1931).

Data were obtained using a John 
Deere grain combine harvester, model STS 
9750, fitted with an impact plate grain yield 
sensor, Hall, effect sensor on the drive 
wheels, gyroscopic tilt sensor and a GS4® 
John Deere monitor that displays and records 
information and outputs data in spreadsheet 
format.

Data obtained by the yield monitor 
is initially scanned to remove zeroed and 
null data, for which purpose a script was 
developed using Rstudio software. The 
moisture content for the yield data collectors 
was also standardized at 13% using the 
method proposed by Aguiar (1977). Next, 
using Excel 2010 spreadsheet software, 
Standard Deviations were analyzed 
according to standard normal distribution ɀ 
in order to transform each yield reading into 
kg ha-1, assigning a ɀ-score index with a zero 
mean and standard deviation equal to one, 
so that it could be later compared with a 
content interval of 99.8% of standard normal 
distribution ɀ derived from convergence 
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theorems, where values outside the content 
interval from -3.09 to 3.09, were considered 
not to belong to the population (Harter, 
1960), i.e. values not considered to belong 
to the population of the set were removed, 
as proposed in the Jackknife method (Wu, 
1986).

Thus, the process must begin by 
removing the outliers of ɀ-score indices in 
order to recalculate the indices on each 
removal, since they can move inside or 
outside the interval based on variations 
in the central tendency and dispersion 
measurements (Delalibera et al., 2017).

In addition to applying Jackknife 
resampling, it is important to evaluate the 
degree of linearity of the ordered frequency 
of indices, ɀ-score, for each harvest map, 
which is easily obtained by ordering ɀ-score 
from lowest to highest and applying a scatter 
plot to fit the linear equation, where the 
degree of linearity is represented by the r2 of 
the data fit to a straight line (Delalibera et al., 
2017).

This procedure for verifying the 
degree of linearity of the ordered frequency 
of ɀ-score is similar to the mathematics 
of some tests for verifying the degree of 
significance of the fit to data normality, such 

as Lilliefors and Anderson-Darling. However, 
the aforementioned methods cannot be 
applied because the size of the dataset is 
incompatible with the test rules.

It is advisable to evaluate the degree of 
linearity of the ordered frequency of ɀ-score 
and also the application of the Jackknife 
method to ɀ, since methods of comparison 
with theoretical distributions may be affected 
by low sensitivity when applied directly to 
very large datasets with high variability and 
dispersion, in which case the application of ɀ 
alone does not detect outliers. However, the 
evaluated set may not exhibit the linearity of 
the ordered frequency of its deviations.

The intention is always to fit the set 
to a normal distribution, where the closer r2 

is to 1.0, the greater the degree of linearity 
of the ordered frequency of ɀ-score and, 
consequently, there is a better tendency 
to fit a normal distribution, reflected in the 
representativeness of its measurements of 
central tendency and dispersion. Linearity 
equal to or greater than 0.80 can be 
considered representative (Delalibera et al., 
2017; Wu, 1986; Hair et al., 2009; Lentner & 
Bishop, 1993).

After preliminary analysis to 
remove null data and data not belonging 
to the population, with the respective 
standardization of yield data ɀ-score, 
these variables were represented two-
dimensionally in index maps of ɀ-score 
for soybean and maize crop yields by 
interpolation using Triangulated Irregular 
Networks (TIN), but not intended to estimate 
data in the spaces between points, nor to 
smooth the network variation steps, since 
accepted statistical methods for removing 
non-representative values from the sets 
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Eq 1.   

 

Where, 

– One-off sample (yield) 

– Dataset mean (yield) 

 – Dataset standard deviation 
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the ordered frequency of indices, ɀ score, for each harvest map, which is easily obtained by ordering ɀ score 

from lowest to highest and applying a scatter plot to fit the linear equation, where the degree of linearity is 

represented by the r2 of the data fit to a straight line (Delalibera et al., 2017). 

This procedure for verifying the degree of linearity of the ordered frequency of ɀ score is similar to 

the mathematics of some tests for verifying the degree of significance of the fit to data normality, such as 

Lilliefors and Anderson-Darling. However, the aforementioned methods cannot be applied because the size 

of the dataset is incompatible with the test rules. 
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were applied, and therefore interpolations 
that implement smoothing and/or value 
estimation could lead to representativeness 
errors. The TIN method uses a smaller 
number of neighboring points to calculate 
the interpolation, maintaining the level of 
accuracy of a denser regular grid, rendering 
the result more consistent with the input grid 
data (Mikhail et al., 2001).

Yield maps acquired by a harvest 
monitor provide a high density of points 
sampled per unit area and it is considered 
that removing up to 50% of the data does not 
justify the need to apply estimation methods 
to cover empty spaces, since area size is 
considered irrelevant. The maps plotted on 
the basis of yield ɀ-score were generated 
using GIS QGIS 3.4.6. software.

Once the mapped ɀ-score values had 
been obtained for each crop, a map algebra 
was applied to compare the soybean and 
maize maps with the aim of obtaining a means 
map averaging the yield ɀ-score. In statistical 
terms, this procedure allows for dilution of 
the effects of uncontrolled factors, obtaining 
summarized information for facilitating the 
interpretation of the combined information as 
a basis for more assertive decision-making.

Subdividing this final averages map 
of the area into management zones involved 
applying a statistical parameter resulting in 
only three subdivisions, aimed at facilitating 
interpretation. To do this, one plus and one 
minus Standard Deviations from the mean 
were taken into account, classifying the 
map into three zones (potentially productive 
zones). The map zones with a ɀ-score 
deviation lower than -1 were considered to 
have a low index of yield potential; zones 
with a ɀ-score value between -0.999 to 0.999 

were considered of average normal potential, 
and areas with a deviation higher than 1 were 
considered to have a high index of yield 
potential.

In this procedure, based on perfect 
normal distribution, 68.26% of occurrences 
were concentrated in the graph area 
demarcated by one standard deviation to 
the right and one standard deviation to the 
left of the mean, and what remains is 15.77% 
on each side of the distribution (99,8% of 
the interval contained in the distribution 
of ɀ). This percentage of distribution does 
not necessarily occur in a measured 
phenomenon, but in this case the data 
included in each defined interval (≤-1; -0.999 
to 0.999 and ≥1 deviation) were considered 
to correspond to statistically different levels 
of yield potential below average, average, 
and above average, respectively.

After mapping the historical average 
of potentially productive zones, QGIS 
software was used to extract the yield 
histograms of ɀ-score providing the area 
of each zone formed, in addition to the 
frequency distribution, in order to evaluate 
the behavior of the yield potential of the area. 
During descriptive analysis of the data, the 
Coefficient of Variation (CV%) was calculated 
by adding a constant of one to the values with 
the aim of obtaining a more representative 
index fit (Hair et al., 2009).

Results and Discussion

By applying the Jackknife method 
using the value of ɀ and verifying the degree of 
linearity of the ordered frequency of ɀ-score, 
it was possible to verify the best fit for the 
yield distribution data (Figure 1). Figures 1F 
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and 1H show that the outliers are responsible 
for the change in direction at the ends of the 
ordered frequency distribution of ɀ-score, 
resulting in a poor linearity fit. Therefore, 
discrepant data were removed, starting with 
the value of ɀ-score furthest from the mean 
of standard distribution for the set.

The importance of verifying the 
degree of linearity of the ordered frequency 
for yield (ɀ-score) is shown by the histograms 
in Figures 1C and 1D and in the ordered 
frequency diagrams in Figures 1H and 1I. 
This is because the low sensitivity of ɀ 
when identifying data not belonging to the 
population during application of Jackknife 
resampling to very large dispersed datasets 
is explicit, which means that it is essential 
to evaluate the linearity of the responses 
of ɀ-score values for this type of measured 
event. Therefore, in this data filtering 
procedure, the Jackknife method alone 
based on ɀ values does not initially identify 
outliers. However, subsequently applying 
the ordered frequency diagram of ɀ-score 
reveals a low degree of linearity (Figure 1H), 
which, by excluding discrepant data from the 
right (positive) end of the diagram, means that 
the Jackknife begins to identify data that do 
not belong to the population, since there is 
a reduction in the dispersion measurements 
for the dataset. In this case, outliers were 

removed until the degree of linearity of the 
ordered frequency of ɀ-score reached an r2 

greater than 0.80 and there were no more 
indices outside the content interval applied, 
(Figure 1I).

Figure 1 also shows an improvement 
in the behavior of the dataset in the 
corresponding distribution histograms, with 
a better fit to normality and, consequently, 
improved representativeness for the 
dispersion measurements and the central 
tendency of the event. According to 
Mirshawka (1986), ɀ-score values outside the 
±3.09 range represent data not belonging 
to the population tested in relation to the 
distribution of ɀ. Samohyl (2005) points 
out that these discrepant data items in 
evaluations of agricultural events may be 
related to factors such as labor, machinery, raw 
material, environment and the measurement 
method. Factors related to machinery include 
harvesting with half a platform or closing off 
some areas, sensor read errors and other 
factors that are normal and often systematic 
during the harvesting process. These factors 
should not necessarily be excluded, since 
they are part of the mechanized harvesting 
process and therefore affect dilution when 
applying algebraic mapping in order to 
generate the historical average map of 
potentially productive zones.
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Figure 1. Frequency histograms of yield ɀ-score and ordered frequency diagram of ɀ-score with the 
respective linearity fits, where: Fig. 1A and 1F show the behavior of the ɀ-score for maize without 
applying the Jackknife method, Figs. 1B and 1G behavior of ɀ-score for maize when the Jackknife 
method, Fig. 1C and 1H behavior of ɀ-score for soy when the Jackknife method, Fig. 1D and 1I 
behavior of ɀ-score for soybean with the Jackknife method, Fig. 1E relates to the behavior resulting 
from averaging the maps of ɀ-score for maize (Fig. 1B/1G) and soybean (Fig. 1D/1I). Where: values 
below -1 for ɀ-score are shown in red and represent zones of low yield; values between -0.999 to 
0.999 for ɀ-score are shown in yellow and represent zones of average normal yield potential; and 
values above 1 for ɀ-score are shown in green and represent areas of high yield potential.
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A study undertaken by Delalibera et al. (2017), who used experimental data analysis methods to 

evaluate bean grain losses on header during mechanized harvesting, concluded that the application of the 

Jackknife method based on ɀ during preliminary data analysis afforded advantages, such as improved quality, 

representativeness and reliability of the information obtained for subsequent analyses, since fitting to an 
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A study undertaken by Delalibera 
et al. (2017), who used experimental data 
analysis methods to evaluate bean grain 
losses on header during mechanized 
harvesting, concluded that the application 
of the Jackknife method based on ɀ 
during preliminary data analysis afforded 
advantages, such as improved quality, 
representativeness and reliability of the 
information obtained for subsequent 
analyses, since fitting to an appropriate 
theoretical distribution for events exhibiting 
considerable dispersion allows for the 
careful exclusion of non-discrepant samples, 
without impairing the representativeness of 
the results and therefore reflecting the reality 
of the event.

During algebraic mapping (see 
histogram in Figure 1E), the effects of 
uncontrolled random variables on the yield 
variable is verified. Uncontrolled random 
events include variables such as climate, 
pests, diseases and even the effects of 
different cultivars of the same crop and 
during the same season. In addition, the 
frequency distribution histograms exhibit 
asymmetric behavior on the right, indicating 
a trend in this area towards increased yield, 
since stability would be represented by a 
bell curve perfectly aligned with the center 
of distribution, i.e. it can be inferred that the 
management methods applied to the area 
are boosting yield.

This fact (see Figure 1B) in regard to 
maize cultivation, leads to the conclusion 
that investments made in maize farming are 
boosting yield. This is less evident in the 
soybean crop (Figure 1D), where the top of 
distribution is closer to the center (mean/
zero), with a tendency towards stabilization of 
the area’s yield potential and, therefore, new 
or additional investments in management 
will not result in a significant increase in yield. 
It is worth mentioning that maize tends to 
respond faster to management practices, and 
some soybean cultivars are more tolerant to 
variations in soil fertility and may not respond 
with increased yield in years with favorable 
weather conditions.

Figure 1E shows that there is an 
increase in the average yield potential of the 
area as time progresses, based on current 
management methods, evidenced by the 
asymmetry on the right of the histogram for 
zones of average yield potential. Note that, 
as these data are ongoing, if there are cases 
of histograms with binomial or multinomial 
representation or distribution for yield 
ɀ-score for a given area, this indicates that 
we are dealing with different populations 
that must be evaluated separately, as in the 
case of this study of maize and soybeans, 
maintaining the algebraic mapping situation 
at the end of analysis.
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According to Blackmore (2003) 
and Lark et al. (1999) history data over 
several seasons of planting different 
crops is necessary to identify and propose 
management zones associated with soil 
characteristics, which is true and valid for the 
purpose of this study.

Even so, based on what is stated 
herein, it is possible to carry out a combined 
analysis of data from different sources (crops 
and agricultural years), since the conversion 
of yield to ɀ-score and comparison with the 
distribution of ɀ values allows scaling or 
standardization of the different quantities 
relating to the different crop yields for the 
same scale within a content interval from 
-3.09 to 3.09, facilitating comparison and/
or algebraic mapping without loss of the 
variability information intrinsic to the dataset.

This effect can be seen in Figure 
2E, which represents the mean map of 
ɀ-score for yield in Figures 2C (maize) and 
2D (soybean), summarizing information from 
different sources in a single average map 
of potentially productive zones in the area, 
which is not possible for yield data expressed 
in grams, as can be seen in Figure 3. This 
is because different crops respond within 
different intervals and values of magnitude 
in regard to the means for dispersion and 
central tendency, where maize yield can 
be considered low, but not soybean yield. 
However, the behavior of intrinsic variabilities 
is not necessarily expressed in this way 
after standardization, as proposed herein. 
This effect is illustrated in Table 1. After 
conversion into ɀ-scores, both crops exhibit 
zeroed means and a standard deviation of 
one.
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Figure 2. Maps of management zones derived from the ɀ-score for crop yields, classified into 
three potentially productive zones by the mean standard deviation method, where: Fig. 2A is the 
map of ɀ-score for maize with no Jackknife, Fig. 2B, the map of ɀ score for soy without Jackknife, 
Fig. 2C, the map of ɀ-score for maize with Jackknife, Fig. 2D, the map of ɀ-score for soybeans 
with Jackknife, Fig. 2E, the averages map for potentially productive zones, resulting from algebraic 
mapping of Fig 2C (maize) and Fig. 2D (soybean). Where: values below -1 ɀ-score are shown in red 
and represent areas of low yield potential; values between -0.999 to 0.999 for ɀ-score are shown 
in yellow and represent zones of normal average yield potential; values above 1 ɀ-score are shown 
in green and represent areas of high yield potential.

crops exhibit zeroed means and a standard deviation of one. 
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above 1 ɀ-score are shown in green and represent areas of high yield potential. 
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Figure 3. Representation of yield data (Mg ha-1) without prior data processing and color-coded 
according to the software default values. Where: Fig. 3A relates to the maize crop and Fig. 3B 
relates to the soybean crop.
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Table 1 
Descriptive analysis of data sets from the harvest monitor 

Descriptive 
analysis 

Maize Soybean 
DB  

ɀ-score 
CT 

eɀJL 
DB 

ɀ-score 
CT 

eɀJL 
(Mg ha-1) (Mg ha-1) (Mg ha-1) (Mg ha-1) 

Mean yield 6.86 0.00 6.76 0.00 4.09 0.00 3.75 0.00 

Standard error 40.96 0.01 35.80 0.02 230.10 0.01 15.04 0.02 

Median 7.48 0.20 7.48 0.30 3.93 -0.01 3.93 0.19 

Mode 8.81 0.62 8.81 0.89 4.72 0.03 4.72 0.19 

Standard deviation 3124.72 1.00 2718.08 1.00 18055.48 1.00 1171.67 1.00 

Sample variance 9763.88 1.00 7387.95 1.00 326000.37 1.00 1372.80 1.00 

Kurtosis 19.64 19.64 -0.29 -0.44 6024.11 6024.11 1.31 1.14 

Asymmetry 1.57 1.57 -0.72 -0.82 77.21 77.21 -0.93 -0.98 

Interval 47.12 15.08 13.52 3.66 1412.77 78.25 7.21 6.02 

Minimum 0.12 -2.16 0.12 -2.38 0.14 -0.22 0.14 -2.98 

Maximum 47.24 12.92 13.64 1.28 1412.91 78.03 7.35 3.04 

Count 5821.00 5821.00 3442.00 3442.00 6157.00 6157.00 3756.00 3756.00 

CV (%) 45.49 87.89 40.20 86.04 440.64 107.78 31.18 102.03 
RD – Raw data from the harvest monitor; ɀ-score – ɀ-score of yield; eɀJL – ɀ-score with Jackknife and verification of 
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Table 1
Descriptive analysis of data sets from the harvest monitor

Descriptive 
analysis

Maize Soybean

DB 
(Mg ha-1)

ɀ-score
CT

(Mg ha-1)
eɀJL

DB
(Mg ha-1)

ɀ-score
CT

(Mg ha-1)
eɀJL

Mean yield 6.86 0.00 6.76 0.00 4.09 0.00 3.75 0.00

Standard error 40.96 0.01 35.80 0.02 230.10 0.01 15.04 0.02

Median 7.48 0.20 7.48 0.30 3.93 -0.01 3.93 0.19

Mode 8.81 0.62 8.81 0.89 4.72 0.03 4.72 0.19

Standard deviation 3124.72 1.00 2718.08 1.00 18055.48 1.00 1171.67 1.00

Sample variance 9763.88 1.00 7387.95 1.00 326000.37 1.00 1372.80 1.00

Kurtosis 19.64 19.64 -0.29 -0.44 6024.11 6024.11 1.31 1.14

Asymmetry 1.57 1.57 -0.72 -0.82 77.21 77.21 -0.93 -0.98

Interval 47.12 15.08 13.52 3.66 1412.77 78.25 7.21 6.02

Minimum 0.12 -2.16 0.12 -2.38 0.14 -0.22 0.14 -2.98

Maximum 47.24 12.92 13.64 1.28 1412.91 78.03 7.35 3.04

Count 5821.00 5821.00 3442.00 3442.00 6157.00 6157.00 3756.00 3756.00

CV (%) 45.49 87.89 40.20 86.04 440.64 107.78 31.18 102.03

Table 2
Area of potentially productive zones (in hectares and as a percentage), color-coded on maps

Figure/Maps
Area (ha)

Red (%) Yellow (%) Green (%)
2A/eɀ Maize 1.50 13.16 9.34 82.10 0.54 4.74

2C/eɀJL Maize 1.61 14.03 8.24 71.93 1.61 14.04

2B/eɀ Soybean - - 17.21 100.00 - -

2D/eɀJL Soybean 1.28 7.46 15.03 87.40 0.88 5.14

2E/Mean of eɀJL Maize and Soybean. 0.99 5.72 15.67 90.71 0.62 3.57

RD – Raw data from the harvest monitor; ɀ-score – ɀ-score of yield; eɀJL – ɀ-score with Jackknife and verification of 
the degree of linearity of the ordered frequency for ɀ-score; PD - Processed data.

Red - Zones with low yield potential; Yellow - Normal average potentially productive zones; Green - Zones with high 
yield potential; eɀ - ɀ-score yield data; eɀJL - ɀ-score with Jackknife and verification of the degree of linearity of the 
ordered frequency of ɀ-score.

Table 2 shows the effect of processing 
the data, resulting in an increase in the 
areas of low and high yield potential, with a 
consequent drop in the zone of mean normal 
potential. This effect is more evident in the 

soybean maps, prior to data processing 
(Figure 2B), with an apparently homogeneous 
area and the absence of zones of low and 
high yield potential. After processing (Figure 
2D), these plots were differentiated.
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The application of data processing 
using established statistical concepts 
suitable for large datasets, such as ɀ 
values and exclusion of discrepant data 
by the Jackknife method together with 
the evaluation of the degree of linearity of 
the ordered frequency of ɀ-score values, 
significantly affects the quality of the 
information generated, as shown in Figure 
2 and Table 1. Table 1 also shows that, in 
the count variation source, data processing 
removed 40.8 and 38.9% of the data from the 
sets for maize and soybeans respectively. 
Due to the high density of sampled values per 
area unit, it is assumed that the information 
generated was not impaired, and that the 
high coefficient of variation for both crops is 
a characteristic of the yield variable during 
mechanized grain harvesting. 

In addition, the information extracted 
from the yield maps is considered by 
several authors as one of the best variables 
for detecting variability in the field and 
proposing management methods, since in 
addition to representing the crop response 
to management methods and the production 
environment, this variable is obtained at low 
cost and with a high sampling rate (Pedersen 
& Lind, 2017; Souza et al., 2016; Menegatti & 
Molin, 2004).

Note that the proposed methodology 
was considered easy to implement, since 
it involves three steps executed by simple 
and robust statistical methods. The first step 
is removal of discrepant data, the second 
relates to algebraic mapping and the third 
to the subdivision of the area into potentially 
productive zones. Carrying out these three 
steps requires basic knowledge of electronic 
spreadsheet manipulation to calculate 
standard deviations, means, divisions and 

subtractions, fixed critical values for data 
exclusion and degree of linearity, and basic 
knowledge of geographic information 
systems not requiring in-depth knowledge 
for interpretation. Therefore, these steps 
can be correctly performed by a trained 
technician, or automatically if dedicated 
software is written for this purpose.

It is also assumed that a larger set of 
crop/yield maps for the same area is available, 
in which case the representativeness of 
the average map of potentially productive 
zones will be greater, given the dilution of 
uncontrolled effects on the dataset and 
highlighting soil variables that influence 
crop yield. However, it is still advisable, as 
a continuation of this work, that studies be 
conducted to survey soil variables in the 
field, based on the potentially productive 
zones obtained, with the aim of correlating 
them with the proposed management zones, 
since in some cases soil variables are easier 
to handle.

Conclusion

The application of analysis methods 
to data acquired from harvest monitors 
proposed herein consists of only three steps, 
based on robust and easy-to-implement 
statistical methods. 

The method used to remove non-
representative data from the set has proven 
to be viable for data from yield monitors on 
board grain combine harvesters.  

The algebraic mapping method for 
different crops has proven to be efficient and 
did not impair the quality of the information 
generated.
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The method used for the subdividing 
the area into management zones was 
adequate and the number of classes 
sufficient for summarizing the information, 
facilitating complementary initiatives such as 
carrying out surveys and collecting variables 
in the field, especially those related to the soil, 
obviating the need for gridded soil sampling.
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