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Highlights

Salinity up to 6.5 dS m-1 did not impair the photosynthetic apparatus. 

Salinity increases non-regulated non-photochemical excitation dissipation.

Pulse drip irrigation does not attenuate the effects of salinity on mini watermelon.  

Abstract

The use of marginal quality water can be a viable alternative in regions with water scarcity when associated 

with an adequate irrigation management strategy. The aim of this study was to evaluate the physiological and 

biochemical responses of ‘Sugar Baby’ mini watermelon as a function of irrigation management and salinity 

of the nutrient solution (ECsol). The experiment was carried out in a greenhouse of the Federal University 

of Recôncavo of Bahia, in the municipality of Cruz das Almas - BA, in a completely randomized design, with 

four replications. The plants were grown under two types of irrigation management (conventional drip - CD 

and pulse - PD) and four saline levels of the fertigation nutrient solution (2.5 - control; 4.5; 5.5; 6.5 dS m-1). 
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At 65 days after cultivation, the following variables were evaluated: chlorophyll a and b content, chlorophyll 

a fluorescence, and organic and inorganic solutes content. The treatments did not influence the levels of 

chlorophyll a and b. Salinity decreased the quantum yield of photochemical energy conversion due to the 

increased quantum yield of unregulated energy loss. Irrigation management and water salinity did not affect 

carbohydrate content in mini watermelons leaves. However, soluble proteins were higher in the CD than in 

PD and decreased with increasing salinity in both managements. Salinity increased free amino acids in CD 

but did not change the content of these solutes in PD. Free proline was only influenced by the management 

system and was higher in CD than in PD. Sodium, chloride, and sodium to potassium ratio increased with 

ECsol, but these increases were more pronounced in PD. Salinity increased potassium content in PD and 

reduced in CD. The CD led to lower absorption of toxic ions, reducing the effects of salinity on the mini 

watermelon.

Key words: Citrullus lanatus L. Salt stress. Irrigation management.

Resumo

A utilização de água da qualidade marginal pode ser uma alternativa viável em regiões com escassez 

hídrica, quando associada a estratégias de manejo de irrigação adequadas. O objetivo deste estudo foi 

avaliar as respostas fisiológicas e bioquímicas da minimelancia ‘Sugar Baby’ em função dos manejos de 

irrigação e da salinidade da solução nutritiva (CEsol). O experimento foi realizado em casa de vegetação da 

Universidade Federal do Recôncavo da Bahia, no município de Cruz das Almas, BA, Brasil, em delineamento 

experimental inteiramente casualizados com quatro repetições. As plantas foram cultivadas sob dois tipos 

de manejo de irrigação (gotejamento convencional - GC e por pulsos – GP) e quatro níveis salinos da solução 

nutritiva de fertirrigação (2,5 - controle; 4,5; 5,5; 6,5 dS m-1). Aos 65 dias após semeadura, foram avaliadas as 

variáveis: teores de clorofilas a e b, fluorescência da clorofila a e teores de solutos orgânicos e inorgânicos. 

Os tratamentos não influenciaram os teores de clorofila a e b. A salinidade diminuiu o rendimento quântico 

da conversão de energia fotoquímica com aumento na dissipação de energia não regulada, sendo que 

ambos são vias competitivas de energia entre si. O tipo de manejo e a salinidade não afetaram os teores 

de carboidratos nas folhas de minimelancia. Entretanto, as proteínas solúveis foram maiores no GC que 

no GP e diminuíram com o incremento da salinidade em ambos os manejos. A salinidade aumentou os 

aminoácidos livres no GC, mas não alterou o conteúdo destes solutos no GP. Os teores de prolina livre só 

foram influenciados pelo tipo de manejo, sendo maiores no GC que no GP. Os íons sódio e cloreto e a razão 

sódio/potássio aumentaram com a CEsol, sendo esses aumentos mais pronunciados no GP. A salinidade 

aumentou os teores de potássio no GP e diminuiu no GC. O GC levou a uma menor absorção de íons 

tóxicos, atenuando os efeitos da salinidade sobre a minimelancia..

Palavras-chave: Citrullus lanatus L. Estresse salino. Manejo de irrigação.
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Introduction

Watermelon (Citrullus lanatus L.) is 
an annual cycle plant species belonging to 
the Cucurbitaceae family, being a vegetable 
commercially cultivated worldwide. According 
to the yearbook 2018 - 2019, watermelon 
cultivation in Brazil has high profitability, with 
an export of 52,900 tons in 2019, generating 
US$ 21.1 million, with the expectation of 
more positive seasons, especially with mini 
watermelons, which have exceeded export 
records (Hortifruitbrasil, 2020).

As water is a scarce resource in the 
Northeast region of Brazil, the success of 
watermelon production depends on the 
availability of water with proper irrigation 
management (Guimarães et al., 2016; Silva 
et al., 2017). Thus, a promising alternative 
to meet the water demand of crops is the 
use of marginal-quality water from surface 
and groundwater sources (wells) with a 
high concentration of salts (Sá et al., 2019). 
However, when plants sensitive to soil salinity 
are subjected to salt stress, ions such as Na+ 

and/or Cl- accumulate in chloroplasts, which 
may show physiological and biochemical 
changes due to toxic, osmotic, and nutritional 
effects (Silveira et al., 2016; Bai et al., 2019; 
Shoukat et al., 2019).

An example of biochemical change 
caused by the high concentration of salts 
in the soil is the accumulation of organic or 
osmotic solutes in the vacuole of plant cells, 
as a form of acclimatization to salt stress 
(Slama et al., 2015; Cova et al., 2020; F. D. A. 
Silva et al., 2020; Lo’ay & El-ezz, 2021). Another 
acclimatization mechanism is the cellular 
compartmentalization of inorganic ions in 
the vacuole, due to the ionic stress caused 

by salinity, when the plant increases the 
concentrations of toxic ions (Na+ and Cl-) in the 
vacuole and alters the ionic balance, reducing 
mineral absorption (Arif et al., 2020). In some 
species, high salinity reduces photosynthetic 
levels, total chlorophyll content, activity of 
the photosystem (PSII), potential quantum 
yield of photosystem II, besides degrading 
the structure of chloroplasts (Xu et al., 2018; 
Wang et al., 2018; Betzen et al., 2019).

According to Ayers and Westcot 
(1999), watermelon is considered 
moderately tolerant to irrigation water 
salinity, withstanding electrical conductivity 
of irrigation water (ECw) of up to 2.0 dS m-1. 
Under normal growing conditions, the mass 
of mini watermelon fruits can reach up to 
4.2 kg (Dutra et al., 2021). However, in mini 
watermelon, Sousa et al. (2016) reported that 
the use of brackish water (ECw between 1.0 
and 5.0 dS m-1) causes reductions in fruit mass 
of approximately 8.71% per unit increment 
in ECw. Nonetheless, irrigation with water 
above 3.5 dS m-1 is not recommended for the 
production of ‘Sugar Baby’ mini watermelon 
seedlings (Ó et al., 2020b).

In addition to the direct effects caused 
on plants, salinity also alters the chemical and 
physical properties of the soil, such as pH, 
water infiltration rate, and nutrient availability 
to plants (Blanco & Folegatti, 2002). Unlike 
most articles published with the use of 
brackish water, this study aims not only to 
evaluate the effect caused by salinity on 
the production of mini watermelon but also 
to minimize the negative effect induced by 
salinity with the use of water management 
techniques. Thus, searching for alternatives 
capable of mitigating the effects of salt stress 
on plants is of fundamental importance for 
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plant growth and development, ensuring a high 
yield. Among the alternatives consistent with 
the conditions presented, pulse drip irrigation 
has shown promising effects (Zamora et al., 
2019; Arriero et al., 2020).

As soil salinity affects water dynamics 
and reduces its availability to plants, the 
hypothesis of this study is that the use of pulse 
drip irrigation reduces the negative effects 
of salinity on the growth and metabolism of 
mini watermelon plants. Pulse drip irrigation is 
composed of a series of cycles that may vary 
depending on atmospheric demand, resting 
time, irrigation time, and other factors that 
can be adjusted according to the operator 
(Rank & Vishnu, 2021). Pulse drip irrigation has 
been studied, mainly due to the possibility of 
increasing water use efficiency in agricultural 
crops. Some studies with different crops 
showed positive results when using pulse 
drip irrigation, such as increased water use 
efficiency in lettuce (Almeida et al., 2015) and 
bell pepper (Barbosa et al., 2020), which also 
increased yield; increased shoot biomass 
index and decreased root mass in coriander 
(Zamora et al., 2019); and higher number 
of marketable fruits in eggplant (Arriero et 
al., 2020). In addition, the use of pulse drip 
irrigation has contributed to increasing 
the level and uniformity of soil moisture 
distribution (El-Abedin, 2006).

Increased water availability in the 
root zone can directly contribute to better 
absorption of water and nutrients and to the 
establishment of cell turgor, osmotic and ionic 
balance, and maintenance of leaf temperature, 
improving plant growth, especially under salt 
stress conditions (Taiz et al., 2017). However, 
these studies address only yield and water use 
efficiency with respect to pulse drip irrigation, 

with a noticeable scarcity of studies and 
experimental trials evaluating biochemical 
and physiological responses in watermelon 
using this technique with brackish water. In 
this context, the objective of this study was 
to evaluate the biochemical and physiological 
responses of ‘Sugar Baby’ mini watermelon 
plants grown under the management of 
continuous and pulse drip irrigation with 
brackish water.

Material and Methods

The study was carried out in a 
greenhouse in the experimental area of the 
Graduate Program in Agricultural Engineering 
of the Federal University of Recôncavo 
da Bahia, in Cruz das Almas (12°40'19" S, 
39°06'23" W, 220 m), BA, Brazil. The climate 
of the study site is classified as Af (hot 
and humid tropical) according to Köppen’s 
classification (Alvares et al., 2013), with annual 
means of precipitation, air temperature, and 
relative humidity of 1,224 mm, 24.5 °C and 
80%, respectively. During the experiment, 
the minimum and maximum values of air 
temperature inside the greenhouse were 19.8 
and 36.5 ºC and the average relative humidity 
was 51%, respectively.

‘Sugar Baby’ mini watermelons were 
produced under fertigated conditions in a 
greenhouse (East-West orientation) from 
October to December 2018 (autumn-winter). 
The greenhouse used had a single-arch 
structure, with a ceiling height of 2.8 m, 
width of 7.0 m, and length of 24 m, protected 
on the sides by a screen and covered with 
150-micron polyethylene film.

The experiment was carried out using 
a completely randomized design in a factorial 
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scheme (4 × 2), with five replicates. The mini 
watermelon plants were subjected to four 
levels of electrical conductivity of the nutrient 
solution used in fertigation (ECsol): T1 - 2.50 
(control, without NaCl), T2 - 4.50, T3 - 5.50, 
and T4 - 6.5 dS m-1, and two types of irrigation 
management: conventional drip (CD) and 
pulse drip (PD).

The nutrient solution used in fertigation 
(NS) was based on the formulation of Sasaki 
(1992) for fruits. The following fertilizers were 
used (g 100L-1): 83 g of calcium nitrate, 50 g 
of potassium nitrate, 15 g of monoammonium 
phosphate (MAP), 36 g of magnesium sulfate, 
6.7 g of potassium chloride, 0.01 g of copper 
sulfate, 0.09 g of zinc sulfate, 0.01 g of 
manganese sulfate, 0.12 g of boric acid, 0.015 
g of sodium molybdate, and 1.6 g of Ferrilene 
(6% Fe + 40.8% EDDHA).

The NS was prepared using municipal-
supply water, with ECw of 0.5 dS m-1. The 
water ECw levels evaluated were: 0.5 (control), 
1.0, 2.0, 3.0, and 4.0 dS m-1. For the other 
treatments (ECsol above 2.50 dS m-1), iodine-
free NaCl was added to the nutrient solution 
to achieve the desired ECsol levels, using the 
relation between ECw and salt concentration, 
according to Eq. 1 (Richards, 1954):

Q NaCl (mg L-1) = 640 x ECw (dS m-1)              (1)

Where Q is the amount of salt to be dissolved 
in the water and ECw is the desired electrical 
conductivity of water.

Sowing was carried out in 200-mL 
plastic cups (perforated at the bottom and 
on the sides) containing only coconut fiber 
and irrigated initially with local-supply water 
(ECw=0.5 dS m-1) and, after seven days, with 
nutrient solution of Sasaki (1992) at half 

strength (50% concentration). At 15 days 
after sowing (DAS), the seedlings with two true 
leaves were transplanted into 10-L containers 
filled with a mixture of coconut fiber and 
bovine manure (3:1 v/v), whose chemical 
analysis showed the following results: pH 
(water) = 6.7, P = 204 mg dm-3, K = 5.2 cmolc 
dm-3, Ca = 4.1 cmolc dm-3, Mg = 4.7 cmolc dm-3, 
Na = 1.78 cmolc dm-3, Al = 0 cmolc dm-3, H+Al = 
3.57 cmolc dm-3 and OM= 71.5 g kg-1.

The plants were grown with two stems 
and one fruit in the main branch, as described 
by Ó et al. (2020a). The experiment lasted 70 
days. Harvest was carried out when the tendril 
adjacent to the fruit was dry (65 to 70 DAS).

The required irrigation depth was 
calculated based on the climatic data acquired 
from a weather station located in the center of 
the study area (greenhouse), composed of a 
pyranometer and thermo-hygrometer.

Evapotranspiration of watermelon 
crop (ETc) was calculated according to the 
methodology proposed by Allen et al. (1998) 
(Eq. 2):

ETc = Kc x ETo                                                                                                            (2)

Where ETc = crop evapotranspiration (mm 
day-1); Kc = watermelon crop coefficient 
(dimensionless) and ETo = reference 
evapotranspiration (mm day-1).

To calculate the daily ETo, an 
electronic spreadsheet was used, using the 
method adapted for studies in greenhouses 
recommended by Penman-Monteith, 
standardized by FAO 56 (Allen et al., 1998) 
with the wind speed set at 0.5 m s-1 (Eq. 3).
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Where ETo – reference evapotranspiration 
(mm day-1); Rn – radiation balance (MJ m-2 
day-1); G – soil heat flux (MJ m-2 day-1), G = 
0 in a period of 24 h; Δ – declination of the 
water vapor saturation curve (kPa °C-1); u2  – 
wind speed at 2 m height (m s-1), being for 
greenhouse conditions fixed at 0,5 m s-1; Ta 
– average air temperature (°C); es – saturation 
pressure of water vapor in the atmosphere 
(kPa); ea – current pressure of water vapor in 
the atmosphere (kPa) and γ – psychometric 
constant (MJ kg-1).

The crop coefficients recommended 
by Silva et al. (2015) were used in the study: 
an initial Kc of 0.51 for nine days, vegetative 
Kc of 0.52 for 15 days, Kc flowering of 1.23 
for 26 days and Kc of maturation of 1.13 for 
10 days.

Thus, with the knowledge of all the 
data, the required irrigation depth was 
calculated by Eq. 4:

Where RID – required irrigation depth (mm) 
and Kp - dimensionless location coefficient 
(considered 1); Ea – efficiency of water 
application of the system, adopting the value 
obtained by the uniformity test (0.95).

To calculate the operating time (Ti), the 
values of the irrigation depth required from 
Eq.5.

Where Ti - irrigation time for each treatment 
(h); A - area of containers, (m2); e - number of 
emitters per plant (1) and q - average flow rate 
of the dripper (4.0 L h-1).

Conventional drip (CD) and pulse drip 
(PD) irrigation management were performed 
daily. In the conventional drip irrigation 
management, water application was carried 
out uninterruptedly from 10 a.m., and in the 
pulse drip irrigation management, water 
application was split throughout the day as a 
function of atmospheric demand according to 
Ó et al. (2020a).

At 65 days after sowing (DAS), the 
variables of chlorophyll a fluorescence, 
chlorophyll (a and b) concentration indices, 
contents of organic solutes (soluble 
carbohydrates (CH), free proline (FP), free 
amino acids (AA), and soluble proteins (SP)) 
and inorganic solutes (sodium, potassium, 
and chloride) in the leaf adjacent to the mini 
watermelon fruit, located between the 8th and 
10th node from the base. Before the analysis, 
the leaves were washed with distilled water 
and dried with paper towels.

Chlorophyll a and b concentration 
indices were determined using the electronic 
chlorophyll meter ClorofiLOG CFL1030 (Falker 
Automação Agrícola Ltda., Porto Alegre, RS) 
and the values were expressed in FCI (Falker 
Chlorophyll Index).

Chlorophyll a fluorescence variables 
were measured using the OS5p pulse-
modulated portable fluorometer (Opti-
Sciences, Hudson, USA). Leaves pre-
adapted to a flow density of 1,000 μmol m-2 
s-1 for 30 minutes in the dark were evaluated 
for minimum fluorescence (F0), maximum 
fluorescence (Fm), and potential quantum 
yield of photosystem II - PSII (Fv/Fm) according 
to pulse saturation method (Schreiber et 
al., 1995). Leaves adapted to the light were 
evaluated for the yields of the competitive 
pathways of de-excitation of the energy 
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absorbed in PSII were evaluated: the effective 
quantum yield of the photochemical energy 
conversion of PSII (YII) and quantum yields 
of regulated (YNPQ) and non-regulated (YNO) 
dissipation of non-photochemical energy in 
PSII, according to Kramer et al. (2004) and 
Klughammer and Schreiber (2008).

After the analyses of chlorophyll a 
fluorescence and chlorophyll concentration 
indices (a and b), the leaves were collected 
and divided into two, removing the central 
rib. Half of the leaf was packed with aluminum 
foil and immediately frozen and freeze-dried, 
while the other half was placed in a paper bag 
and dried in the oven at 65 ºC.

For the preparation of crude 
extracts of organic solutes, 0.1 g of freeze-
dried leaf tissues were weighed and then 
macerated. After maceration, the samples 
were homogenized in phosphate buffer 
solution, distributed in Eppendorf tubes, and 
centrifuged with rotation of 12000 × g, for 
00h:15 at 4 ºC. The supernatants were stored 
in a freezer for further analysis. Contents of 
soluble carbohydrates (Dubois et al., 1956), 
soluble proteins (Bradford, 1976), free proline 
(Bates et al., 1973), and free amino acids 
(Yemm & Cocking, 1955) were quantified.

For determining sodium (Na+), 
potassium (K+), and chloride (Cl-) contents 
in leaves, the crude aqueous extracts were 
prepared as described by Jones (2001), with 

minor modifications. Na+ and K+ contents were 
determined by flame photometry according 
to Faithfull (2002) and Cl- contents were 
determined according to Gaines et al. (1984). 
Na+ and K+ data were then used to calculate 
the sodium/potassium ratio (Na+/K+) in leaves.

The Shapiro-Wilk test was applied to 
the obtained data to check the distribution 
normality of the sample. Then, the data were 
subjected to analysis of variance by the F 
test. In the case of significant effect, the 
salinity levels, of quantitative nature, were 
subjected to linear and quadratic regression 
analysis. The types of irrigation management, 
of qualitative nature, when significant, 
were compared by the Tukey test at a 0.05 
probability level. Statistical analysis was 
performed using SISVAR statistical software, 
version 5.6 (Ferreira, 2019).

Results and Discussion

According to the F test results (Table 
1), there was a significant simple effect 
(p<0.05) of ECsol for YII and YNO and, the type 
of management on YNO and FP in leaves. There 
was a significant effect of the interaction 
between the factors (salinity × irrigation 
management) on the variables: SP and AA 
content in leaves, contents of Na+, K+ and Cl- 

and Na+/K+ ratio in leaves.
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Table 1
Summary of Fisher's test (F) and observed means for chlorophyll a fluorescence and biochemical 
variables in mini watermelon leaves

Source of variation
F Test

Chl a Chl b F0 Fm Fv/Fm YII YNPQ YNO

Management (M) ns ns ns ns ns ns ns **

Salinity (S) ns ns ns ns ns ** ns **

M x S ns ns ns ns ns ns ns ns

Mean 40.82 20.63 238.75 1254.57 0.8 0.27 0.55 0.18

CV (%) 4.36 10.56 8.35 4.17 1.8 13.94 7.36 8.93

SV CH FP SP AA Na+ Cl- K+ Na+/ K+

Management (M) ns * ns ns ** ** ** **

Salinity (S) ns ns ** ** ** ** ns **

M x S ns ns ** * ** ** * **

Mean 626.22 0.46 41.03 134.85 33.75 66.50 109.26 0.32

CV (%) 10.76 16.92 14.33 9.88 23.19 9.90 19.97 16.38

*, ** - significant at 0.05 and 0.01 probability levels, respectively; ns - not significant; CV - coefficient of variation; SV- 
source of variation; Chl a - chlorophyll a content; Chl b - chlorophyll b content; F0 - minimal fluorescence; Fm - maximum 
fluorescence; Fv/Fm - potential quantum yield of photosystem II in oxidized state; YII - effective quantum yield of PSII 
photochemical energy conversion; YNPQ - regulated dissipation quantum yields; YNO - quantum yields of unregulated 
dissipation of non-photochemical energy in FSII; CH - soluble carbohydrates (µmol g-1 DM); FP - free proline (µmol g-1 DM); 
AA - free amino acids (µmol g-1 DM); SP - soluble protein (mg g-1 DM); Na+ - sodium content in the leaf (mmol g-1 DM); K+ - 
leaf potassium content (mmol g-1 DM); Na+/K+ - sodium and potassium ratio and Cl- - leaf chloride content (mmol g-1 DM).

Effect of salt stress and irrigation management 
on chlorophyll a and b concentration indices 
and chlorophyll a fluorescence parameters in 
leaves of mini watermelon plants

No significant differences were found 
in chlorophyll a and b concentration indices, 
values of F0, Fm, Fv/Fm and YNPQ between the 
treatments. The mean values observed were 
40.82 FCI (Chl a), 20.62 FCI (Chl b), 238.75 (F0), 
1254.57 (Fm), 0.809 (Fv/Fm), and 0.553 (YNPQ) 
(Table 1).

When plants were exposed to high 
salinity, alterations or abnormalities occurred 
in the functional state of the thylakoid 
membranes of the chloroplasts, causing 

changes in the characteristics of fluorescence 
signals, which can be quantified in the leaves 
(Wang et al., 2018; Xu et al., 2018).

The increase in the number of 
chloroplasts caused by salinity can also affect 
photosynthetic pigments (Cova et al., 2020). 
However, in mini watermelon the salt stress 
may not induce synthesis or degradation, not 
being able to impair the transfer of energy 
from the antenna to the PSII reaction center 
and cause damage to the photosynthetic 
apparatus (Ribeiro et al., 2020; Ó et al., 2021).

According to Figure 1A, it was 
estimated that the highest yield (0.2980) of YII 

in mini watermelon plants was observed at the 
salinity of 3.8 dS m-1, with a reduction from this 
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point on. These YII values are within the range 
observed in mini watermelon cv. ‘Sugar Baby’ 
cultivated in a floating hydroponic system, 
in which YII varied from 0.3065 to 0.2421 
between ECsol levels of 2.5 and 6.5 dS m-1, 

respectively (Ó et al., 2021). Regarding YNO, 
plants irrigated with water of 6.5 dS m-1 had 
an increase of 13.88% compared to plants 
irrigated with water of 2.5 dS m-1 (Figure 1B).
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Figure 1. Quantum yield of photochemical energy conversion of PSII - YII (A) and quantum yield of 
unregulated energy loss - YNO (B and C) in leaves of ‘Sugar Baby’ mini watermelon plants after 65 days of 
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the irrigation management used (CD - conventional drip; PD- pulse drip). Vertical bars represent standard 
errors (n = 4). Means followed by the same letters do not differ by Tukey's test at 0.05 significance. *, ** - 
significant, respectively, at 0.05 and 0.01 probability, by the F test. 
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As observed, the reduction in YII values 
at the highest salinity levels was accompanied 
by increased YNO, since these are energy 
dissipation mechanisms that compete with 
each other (Eskling et al., 1997). This decrease 
in YII results in an energy surplus in the reaction 
center, increasing the dissipation of energy 
inside the antenna, in the form of heat or 
fluorescence emission (Oliveira et al., 2018).

In general, plants respond to stress 
conditions by activating mechanisms of 
acclimatization to the new environment 
(Dias et al., 2021). When stress is strong or 
prolonged enough, an inhibition occurs in 
the electron transport chain, observed by 
the decrease in YII. This inhibition of light-
dependent reactions may be accompanied by 
an increase in YNO (Pérez-Bueno et al., 2019). 
Additionally, Mathobo et al. (2017) state that 
the increase in YNO may have been caused by 
the large proportion of light energy that is not 
being used by plants in the photosynthetic 
process.

The type of management also 
significantly influenced the YNO variable, 
therefore, the value under PD was 5.59% 
higher than under CD (Figure 1C). Ó et al. 
(2020a) emphasize that water application by 
pulse drip irrigation (PD) can result in a greater 
accumulation of salts on the substrate surface. 
In contrast, the uninterrupted application 
of water in CD can increase the transport 
of salts to the lower layers of the substrate. 
Thus, PD may have increased salt stress and, 
consequently, the need to dissipate excess 
energy.

Effect of salt stress and irrigation management 
on the contents of organic solutes in leaves of 
mini watermelon plants

CH contents were not influenced 
by water salinity (ECsol) or irrigation 
management, showing an average value of 
626.22 μmol g-1 DM (Table 1). Understanding 
the response of plants to some stress is 
extremely complex since the efficiency of 
physiological and biochemical mechanisms 
depends on the species, genotype, and 
concentration and composition of salts in 
irrigation water or soil solution (Rodrigues 
et al., 2019). Under high salinity, some plants 
tend to accumulate soluble carbohydrates as 
a defense mechanism against stress (Slama 
et al., 2015; D’Amelia et al., 2018), but this 
response may not happen in some species, 
as observed in this study (Mastrogiannidou et 
al., 2016).

When analyzing the FP contents in the 
leaves, it was noted that in the CD they were 
19.57% higher than the values found in plants 
under PD plants (Figure 2A). Thus, considering 
that the proline contents decrease with 
salinity and the observation that the FP under 
PD was lower than under CD, the hypothesis 
that water application by CD may have 
attenuated the effects of salinity on mini 
watermelon plants is supported. Therefore, 
it is believed that in mini watermelon, the 
reduction of FP can be a response to salinity 
and not the accumulation of this solute. As 
observed in this study, Ó et al. (2021) reported 
a reduction in FP content in hydroponic mini 
watermelon plants under high salinity (6.5 dS 
m-1), suggesting that FP may not have played 
a key role in the osmoregulation mechanism.
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Regarding the SP content, an analysis 
of the interaction between the factors (Figure 
2B) showed that, among the types of irrigation 
management, the contents were higher in PD. 
Regarding salinity, there were reductions of 
10.07% under CD and 9.40% under PD per 
unit increment in ECsol. It is believed that 
under high salinity some plants may reduce 
the content of soluble proteins (Gondim et 
al., 2011; Ó et al., 2021). Thus, the reductions 
observed in the SP contents in both systems 
(PD and CD) demonstrate that this type of 
management may have increased stress, 
reducing protein synthesis, or increasing 
the production of secondary metabolites 
(Batista-Silva et al., 2019). Therefore, it is clear 
that these biochemical responses in mini 
watermelon showed a behavior similar to that 
observed in FP.

AA contents were not influenced by 
salinity under PD, but the data were described 
by the linear model under CD, with an increase 
of 10.96% per unit increment in ECsol. Thus, it 
can be observed that in the treatment of the 
highest salinity (6.5 dS m-1) the AA content 
under CD was 14% higher than under PD 
(Figure 2C). This accumulation of amino acids 
in the leaves due to the increase in nutrient 
solution salinity may be the result of increased 
activity of proteolytic enzymes, increasing 
the availability of this solute to protect plant 
tissues, in this specific case, the leaf, against 
stress (Galdino et al., 2018). In addition, 
there may also be an increase in the rates 
of biosynthesis of amino acids under stress 
conditions (Batista-Silva et al., 2019).

Effect of salt stress and irrigation management 
on the contents of inorganic solutes in leaves 
of mini watermelon plants

The Cl- contents in the leaves 
increased quadratically, and this increase was 
more pronounced under PD than under CD 
(Figure 3A). When comparing the treatment 
of highest salinity of the nutrient solution (6.5 
dS m-1) with the control (ECsol = 2.5 dS m-1), 
increases of 121 and 205% were observed 
under CD and PD systems, respectively.

Salinity linearly increased Na+ 
contents under both management systems 
and, as observed for Cl-, the increase was 
more visible under PD (562%) than under CD 
(342%) when comparing the values estimated 
in the treatment of 6.5 dS m-1 with that of 
2.5 dS m-1 (Figure 3B). Contrary to what was 
observed for Na+ and Cl-, the K+ content under 
CD decreased by 6.41% per unit increase in 
salinity and increased by 6.41% under PD 
(Figure 3C).

Figure 3 also shows that the contents 
of inorganic solutes (Cl-, Na+, and K+) under 
PD were higher than under CD, except in the 
treatment of 2.5 dS m-1, in which there was 
no significant difference between irrigation 
management. Thus, in the treatment of 
highest salinity (6.5 dS m-1), the contents of 
Cl-, Na+, and K+ under PD were, respectively, 
22.47, 77.66, and 117.94% higher than those 
observed under CD.

The Na+/K+ ratio increased linearly with 
the increase in nutrient solution salinity under 
both management systems. Mathematical 
simulation in treatments 2.5 and 6.5 dS m-1 
predicts an increase in the Na+/K+ ratio from 
0.094 to 0.556 (494%) under CD and from 
0.096 to 0.438 (358%) under PD (Figure 3D).
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mini watermelon showed a behavior similar to that observed in FP. 
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(Figure 2C). This accumulation of amino acids in the leaves due to the increase in nutrient solution salinity 

may be the result of increased activity of proteolytic enzymes, increasing the availability of this solute to 

protect plant tissues, in this specific case, the leaf, against stress (Galdino et al., 2018). In addition, there may 

also be an increase in the rates of biosynthesis of amino acids under stress conditions (Batista-Silva et al., 

2019). 

 

 
 
Figure 2. Contents of free proline - FL (A), soluble protein - SP (B), and free amino acids - AA (C) in leaves 
of ‘Sugar Baby’ mini watermelon plants after 65 days of cultivation in a greenhouse, as a function of 
electrical conductivities of the nutrient solution (ECsol) and the irrigation management used (CD - 
Conventional drip; PD - Pulse drip). Vertical bars represent standard errors (n = 4). Means followed by the 
same letters do not differ by Tukey's test at 0.05 significance. *, ** = significant, respectively, at 0.05 and 
0.01 probability, by the F test. 
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Figure 2. Contents of free proline - FP (A), soluble protein - SP (B), and free amino acids - AA (C) in 
leaves of ‘Sugar Baby’ mini watermelon plants after 65 days of cultivation in a greenhouse, as a 
function of electrical conductivities of the nutrient solution (ECsol) and the irrigation management 
used (CD - Conventional drip; PD - Pulse drip). Vertical bars represent standard errors (n = 4). Means 
followed by the same letters do not differ by Tukey's test at 0.05 significance. *, ** = significant, 
respectively, at 0.05 and 0.01 probability, by the F test.
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Figure 3. Chloride - Cl- (A), sodium – Na+ (B), potassium- K+ (C), and Na+/K+ ratio (D) contents in leaves 
of ‘Sugar Baby’ mini watermelon plants after 65 days of cultivation in a greenhouse, as a function 
of the electrical conductivities of the nutrient solution (ECsol) and the irrigation management 
used (CD - continuous drip; PD - pulse drip). Vertical bars represent standard errors (n = 4). Means 
followed by the same letters do not differ from each other by the Tukey test, at 0.05 of significance. 
*, ** = significant, respectively, at 0.05 and 0.01 probability, by the F test.

The Cl- contents in the leaves increased quadratically, and this increase was more pronounced 

under PD than under CD (Figure 3A). When comparing the treatment of highest salinity of the nutrient 

solution (6.5 dS m-1) with the control (ECsol = 2.5 dS m-1), increases of 121 and 205% were observed under 

CD and PD systems, respectively. 
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The accumulation of Na+ and Cl- 
ions in plants subjected to salinity is widely 
reported in the literature (Menezes et al., 
2017; Bai et al., 2019; Arif et al., 2020). Plants 
commonly accumulate these ions in the 
vacuole, which contributes to the osmotic 
adjustment mechanism (Taiz et al., 2017). 
This accumulation of Na+ and Cl- ions as a 
mechanism of salinity tolerance has also been 
reported in watermelon crop by E. G. Silva et 
al. (2017) and Ó et al. (2021).

The Na+/K+ ratio is an important 
variable in the assessment of the risk of 
ionic toxicity due to exposure to salt stress, 
and values equal to or lower than 1.0 are 
considered adequate for optimal metabolic 
efficiency in non-halophytes (Greenway & 
Munns, 1980). In this work, the maximum 
estimated values for the Na+/K+ ratio under 
both irrigation management systems suggest 
that, even under a high salinity of irrigation 
water (ECsol = 6.5 dS m-1), cell metabolism was 
not affected by salt-induced ionic imbalance. 
Similar results were reported by Ó et al. (2021) 
in ‘Sugar Baby’ mini watermelon cultivated in a 
floating hydroponic system.

When comparing the effect of the types 
of irrigation management on inorganic solutes 
(Cl-, Na+, and K+), it is interesting to note that 
the highest concentrations were observed 
under PD. As previously hypothesized, this 
type of management may have contributed to 
a higher concentration of salts in the surface 
layer of the substrate, when compared to 
CD (Ó et al., 2020a). Although PD optimizes 
the consumption of water and nutrients, in 
irrigation with brackish water it can increase 
the absorption of salts and consequently 
cause greater salt stress, as the rhizosphere 
is kept wet for longer, favoring the rate of 
absorption of water and ions (El-Abedin, 2006; 

Zamora et al., 2021). The observation that the 
Cl-, Na+, and K+ contents were significantly 
higher under PD supports this hypothesis.

Conclusions

An increase in salinity under both types 
of irrigation management, conventional drip 
or pulse drip, does not alter the concentration 
indices of chlorophylls a and b in leaves of mini 
watermelon plants, but reduces the ability to 
convert the energy of photons into chemical 
energy, verified through the results observed 
in YII.

In mini watermelon, the reduction in 
proline and soluble protein contents may be 
a response to salinity. Pulse drip management 
(PD) facilitates the absorption of ions, 
whether toxic or not, but conventional drip 
management (CD) attenuates the effects of 
salinity on inorganic solute contents.
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