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Highlights

There is a concentration on the spatiotemporal distribution of ALCC disease.

The LCCA distribution was estimated through geostatistics.

LCCA forms aggregation patches of diseased plants.

Abstract

’Lethal Coconut Palm Crown Atrophy’ (LCCA) is a rapidly spreading disease in Brazil, capable of quickly killing 

coconut trees and threatening the commercial exploration of this plant. The objective of this work was to 

characterize the spatial and temporal distribution pattern of LCCA in green dwarf coconut commercial 

plantation areas, located the municipality of Santa Izabel, mesoregion of Northeastern Pará, Brazil. Surveys 

were carried out at monthly intervals between January 2014 and December 2018, checking for plants with 

LCCA-characteristic symptoms. Geostatistics was applied to perform spatial-temporal disease estimates 

based on semivariogram modeling and preparation of ordinary kriging maps. These spatial estimates are 

conducted through interpolations that characterize data variability in the area. The spherical model yielded 

the best fit to the spatial distribution of the disease, as it presented the best coefficient of determination 

(R²), with the range varying between 14m and 45m. The Spatial Dependence Index (SDI) was moderate in 

the evaluations carried out between 2014 and 2017 (in the 0.26-0.64 range), but not in 2018, when it was 

strong (0.23). The values of the clustering intensity of LCCA-symptomatic plants were estimated in non-

sampled points. The spherical fit model of the data indicates an aggregated distribution pattern, shown by 

aggregation patches in the plantation, graded by values of dissemination intensity. The kriging maps allowed 

the observation that the disease expands between plants in the same line, suggesting the possibility of the 

presence of a short-range vector.
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Resumo

A ‘Atrofia Letal da Coroa do Coqueiro’ (ALCC) é uma doença de rápida disseminação no Brasil, capaz de 

matar os coqueiros rapidamente e ameaçar a exploração comercial da planta. O objetivo deste trabalho 
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foi caracterizar o padrão de distribuição espacial e temporal de ALCC em áreas de plantio comercial de 

coco anão verde, localizadas no município de Santa Izabel, mesorregião do Nordeste do Pará, Brasil. As 

pesquisas foram realizadas em intervalos mensais entre janeiro de 2014 e dezembro de 2018, verificando se 

havia plantas com sintomas característicos da ALCC. A geoestatística foi aplicada para realizar estimativas 

espaço-temporais de doenças com base na modelagem de semivariogramas e na preparação de mapas de 

krigagem comuns. Essas estimativas espaciais são realizadas por meio de interpolações que caracterizam 

a variabilidade dos dados na área. O modelo esférico apresentou o melhor ajuste à distribuição espacial da 

doença, pois apresentou o melhor coeficiente de determinação (R²), com amplitude variando entre 14m e 

45m. O Índice de Dependência Espacial (SDI) foi moderado nas avaliações realizadas entre 2014 e 2017 (na 

faixa de 0,26-0,64), mas não em 2018, quando era forte (0,23). Os valores da intensidade de agrupamento 

de plantas sintomáticas ALCC foram estimados em pontos não amostrados. O modelo de ajuste esférico 

dos dados indica um padrão de distribuição agregado, mostrado por manchas de agregação na plantação, 

graduadas por valores de intensidade de disseminação. Os mapas de krigagem permitiram observar que 

a doença se expande entre plantas na mesma linha, sugerindo a possibilidade da presença de um vetor de 

curto alcance. 

Palavras-chave: Cocos nucifera L. ALCC. Interpolação. Krigagem ordinária.

Introduction

The coconut tree (Cocos nucifera L.) 
is commercially explored in twelve million 
hectares in 90 countries, generating benefits 
for more than 80 million people (Ferraz, Assis, 
Coelho, Santiago, & Santos, 2020). This palm 
species has great economic and social 
importance in producing countries (Harries 
& Clement, 2014). The most recent data 
available on coconut production worldwide 
(from 2019) shows that 62.4 million tons of fruit 
were produced, mainly by Indonesia (30.1%), 
Philippines (24.7%) and India (19.0%), which 
account for 73.8% of the total (United States 
Department of Agriculture [USDA], 2020).

Brazil is the fifth largest coconut 
producer in the world, with a 4.5% share of the 
worldwide production. According to Brazilian 
agribusiness statistics, the export of the fruit 
generated revenues of more than US$ 996,000 
in 2020 (Ministério da Agricultura Pecuária e 
Abastecimento [MAPA], 2021). 

The State of Pará ranks third within 
Brazil with 17,311 hectares of planted area, 
yielding 175,215 tons of coconut, trailing 
only the States of Bahia and Ceará (Instituto 
Brasileiro de Geografia e Estatística [IBGE], 
2019). 

Pest attacks and diseases greatly 
damage coconut cultivation (Ferreira, 
Warwick, & Siqueira, 2018). Currently, several 
phytosanitary problems affect coconut trees 
in the world (including Brazil): Lethal Yellowing 
(phytoplasmas of the 16Sr DNA IV group), 
Resinosis (Thielaviopsis paradoxa), Red palm 
mite (Raoiella indica Hirs), Red ring disease 
(Bursaphelenchus cocophilus), Coconut mite 
(Aceria guerreronis Keifer), among others 
(Barroso et al., 2019; Bonnot, Franqueville, 
& Lourença, 2010; Carvalho et al., 2021; 
(Rezende, Melo, Oliveira, & Gondim, 2016; Silva 
et al., 2016). 

In Brazil, a disease called “Lethal 
Coconut Palm Crown Atrophy” (LCCA) was 
registered in 2012 in the State of Pernambuco. 
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This disease affects the productivity of 
coconut trees with subsequent plant death 
and it can be found in several Brazilian states: 
Bahia, Amazonas, Sergipe, Roraima, Paraíba, 
and Pará (Ferraz et al., 2020). 

LCCA symptoms differ from those 
characteristic of phytoplasma-induced 
diseases such as “lethal yellowing” (Gurr et al., 
2016). However, there is similarity in symptoms 
between LCCA and another disease known 
as “Porroca” (short leaf), which spreads from 
Colombia towards Panama (Gilbert & Parker, 
2008).

In this context, despite the knowledge 
about the negative effect of LCCA on 
plantations, there are no confirmed studies on 
its etiology or epidemiology in coconut trees, 
nor on possible disease-transmitting vectors. 
Literature on the characterization of LCCA 
spatial and temporal distribution patterns is 
non-existent.

In this case, geostatistics is an 
adequate tool to identify spatial and temporal 
distribution patterns, helping to identify 
sources of contagion (Bonnot et. al., 2010). 
A variety of studies on spatial distribution 
modeling, such as Oliveira, Farias, Silva, 
Rodrigo and Araújo (2016), Rojo and Pérez-
Badia (2015), Trindade, Fernades, Oliveira 
and Martins (2017) and Brandão, Dionísio, 
Farias, Schwartz and Carvalho (2018), 
employed geostatistics to characterize 
spatial distribution patterns, supporting pest 
identification and management strategies in 
various cultures. Therefore, the generation of 
spatial and temporal distribution maps helps in 
pest identification, management, and control 
methods, increasing their effectiveness 
(Duarte, Calvo, Borges, & Scatoni, 2015). 

Thus, due to the importance of this 
disease for the Brazilian coconut culture 
and the lack of basic studies to identify and 
implement adequate management strategies, 
the objective of this work was to apply 
geostatistical analysis to characterize the 
spatial and temporal distribution pattern of the 
Lethal Coconut Palm Crown Atrophy disease 
in coconut trees in the state of Pará.

Materials and Methods 

Experimental area
 

The study was carried out in a 
commercial coconut plantation, located in the 
municipality of Santa Izabel - PA, belonging 
to the Reunidas Sococo farm (01º 13’ 40.16” 
S; 48º 02’ 54.35” W). The soil in the area 
is predominantly dystrophic Quartzarenic 
Neosol: low particle aggregation capacity, 
very sandy, limited  available water storage 
capacity, low clay and organic matter contents, 
rendering it susceptible to erosion (Teixeira, 
Donagemma, Fontana, & Teixeira, 2017). 

The region is characterized by high 
rainfall, with values of up to 3,000 mm and 
average relative humidity of approximately 
80% (Dubreuil, Fante, Planchon, & Sant’anna, 
2018). The climate classification according to 
Köppen-Geiger scale is of the Afi type, with 
the rainy season occuring between January 
and May and the dry season between June 
and December (Secretária do Estado e Meio 
Ambiente e Sustentabilidade [SEMAS], 2019). 

Experimental design 

The coconut variety analyzed in the 
study is the Brazilian green dwarf (Cocos 
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Figure 1. Arrangement of plots (A) and plants (B) in commercial plantation of Brazilian green dwarf 
coconut, Santa Izabel, Pará, Brazil.

nucifera L.), intended for water extraction, 
equilateral spacing (7.5 x 7.5 x 7.5 m), 205 
plants/hectare, implemented between the 
years 2011/2012. The study data were 
obtained from the block named H, containing 
four plots (H121; H122; H123; H124), totaling 
15,880 plants over 81.35 hectares. Three of 
the plots measured 250 x 1000 m, whereas a 
smaller one (H 121) measured 125 x 1000 m. 
Each plot has 155 rows of 33 plants, with the 
exception of plot H121, with only 17 plants per 
row (Figure 1). 

Database

Data refer to the years 2014/2018, 
obtained by monitoring LCCA symptoms under 

field conditions. Symptomatic plants in the 
plots were registered in a temporal database 
(annual), made available by the company 
Sococo S/A, totaling 15,880 plants. The plants 
were inspected by trained field monitors, 
noting the presence or absence of symptoms 
by assigning the number one (1) or zero (0), 
respectively. Symptoms were identified using 
a diagrammatic scale available in the literature 
(Warwick, Talamini, Ferreira, & Moreira, 2019). 
Field productivity data were provided by 
the company Sococo S/A. In measuring the 
productivity of the plots, agricultural model ‘big 
bag’ bags (120 x 90 x 90 cm) are used, made 
of polypropylene, which hold up to 400 units 
of fruit, which are collected by transshipment 
trucks; productivity is measured as bags/field.

 
 
Figure 1. Arrangement of plots (A) and plants (B) in commercial plantation of Brazilian green dwarf 
coconut, Santa Izabel, Pará, Brazil. 
 

Geostatistics  

The methodology of Vieira, Hatfield, Nielsen and Biggar (1983) was followed using the 

information on the position of the sample (x, y) and the value that the variable symptoms (0 or 1) assumed at 

each point (plant). Thus, from each sampling point, the value of the study variable and the coordinates 

(longitude and latitude) of the point where the sampling was performed were obtained.  

 

Experimental semivariogram   

The semivariogram expresses the spatial variability between the samples, being a vector-dependent 

function (h), i.e., the distance between sample pairs. It is able to measure the degree of dissimilarity between 

pairs due to the distance and orientation between two sampling sites (Seidel & Oliveira, 2014). It is an 

essential procedure in geostatistical analysis, as the chosen model will be used in ordinary kriging for data 

interpolation. The semivariogram is estimated by:  

       
     ∑[             ]

    

   
  

Where, γ (h) is the semi-variance calculated by the distance h; N (h) is the total number of diseased plants 

analyzed, separated by a distance (h). In the case of space-dependent variables, the values [Z (xi) - Z (xi + 

h)]2, increase until reaching the stability plateau, where the distance (h) between the pairs no longer interferes 

with the present variability (Yamamoto & Landim, 2013).  

Semivariance measures the degree of spatial dependence between samples, assuming stationarity in 

diseased plant propagation. This means that the semivariogram measures the variability conditioned by the 
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Geostatistics 

The methodology of Vieira, Hatfield, 
Nielsen and Biggar (1983) was followed using 
the information on the position of the sample 
(x, y) and the value that the variable symptoms 
(0 or 1) assumed at each point (plant). Thus, 
from each sampling point, the value of the 
study variable and the coordinates (longitude 
and latitude) of the point where the sampling 
was performed were obtained. 

Experimental semivariogram  

The semivariogram expresses the 
spatial variability between the samples, being a 
vector-dependent function (h), i.e., the distance 
between sample pairs. It is able to measure 
the degree of dissimilarity between pairs 
due to the distance and orientation between 
two sampling sites (Seidel & Oliveira, 2014). 
It is an essential procedure in geostatistical 
analysis, as the chosen model will be used 
in ordinary kriging for data interpolation. The 
semivariogram is estimated by: 

Where, γ (h) is the semi-variance calculated 
by the distance h; N (h) is the total number 
of diseased plants analyzed, separated by a 
distance (h). In the case of space-dependent 
variables, the values [Z (xi) - Z (xi + h)]2, 
increase until reaching the stability plateau, 
where the distance (h) between the pairs no 
longer interferes with the present variability 
(Yamamoto & Landim, 2013). 

Semivariance measures the 
degree of spatial dependence between 
samples, assuming stationarity in diseased 

plant propagation. This means that the 
semivariogram measures the variability 
conditioned by the distance (h) between 
samples. This means that observations closer 
to one another tend to behave more similarly 
than those separated by greater distances 
(Nanos, Calama, Montero, & Gil, 2004).

Spherical model 

The semivariogram model used in this 
work was the spherical one, as it yielded the 
best coefficient of determination (R²). The 
spherical model has a linear behavior close to 
the origin that represents continuous but non-
differentiable phenomena, being one of the 
most used mathematical models (Yamamoto 
& Landim, 2013). The spherical model is 
represented by the following equation:

Where, C0 is the nugget effect, C1 is the plateau 
after passing a straight line that intercepts the 
y axis at C1 and is tangent to the first points 
near h=0. This tangent will cross the plateau 
at a distance, a’=2/3 a. Thus, the range (a) will 
be a=3a’/2. The spherical model is linear up to 
approximately 1/3 a. 

Mapping 

The Surfer (v.11) software was used 
to interpolate data. It is a grid-based mapping 
program that interpolates irregularly spaced 
XYZ data into a regularly spaced grid, allowing 
the adjustment of interpolation and grid 
parameters, identifying the spatial continuity 
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of the data with variograms modeled as a 
function of the degree of spatial dependence 
between samples (Golden Software, 2014). 
The semivariograms were adjusted based on 
the determination index (R2), to choose the 
best model as a function of the mean square 
of the error, standard error of prediction, and 
the autocorrelation between the data (Seidel & 
Oliveira, 2016; Silva et al., 2016). 

Kriging

Based on the fitted semivariograms, 
ordinary kriging maps were constructed, 
which showed the spatial distribution of 
LCCA in plots, modeling the present variability 
structure. Moreover, spatial dependence 
indices [SDI = C₀ / (C₀ + C₁)] were generated, 
classified according to intervals that consider 
spatial dependence into three types: strong 
(SDI < 0.25), moderate (0.25 < SDI < 0.75), 
and weak (SDI > 0.75) according to the work 
of Cambardella et al. (1994). The clustering 
intensity values of plants presenting LCCA 
symptoms were estimated in non-sampled 
points, using the following equation: 

Where, Z * is the reference location estimate 
and xi are the linearly combined values of the 
neighboring samples. N symbolizes the related 

measured values of the estimate, λi was the 
moderation associated with the measured 
values. In this method, the weights were 
calculated under two restrictions: minimum 
variance possible, and the estimator does 
not show a trend (Journel & Huijbregts, 2003). 
The most suitable model for the parameters 
was selected through the standardization and 
adjustment of the data, estimated by:

Where, C0 = minimum semi-variance, (C0 + C1) 
= maximum semi-variance, α = aggregation 
interval, and h = distance that separates the 
obtained point pairs (Yamamoto & Landim, 
2013). 

Results and Discussion

Fruit productivity 

The productivity of harvested fruits 
was measured in ‘bags’ (400 fruits/bag) per 
plot. Plot productivity was strongly affected 
in 2014 and 2015, with 2016 being the 
year yielding the greatest reduction in fruit 
production - all plots produced less than 
500 bags. Figure 2 shows the differences 
in productivity between each plot between 
2014 and 2018. 

Semivariance measures the degree of spatial dependence between samples, assuming stationarity in 

diseased plant propagation. This means that the semivariogram measures the variability conditioned by the 

distance (h) between samples. This means that observations closer to one another tend to behave more 

similarly than those separated by greater distances (Nanos, Calama, Montero, & Gil, 2004). 
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LCCA symptoms were estimated in non-sampled points, using the following equation:  
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Where, Z * is the reference location estimate and    are the linearly combined values of the 

neighboring samples. N symbolizes the related measured values of the estimate,    was the moderation 

associated with the measured values. In this method, the weights were calculated under two restrictions: 

minimum variance possible, and the estimator does not show a trend (Journel & Huijbregts, 2003). The most 

suitable model for the parameters was selected through the standardization and adjustment of the data, 

estimated by: 
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Where, C0 = minimum semi-variance, (C0 + C1) = maximum semi-variance, α = aggregation interval, and h 

= distance that separates the obtained point pairs (Yamamoto & Landim, 2013).  

 

Results and Discussion 

Fruit productivity  

The productivity of harvested fruits was measured in 'bags' (400 fruits/bag) per plot. Plot 

productivity was strongly affected in 2014 and 2015, with 2016 being the year yielding the greatest reduction 

in fruit production - all plots produced less than 500 bags. Figure 2 shows the differences in productivity 

between each plot between 2014 and 2018.  

 

 
Figure 2. Coconut production (bags) and LCCA incidence (number of symptomatic coconut trees) between 
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LCCA Symptomatology  

There is marked reduction of the crown from tissues in the apical growth region. This is followed 

by other symptoms such as shortening of the arrow leaflets (Figure 3A), complete leaf atrophy (Figure 3B), 

spathe shortening (Figure 3C) and fruit abortion (Figure 3D). There are variations in the symptomatologic 

expression of LCCA-affected plants, and it can be associated with more than one disease present in the area, 

which hinders defining what the characteristic symptoms of the disease really are. The highest prevalence of 
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LCCA Symptomatology 

There is marked reduction of the 
crown from tissues in the apical growth 
region. This is followed by other symptoms 
such as shortening of the arrow leaflets 
(Figure 3A), complete leaf atrophy (Figure 
3B), spathe shortening (Figure 3C) and fruit 
abortion (Figure 3D). There are variations in 
the symptomatologic expression of LCCA-
affected plants, and it can be associated with 
more than one disease present in the area, 
which hinders defining what the characteristic 
symptoms of the disease really are. The highest 
prevalence of symptomatic plants occurred 
in plots H121 and H122, as described above. 
This reflects the decrease in the number of 

Figure 2. Coconut production (bags) and LCCA incidence (number of symptomatic coconut trees) 
between 2014 and 2018 in commercial plantation of Brazilian green dwarf coconut, Santa Izabel, 
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= distance that separates the obtained point pairs (Yamamoto & Landim, 2013).  

 

Results and Discussion 

Fruit productivity  

The productivity of harvested fruits was measured in 'bags' (400 fruits/bag) per plot. Plot 

productivity was strongly affected in 2014 and 2015, with 2016 being the year yielding the greatest reduction 

in fruit production - all plots produced less than 500 bags. Figure 2 shows the differences in productivity 

between each plot between 2014 and 2018.  
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LCCA Symptomatology  

There is marked reduction of the crown from tissues in the apical growth region. This is followed 

by other symptoms such as shortening of the arrow leaflets (Figure 3A), complete leaf atrophy (Figure 3B), 

spathe shortening (Figure 3C) and fruit abortion (Figure 3D). There are variations in the symptomatologic 

expression of LCCA-affected plants, and it can be associated with more than one disease present in the area, 

new leaves, leaflet shortening, reduction in 
photosynthesis, early-stage fruit abortion, 
followed by plant death.

The improvement in bag productivity 
in 2017 and 2018 stemmed from the adoption 
of some management techniques such as 
reinforced fertilization and pest control, and 
the improvement in the rainfall index in the 
region. Although productivity improved, the 
number of LCCA-affected plants continued 
to grow across plots, with a higher incidence 
in H121 and H122 where there was a need to 
eliminate plants, causing a decrease in the 
number of bags, compared to the productivity 
standard of plots H123 and H124, where the 
number of bags remained above 800.
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Figure 3. LCCA symptoms in several coconut organs. (A) shortening of the arrow leaflets, (B) 
complete atrophy, (C) spathe shortening and (D) fruit abortion in commercial plantation of Brazilian 
green dwarf coconut, Santa Izabel, Pará, Brazil.

Figure 4. Percentage of LCCA incidence per plot and total experimental area (accumulated) 
between 2014 and 2018 in commercial plantation of Brazilian green dwarf coconut, in the 
municipality of Santa Izabel, Pará, Brazil.

which hinders defining what the characteristic symptoms of the disease really are. The highest prevalence of 

symptomatic plants occurred in plots H121 and H122, as described above. This reflects the decrease in the 

number of new leaves, leaflet shortening, reduction in photosynthesis, early-stage fruit abortion, followed by 

plant death. 

The improvement in bag productivity in 2017 and 2018 stemmed from the adoption of some 

management techniques such as reinforced fertilization and pest control, and the improvement in the rainfall 

index in the region. Although productivity improved, the number of LCCA-affected plants continued to grow 

across plots, with a higher incidence in H121 and H122 where there was a need to eliminate plants, causing a 

decrease in the number of bags, compared to the productivity standard of plots H123 and H124, where the 

number of bags remained above 800. 
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atrophy, (C) spathe shortening and (D) fruit abortion in commercial plantation of Brazilian green dwarf 
coconut, Santa Izabel, Pará, Brazil. 

 

Between 2014 and 2015 the number of LCCA-affected plants in plots varied between 40 and 365, 

with a cumulative value of 231 (2014) and 591 (2015) symptomatic plants, representing a considerable 

increase [from 1.45% to 3.72%] compared to the initial value over just one year of symptom-monitoring. 

Subsequent surveys showed a significant growth in the number of diseased plants - 13.51% and 15.26% in 

2016 and 2017, respectively. From 2016 to 2018, the plants in plots H121 and H122 exhibited the most 

symptoms; the spread of the disease reached a cumulative value of 3,587 (2018) symptomatic plants in the 

four plots in the last evaluation, which represented 22.59% of plants affected during the period analyzed 

(Figure 4).  
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- 13.51% and 15.26% in 2016 and 2017, 
respectively. From 2016 to 2018, the plants 
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symptoms; the spread of the disease reached a 
cumulative value of 3,587 (2018) symptomatic 
plants in the four plots in the last evaluation, 
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Figure 4. Percentage of LCCA incidence per plot and total experimental area (accumulated) between 2014 
and 2018 in commercial plantation of Brazilian green dwarf coconut, in the municipality of Santa Izabel, 
Pará, Brazil. 
 

Spatial dependence  

Geostatistics is considered an auxiliary qualitative research method, favoring a reduction in the 

relative inventory costs of planting issues, providing results that are more detailed and reliable than those 

obtained using classical statistics, which do not consider data position (x , y) (Lundgren, Silva, & Ferreira,  

2015). Spatial dependence analysis enables the observation of the spatial dependence structure, which 

associates distances with semi-variances, helping the model's correction factor by the determination index 

(R2) (Seidel & Oliveira, 2016). 

The methodology used by Cambardella et al. (1994) stands out in defining the spatial dependence 

degree. This evaluation method uses the nugget effect and the (C0 + C1) contribution. On the other hand, the 

Spatial Dependence Index (SDI) methodology proposed by Seidel and Oliveira (2016) includes the range 

parameter and a model correction factor in the analysis. The SDI aims to consider the geometric aspects of 

the area, covering all spatial dependence characteristics.  

The spatial dependence of the number of LCCA-symptomatic plants was assessed using 

semivariograms and the spherical model was the one that best fit the data, as it provided higher coefficient of 

determination (R²) values in all evaluated years, thus demonstrating that geostatistics can help monitor the 

spatial and temporal distribution of LCCA in the field. The coefficient of determination (R²) indicates the 

quality of fit of the semivariogram model - values close to 1.0 indicate a good fit. In the present work, R² 

varied between 0.91 and 0.99. The parameters of the semivariograms used are described in table 1. 

 

Table 1 
Semivariogram parameters, range area, coefficient of determination, randomness index, 
experimental model for geostatistical analysis and spatial dependence index, in a Brazilian green 
dwarf coconut commercial plantation, municipality of Santa Izabel, Pará, Brazil 

¹Year ²Area (m²) Parameters  
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Spatial dependence 

Geostatistics is considered an auxiliary 
qualitative research method, favoring a 
reduction in the relative inventory costs of 
planting issues, providing results that are more 
detailed and reliable than those obtained using 
classical statistics, which do not consider 
data position (x , y) (Lundgren, Silva, & Ferreira,  
2015). Spatial dependence analysis enables 
the observation of the spatial dependence 
structure, which associates distances with 
semi-variances, helping the model’s correction 
factor by the determination index (R2) (Seidel & 
Oliveira, 2016).

The methodology used by 
Cambardella et al. (1994) stands out in 
defining the spatial dependence degree. This 
evaluation method uses the nugget effect 
and the (C0 + C1) contribution. On the other 
hand, the Spatial Dependence Index (SDI) 

methodology proposed by Seidel and Oliveira 
(2016) includes the range parameter and a 
model correction factor in the analysis. The 
SDI aims to consider the geometric aspects 
of the area, covering all spatial dependence 
characteristics. 

The spatial dependence of the number 
of LCCA-symptomatic plants was assessed 
using semivariograms and the spherical model 
was the one that best fit the data, as it provided 
higher coefficient of determination (R²) values 
in all evaluated years, thus demonstrating that 
geostatistics can help monitor the spatial and 
temporal distribution of LCCA in the field. The 
coefficient of determination (R²) indicates the 
quality of fit of the semivariogram model - 
values close to 1.0 indicate a good fit. In the 
present work, R² varied between 0.91 and 
0.99. The parameters of the semivariograms 
used are described in table 1.

Table 1
Semivariogram parameters, range area, coefficient of determination, randomness index, experimental 
model for geostatistical analysis and spatial dependence index, in a Brazilian green dwarf coconut 
commercial plantation, municipality of Santa Izabel, Pará, Brazil

¹Year ²Area (m²)
Parameters

3C0
4C1

5a (m) 6R² 7k 8Model 9SDI 10NPF

2014 3.630 0.017 0.0094 34 0.94 0.64 Spherical Moderate 74

2015 2.640 0.016 0.0035 29 0.99 0.31 Spherical Moderate 54

2016 615 0.016 0.045 14 0.91 0.26 Spherical Moderate 12

2017 706 0.019 0.043 15 0.91 0.30 Spherical Moderate 14

2018 6.358 0.006 0.019 45 0.99 0.23 Spherical Strong 130

1Sampling year; 2Estimated area by π.r2 (r = a); 3Nugget effect; 4Spatial variance; 5Range (meters); 6Coefficient of 
determination; 7k index for spatial randomness, estimated by the C0/(C0+C1) ratio; 8Model fit; 9Spatial Dependence; 
10Number of diseased plants per focus.
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The parameter k estimates the 
degree of randomness in surveys; in our 
samplings k values ranged from 0.23 to 0.64 
(Table 1), indicating a maximum variation of 
64% in the LCCA surveys. These results fall 
within the recommendations by Journel and 
Huijbregts (2003), who mentioned that values 
greater than 0.80 indicate randomness and 
no dependence between samples. LCCA 
exhibits an aggregated dispersal pattern: the 
probability of a healthy plant to present the 
disease is higher when neighboring plants are 
sick. Generally, this pattern is strongly linked 
to the presence of a vector, which transmits 
the disease over short distances, preferably 
within the planting line (Bassanezi & Laranjeira, 
2007). This pattern is also observed by other 
authors who have studied the behavior 
of agricultural pests and who have shown 
that vector-infected plants have an effect 
on neighboring plants (Correia et al., 2019; 
Oliveira et al., 2016).

The aggregated distribution model is 
the one that best suits the spatial behavior of 
the disease, as it shows the foci of incidence 
in the form of concentric areas that tend 
to expand in all directions according to the 
disease’s population growth (Bastos et al., 
2019). Studies by Silva et al. (2016), found an 
aggregate distribution with moderate spatial 
dependence for the red ring disease (caused 
by Bursaphelenchus cocophilus) and strong 
spatial dependence for resinosis incidence 
(caused by Thielaviopsis paradoxa), diseases 
that affect coconut trees in the study region. 

There was a decrease in the 
aggregation radius in 2015, 2016 and 2017 
compared to the first year of evaluation 

(2014), reducing the formation of clustered 
patches, which may have occurred due to the 
elimination of diseased plants, decreasing 
the number of disease incidence outbreaks; 
nevertheless, the aggregation radius 
increased again in 2018, when a new outbreak 
of diseased plants was also observed, with a 
maximum range of 45 m (Table 1). Fields H121 
and H122 were the ones with the greatest 
disease progress throughout the period. 
Depending on the ranges, it was possible to 
determine the size of the areas (m²) and the 
number of diseased plants per aggregation 
focus (NPF) (Table 1). This indicates that the 
range was able to project the area of influence 
with diseased plants; for instance, a minimum 
range distance of 14 meters implies that 12 
plants are likely to show LCCA symptoms, 
and that a maximum range distance of 45 
meters indicates at least 130 symptomatic 
plants, if there is an initial outbreak. These 
results help in defining monitoring strategies, 
as using spacings smaller than the ranges 
found allow obtaining an efficient way of 
sampling in specific areas. The kriging maps 
better show the evolution of the disease in 
the field through the formation of clustered 
patches and their respective semivariogram 
adjustment values for generating maps of 
the spatial and temporal distribution of the 
disease (Figure 5). 

The thematic kriging maps show that 
infections were not distributed over the total 
surface area of the analyzed plots, with areas 
showing with a higher incidence of diseased 
plants, making it necessary to direct control 
measures to the specific areas of contagion. 
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Figure 5. Kriging map of the spatial and temporal distribution of LCCA in a commercial Brazilian 
green dwarf coconut plantation, in the years 2014-2018. Santa Izabel municipality, Pará, Brazil.

direct control measures to the specific areas of contagion.  

 

 
 
Figure 5. Kriging map of the spatial and temporal distribution of LCCA in a commercial Brazilian green 
dwarf coconut plantation, in the years 2014-2018. Santa Izabel municipality, Pará, Brazil. 
 

Conclusion 

The spatial distribution of lethal coconut palm crown atrophy occurs in clusters with spatial 

dependence described by the spherical model, forming aggregation patches from 14 to 45 m (model range); 

The spherical fit model of the data indicates an aggregated distribution pattern, shown through 

patches of aggregation in the plantation; 
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Conclusion

The spatial distribution of lethal 
coconut palm crown atrophy occurs in clusters 
with spatial dependence described by the 
spherical model, forming aggregation patches 
from 14 to 45 m (model range);

The spherical fit model of the data 
indicates an aggregated distribution pattern, 
shown through patches of aggregation in the 
plantation;

Kriging maps show that disease 
expansion occurs among plants nearby, 
suggesting the presence of a short-range 
vector, which requires further studies.
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