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Highlights

The MBLUP model led to greater estimates of genetic variance and greater heritability.

Molecular markers had different effect on traits, milk yield was the most affected.

Random regression model presented lower heritability and less accurate genetic value.

Abstract

The use of molecular markers to identify desirable genes in animal production is known as marker-assisted 

selection. The traditional genetic evaluation model uses the BLUP methodology; when genetic markers are 

included in the evaluation model, the methodology is known as M-BLUP. In contrast, random regression 

models (RRM), unlike the models based on production at 305 days, consider factors that change for each 

animal from one test to another. The objective of this study was to compare variance components, genetic 

parameters and breeding values for milk production, protein percentage and somatic cell score in Colombian 

Holstein cattle using BLUP, M-BLUP and RRM. For the estimation of genetic parameters and values, 2003 

lactations corresponding to 1417 cows in 55 herds were used, and effects of the order of delivery, herd, and 

contemporary group were included. The three traits presented greater heritability under the MBLUP model: 

0.44 for protein percentage, 0.27 for milk production and 0.28 for somatic cell score. This was because the 
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genetic variance was greater when M-BLUP was used, which allowed a greater accuracy of the breeding 

value estimation in the three traits. Therefore, the model that includes information on molecular markers is 

more suitable for genetic evaluation in Colombian Holstein cattle.
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Resumo

O uso de marcadores moleculares para identificar genes desejáveis na produção animal é conhecido como 

seleção assistida por marcadores. O modelo tradicional de avaliação genética utiliza a metodologia BLUP, e 

quando os marcadores genéticos são incluídos no modelo de avaliação, a metodologia é conhecida como 

M-BLUP. Por outro lado, os modelos de regressão aleatória (RRM), ao contrário dos modelos baseados 

em produções a 305 dias, consideram fatores que mudam para cada indivíduo de um controle para outro. 

O objetivo deste estudo foi comparar componentes de variância, parâmetros e valores genéticos para 

produção de leite, percentagem de proteína e escore de células somáticas em gado holandês de Colômbia 

utilizando BLUP, M-BLUP e RRM. Para a estimativa de parâmetros e valores genéticos, foram utilizadas 

2.003 lactações correspondentes a 1.417 vacas de 55 rebanhos e efeitos da ordem de parto, rebanho e 

grupo contemporâneo. Os três traços apresentaram maior hereditariedade no modelo MBLUP, 0,44 para 

percentagem de proteína, 0,27 para produção de leite e 0,28 para escore de células somáticas. Isso por 

causa da variância genética foi maior quando o M-BLUP foi utilizado, o que permitiu estimar maior precisão 

do valor genético nos três traços, portanto, o modelo que inclui informações sobre marcadores moleculares 

é mais adequado para avaliação genética em gado holandês colombiano.

Palavras-chave: Gado leiteiro. Genética animal. Marcadores genéticos. Melhoramento animal. Produção 

leiteira.

Introduction

In department of Antioquia, Colombia, 
where the Holstein breed is commonly used, 
the dairy industry has been well-developed. 
Because Colombia has a payment system for 
milk that is based on compositional quality, 
farmers need to maintain an optimum quantity 
and quality of milk production. Animal genetic 
improvement is an important tool for this 
process. However, due to the absence of 
traceability programs, databases for use in 
genetic evaluation are scarce and unreliable. 
Although important research advances have 
been made in estimating genetic parameters 
and breeding values, the methodology that best 
suits the scarce phenotypic and genealogical 
information available in the country has not yet 

been identified. For this reason, it is important 
to continue testing different genetic evaluation 
methodologies.

The first methodology considered is the 
traditional procedure for genetic evaluations, 
known as the animal model, where selection 
is based on genealogical and phenotypic 
information. This methodology uses the BLUP 
(best linear unbiased predictor) to calculate 
estimated breeding values (EBVs) for animals in 
the evaluation (Mrode, 2005). Additionally, there 
are two approaches for the genetic evaluation 
of milk production traits; one uses milk 
production per lactation of several deliveries, 
and the other analyzes measurements of milk 
production on the test day collected from a 
single lactation. In both cases, the different 
records are assumed to be repeated measures 
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of the same trait. Test day measurements 
capture changes in the mean, covariance 
between records and permanent environment 
effects over the course of lactation, along 
with genetic correlations, which tend to 
decrease as the time between measurements 
increases. This issue is ignored by repeatability 
models but is properly considered by random 
regression models (RRMs) (Mrode, 2005).

This RRM can consider specific factors 
for each test day, such as the month or season 
in which the measurement is performed. In 
RRM, fixed regressions are used for all cows 
in the same subclass to describe the general 
shape of the lactation curve, and random 
regressions for each cow describe genetic 
deviations, allowing the production of a 
different genetic lactation curve for each cow 
(Jamrozik, Schaeffer, & Dekkers, 1997). Genetic 
differences can be modeled by Legendre 
polynomials, which have been identified as 
the most suitable equations for modeling milk 
production (Strabel & Jamrozik, 2006; Bignardi 
et al., 2011). Additionally, heterogeneous 
residual variance structures allow us to better 
model environmental effects (Dornelles et al., 
2016). The advantages of RRM are the increase 
in genetic value reliability and their ability to 
be used in animal selection based on the test 
day with the highest heritability, reliability 
and correlation with production per lactation, 
allowing an evaluation of early lactation and 
accelerating the selection processes (Manoel 
et al., 2007). 

The use of molecular markers to 
identify desirable genes in animal production 
is called marker-assisted selection (MAS). 
This process uses not only phenotypic and 
pedigree information but also information 
about variations in genes with effects on 
important quantitative traits. The advantage 

of MAS lies in the possibility of improving 
estimates of genetic parameters in sex-specific 
traits that have low heritability or are difficult 
to measure, and hence a great opportunity 
to reduce generational intervals (Meuwissen, 
Hayes, & Goddard, 2013; Wakchaure et al., 
2015). When molecular marker information is 
included in the model for genetic evaluation, 
the resulting estimate of breeding values 
using BLUP and MAS is called M-BLUP, which 
allows the calculation of the random effect of 
each marker and the polygenic effect of other 
genes not included in the model, resulting in 
the transformation of EBV into the molecular 
estimated breeding value (MEBV) (Hayes, 
2007).

In this way, random regression models 
and marker-assisted selection represent 
two important strategies that could help 
increase the reliability of genetic parameters 
and breeding values in Colombian Holstein 
cattle populations, for which there is currently 
limited information. Therefore, the objective 
of this study was to compare the estimated 
variance components, genetic parameters, 
and breeding values for milk production 
(MP), protein percentage (PP) and somatic 
cell score (SCS), using random regression 
model, traditional animal model, and marker-
assisted selection model, to determine which 
model best describes the genetic parameters 
and therefore should be used in the genetic 
evaluation of these traits in Holstein cattle 
from Antioquia.

Materials and Methods

Phenotypic data were collected 
through dairy control programs developed by 
the BIOGEM research group of the Universidad 
Nacional de Colombia Medellín campus. These 
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programs were developed between 2008 and 
2015. During this process, 157 farms from the 
northern and eastern regions of Antioquia, 
Colombia, were visited at intervals of 30 to 60 
days, and the daily production for each cow 
was measured with True test® proportional 
flux meters in herds with mechanical milking 
or bucket measurement in herds with manual 
milking. Additionally, milk samples were taken 
for protein percentage and somatic cell score 
analyses. Milk production per lactation was 
estimated according to the following equation 
(Barbosa, Cruz,Costa, & Rodrigues, 1999):

where MP represents the milk production per 
lactation, T1 is the milk production in the first 
control, E1 is the interval between delivery and 
the first control, n represents the number of 
controls, Ti is the milk production per control 
(i = 1, 2, 3..., n), Ei is the interval between two 
consecutive controls, Tn is the milk production 
in the last control, and En is the interval between 
the last control and the end of lactation.

Protein percentage and somatic cell 
score were determined by using the MilkoScan 
FT120®, whose measurements are based on 
FTIR (Fourier transform infrared), a process 
accepted by the ICAR. Subsequently, the 
somatic cell score (SCS) was transformed 
into the somatic cell score (SCS) (Wiggans & 
Shook, 1987):

From these data, those cows with 
as many phenotypic records as possible 
were genotyped, although not all individuals 
were typed for each gene under study. For 
this, blood samples were collected for DNA 
extraction using the salting-out method, and 
subsequently PCR-RFLP was used to evaluate 
ten polymorphisms of nine genes. These 
procedures were performed in the Animal 
Biotechnology Laboratory of Universidad 
Nacional de Colombia at Medellín. A total of 
2,003 lactations corresponding to 1,417 cows 
in 55 herds were used, and a pedigree was 
constructed with 2,596 animals, of which 321 
were bulls. Descriptive analysis of the traits is 
presented in Table 1.
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Table 1
Descriptive analysis of milk production (MP), protein percentage (PP), and somatic cell score (SCS) in 
Holstein cattle from Antioquia

Variable Lactations Individuals Mean Standard deviation Coefficient of variation

MP (L) 2003 1417 5443.92 1512.900 27.790%

PP (%) 1663 1223 3.05 0.200 6.620%

SCS 1743 1267 4.39 1.280 29.230%
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The SAS/STAT® (Copyright© 2003 
SAS Institute Inc.) was used to develop linear 
models through the GLM procedure, which 
allowed the identification of the sources of 
variation that should be included in the genetic 
evaluation model: order of delivery, herd, and 
contemporary group (year and month of birth). 
Although different covariables were included 
for each trait in the analysis, lactation duration 
was included as a covariable in the model for 
milk production, while milk production and 
lactation duration were included in the model 
for protein percentage and somatic cell score.

The estimation of EBV was carried 
out through the traditional procedure known 
as the animal model and using the BLUP 
methodology, based on the following scheme 
of mixed equations (Mrode, 2005).

where y represents the vector of phenotypic 
records (MP, PP or SCS), b is a vector for fixed 
effects, a represents the random effect of 
the animal, X is a design matrix that connects 
records with fixed effects, and Z is a design 
matrix that connects records with random 
effects of animals.

The effect of molecular markers was 
estimated using the M-BLUP model described 
by (Hayes, 2007), which includes a vector 
that correlates the effect of markers with 
phenotypic information.

In this case, X is a design matrix that 
contains records for markers and fixed effects, 
g is a vector for the effect of the molecular 

marker, Z is a design matrix that relates 
phenotypic records and polygenic effect, 
u is a polygenic effect vector, and e is the 
residual error. Through the above procedure, 
it is possible to estimate the MEBV using the 
following expression:

where y represents the solution for molecular 
breeding values, p is the number of molecular 
markers, and Xi is the column of the design 
matrix that relates the markers to the animal, 
the effect of each marker and the polygenic 
effect of the other genes. To estimate 
covariance components, the maximum 
restricted likelihood method was used using 
MTDFREML (Multiple-Trait Derivative-Free 
Restricted Estimator Maximum Likelihood) 
software (Van Vleck & Boldman, 1993).

From the previously reported lactations, 
it was possible to collect 14,154 records for 
1,064 animals. Seeking adequate consistency 
for the RRM, data from those animals that had 
fewer than four records per lactation or that 
did not have a milk sample recorded in the 
first ninety days after calving were discarded. 
Additionally, samples from lactations of 
different calving orders were recorded for some 
animals; however, the number of repeated 
records was not large enough to achieve 
convergence in the repeatability models, so 
the first lactation registered was random for 
each animal. In the end, information on milk 
production was available on the sampling day 
for 733 individuals. Table 2 shows the number 
of observations obtained for each control 
the mean and standard deviation for milk 
production, protein percentage, and somatic 
cell score.
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Table 2 
Range of days in milk (DIM), number of records (n), and mean and standard deviation (SD) for milk 
production (MP), protein percentage (PP) and somatic cell score (SCS) for ten test days in Holstein 
cattle from Antioquia 

Control DIM 
MP (L) PP (%) SCS 

n Mean SD n Mean SD n Mean SD 
1 5-30 342 22.500 6.340 314 2.930 0.320 292 3.230 1.580 
2 31-60 457 23.010 5.850 456 2.700 0.280 417 3.240 1.600 
3 61-90 513 21.370 6.070 485 2.750 0.260 439 3.390 1.530 
4 91-120 454 20.430 5.860 458 2.800 0.260 420 3.690 1.520 
5 121-150 494 19.060 5.450 466 2.850 0.250 426 4.010 1.530 
6 151-180 467 17.570 5.180 468 2.910 0.240 442 4.100 1.320 
7 181-210 498 16.350 4.870 467 2.990 0.250 456 4.310 1.330 
8 211-240 493 15.230 4.840 484 3.070 0.270 454 4.510 1.210 
9 241-270 492 13.780 4.760 473 3.150 0.260 429 4.530 1.130 
10 270-305 448 12.770 4.350 427 3.250 0.290 403 4.760 1.150 

 

Subsequently, genetic parameters and breeding values were estimated using an RRM, where the 

control day records for all three traits were analyzed with a model that used third- and fourth-order Legendre 

polynomials for the additive and permanent environmental genetic effects, respectively, and a heterogeneous 

residual variance structure made up of twelve classes for milk production and protein percentage and eleven 

classes for somatic cell score. Compared with the results of previous analyses, it was possible to establish 

that this structure was the one that best described the effects of interest. The RRM for the analysis of 
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Subsequently, genetic parameters and 
breeding values were estimated using an RRM, 
where the control day records for all three traits 
were analyzed with a model that used third- 
and fourth-order Legendre polynomials for the 
additive and permanent environmental genetic 
effects, respectively, and a heterogeneous 
residual variance structure made up of twelve 

classes for milk production and protein 
percentage and eleven classes for somatic cell 
score. Compared with the results of previous 
analyses, it was possible to establish that this 
structure was the one that best described the 
effects of interest. The RRM for the analysis of 
sampling day observations was as follows:

Here, y is the vector of control day 
observations, b is the solution vector for the 
control day group effect and fixed regression 
coefficients for fixed effects of parity order, 
days in milk and contemporary group (test 
year, season and herd), u is the vector of 
random regressions for additive genetics 
effects, pe is the vector of random regressions 
for permanent environment effects, X is the 
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incidence matrix that relates data and fixed 
effects, Q is the matrix that relates phenotypic 
observations and random effect of the 
animal, Z is the matrix that relates phenotypic 
observations and permanent environmental 
effects, e is the residual effect vector, A is the 
kinship matrix between individuals, and ⊗ is the 
Kronecker product. Based on the above, it is 
assumed that:
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where I is the identity matrix, R is the matrix 
containing the residual variance, and G and P are 
the covariance matrices between the random 
regression coefficients of additive genetics 
and the permanent environment, respectively. 
Finally, the (co)variance components were 
estimated via maximum restricted likelihood 
using Wombat software (Meyer, 2007).

For BLUP and MBLUP, for the three 
evaluated traits, the genetic value is determined 
as a single measure at the end of lactation. 
Meanwhile, the RRM, which makes use of test 
day measurements, allows the estimation of 
genetic values for each day in milk, so it was 
necessary to sum these daily genetic values 
to obtain a single genetic value for each trait 
at the end of a 305-day lactation to be able 
to compare the three models. This estimate 
is obtained from the product of solutions of 
random regression coefficients by animal and 
the polynomial value for each day. Solutions 
for the additive coefficients of random 
genetic regression of animal j are represented 
as follows, where a0, a1 and a2 represent 
the intercept and the linear and quadradic 
coefficients, respectively (Pereira et al., 2012).

The genetic value for animal j on day t 
is given by:

where Ct is the vector of covariables of 
Legendre polynomials on day t. The estimated 
genetic values for milk production, protein 
percentage or somatic cells at 305 days 
(EBV305) would then be given by the sum of 
the genetic values for the 305 days of lactation 
of each animal, according to the equation.

The estimates of genetic variance 
(δ2

(305)) and permanent environment variance 
(δ2 

(305)) for milk production, average protein 
percentage and somatic cell score at 305 days 
were estimated from the multiplication of the 
covariance matrices between the coefficients 
of regression for the additive genetic (Λa) and 
permanent environment (Λpe) random effects 
and the vectors that contained the specific 
covariables for the traits (F), as described 
below:

The residual variance (δ2
(305)) estimates 

for each trait were calculated as the sum of 
the products of the twelve residual variance 
classes (Vej, with j equal to 1 to 12) and the 
number of days in milk (DIM) in each group 
(González-Herrera, 2013).

From the above, the heritability (h2      ) 
for MP, PP, and SCS using RRMs was estimated 
according to Jakobsen et al. (2002).

Later, through Pearson correlations, 
it was determined which of the three random 
regression coefficients allowed us to model 
the magnitude of the genetic value at 305 days 
to estimate the reliability of the genetic value 
through the reliability for this coefficient.

To identify significant differences 
between the average accuracy of the breeding 
value, an analysis of variance was performed, 
including the effect of the methodology 
used through the SAS/STAT® and its GLM 
procedure. Finally, ranking correlations were 
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used to measure the degree of association 
between the ranking of individuals selected by 
the models under analysis.

Results and Discussion

For all three traits, the RRM estimated 
lower heritability, while the M-BLUP model 
presented the highest values for this parameter. 
PP was the trait with the highest heritability in 
the three models, followed by SCS, and MP 
presented the lowest values (Table 3). The 
heritability values for MP estimated under the 
BLUP model were close to what was found in 
the literature, which indicates that this trait 
usually presents a medium heritability. In 

Colombia, values between 0.16 and 0.24 have 
been reported for this trait (Solarte Portilla, 
& Zambrano Burbano, 2012; Zambrano, Liu, 
Reinhardt, Reents, 2014; Rincón, Zambrano, & 
Echeverri, 2015); similarly, several authors in 
different countries report values between 0.18 
and 0.25 (Zink, Lassen, & Štipkova, 2012; Zhao 
et al., 2015). On the other hand, the heritability 
for MP at 305 estimated using a random 
regression model (0.15) was lower than that 
estimated by other authors, who reported 
values between 0.3 and 0.42 for the first and 
second lactations (Jakobsen et al., 2002; Haile-
Mariam, Bowman, & Goddard, 2003; Yamazaki 
et al., 2013).

PP is reported by several authors to be 
one of the traits with the highest heritability, 
with values commonly close to or greater than 
0.3 (Zambrano et al., 2014; Rincón et al., 2015) 
or even reaching values between 0.47 and 
0.65 (Makgahlela et al., 2013; Zhao et al., 2015; 
Gebreyesus et al., 2016), and this trait is less 
affected by environmental effects than milk 
production is (Lipkin, Bagnato, & Soller, 2008a). 
The heritability found for PP with the random 

Table 3
Variance components and heritability for milk production, protein percentage, and somatic cell score 
in Holstein cattle from Antioquia estimated through BLUP, M-BLUP and RRM

Variance 
Component

Milk production (L) Protein percentage (%) Somatic cell score

BLUP M-BLUP RRM BLUP M-BLUP RRM BLUP M-BLUP RRM

h2 0.260±0.00 0.270±0.00 0.150 0.400±0.04 0.44±0.04 0.290 0.270±0.04 0.280±0.04 0.220

PV 1574851 1574850 718940 0.031  0.031 0.049 1.286 1.287 1.506

GAV 407279 407279 106853 0.012  0.013 0.014 0.349 0.361 0.337

EV 1167872 1167860 612087 0.019  0.017 0.036 0.938 0.926 1.169

PV: Phenotypic variance, GAV: genetic additive variance, EV: environmental variance.

regression model was 0.29, surpassing 
that reported by other authors (Khanzadeh, 
Hossein, & Naserani, 2013); however, it is 
important to highlight that few reports on 
heritability of protein percentage use this 
methodology; random regression has typically 
been used to model protein content rather 
than protein percentage (De Roos, Harbers, & 
De Jong, 2004; Caccamo et al., 2008; Múnera, 
Herrera, Gonzáles, Henao, & Cerón, 2014).
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It is generally accepted that SCS is 
a trait of low heritability (Zambrano et al., 
2014; Costa, Santos, Cobuci, Thompson, & 
Carvalheira, 2015); however, in this study, 
values were high in all models (0.27, 0.28 and 
0.22 for BLUP, M- BLUP and RRM, respectively) 
and close to those reported by some other 
authors (Kheirabadi & Alijani, 2014). It is also 
noteworthy that previously published values 
are closer to the random regression results in 
this study, with reports ranging from 0.18 to 
0.22 (Liu, Reinhardt, & Reents, 2000; Mrode & 
Swanson, 2004).

In the present study, the heritability 
estimates at 305 using RRM were lower than 
those estimated using the traditional animal 
model and the model that included information 
on molecular markers. This decrease is mainly 
explained by the increase in the environmental 
variance when RRM was used. This is contrary 
to the literature reports, where it has been said 
that control day models expect that additive 
genetic variance for the total production at 
305 days is relatively high, since the residual 
and permanent environment variations are 
diluted, this results in higher heritability for 
production per lactation compared to control 
day production and less heritability for total 
production in repeatability models (De Roos et 
al., 2004).

The methodology used in the BLUP 
and M-BLUP models uses total or average 
lactation records per lactation for the traits 
under analysis, where genetic correlations 
and permanent environment equal to one are 
assumed for all the controls measurements 
that make up the registry, collecting the 
accumulated variation of both sources in 
a single value. For this reason, when linear 
models are used for lactation, the variation 
in the permanent environment can be diluted 
between environmental variance and genetic 
additive variance, and high values of the latter 
generate high values of heritability. On the 
other hand, RRM allows us to measure changes 
in the additive, residual, and permanent 
environmental genetic effects along the path 
in which the characteristic is expressed. When 
RRM was used in the present population, 
these effects of the temporary and permanent 
environment were of great importance, which 
led to decreases in the magnitude of genetic 
variation and heritability in comparison with 
BLUP and M-BLUP. Table 4 presents the 
permanent environmental and temporary 
environmental components obtained under 
the RRM.

Table 4
Components of environmental variance using random regression models for milk production, protein 
percentage, and somatic cell score in Holstein cattle from Antioquia

Individuals Milk production Protein percentage Somatic cell score

Permanent environmental variance 609290.400 0.012 0.410

Temporary environmental variance 2796.765 0.023 0.758
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The heritability values estimated by the 
M-BLUP model were higher than the BLUP and 
RRM estimates for the three traits due to an 
increase in genetic variance when the model 
that included molecular markers was used. 
When this technique was used, the estimation 
of heritability for MP was close to that from 
some reports that have used MAS, i.e., 
between 0.25 and 0.3; likewise, the value found 
for protein percentage may be even higher 
than those reported in this study (Guillaume, 
Fritz, Boichard, & Druet, 2008a; Lipkin et al., 
2008a; Lipkin, Tal-Stein, Friedmann, & Soller, 
2008b). The heritability for SCS was not 
substantially affected by the implementation 
of MBLUP, with very little change in the additive 
genetic variance, and the value was far from 
that reported by Ron et al. (2004), who used a 
marker-assisted selection model and reported 
a low heritability for this trait. One of the factors 
that determines genetic progress is the genetic 
standard deviation as a reflection of genetic 

variation (Schefers & Weigel, 2012); therefore, 
evaluation methodologies that allow a better 
and greater estimation of this component will 
lead to higher heritability and promote genetic 
progress.

The different markers under study 
affected the genetic variance of each trait in 
a differentiated manner, so they represented 
different proportions within the genetic 
variance, with MP being the trait in which they 
had the greatest participation (Table 5). In the 
case of this trait, polymorphisms corresponding 
to the genes BGH, FSHR, IGF2, KC, LEP, PRL and 
PPARGC1 (first polymorphism) had a greater 
effect, while in the case of protein percentage, 
KC and PRL accounted for a greater proportion 
of the variation. In contrast, markers made little 
contribution to the genetic variance of somatic 
cell score, where polymorphisms of the LEP 
and PRL genes showed greater importance.

Table 5
Genetic variance explained by ten molecular markers for milk production (MP), protein percentage 
(PP), and somatic cell score (SCS) traits in Holstein cattle from Antioquia

Gene MP PP SCS

BGH 5575.770 1.000E-08 1.320E-08

FSHR 2.377 1.000E-08 1.320E-08

IGF2 7653.890 1.029E-08 1.160E-07

INHA 0.013 1.002E-08 1.440E-08

KC 37324.170 1.057E-03 1.340E-08

LEP 12063.910 1.000E-08 2.470E-03

POU1f1 0.014 1.006E-08 1.410E-08

PRL 3174.170 3.557E-04 8.460E-03

PPARGC1 (1) 6913.890 1.015E-08 1.190E-08

PPARGC1 (2) 0.019 1.070E-08 1.190E-08

Total MV 75082.840 0.001 0.011

MV/GAV 0.180 0.110 0.030

MV: marker variance, MV/GAV: ratio of marker variance to total additive genetic variance.
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In Table 6, it is possible to observe 
the effect of alleles of different SNPs on each 
evaluated trait; some genotypes led to an 
increase in the breeding value of the animals, 
whereas others generated decreases. The 
breeding value for MP was negatively affected 
by the (-) alleles of bGH; the B allele of PRL; the 
T allele of IGF2a; the G allele of INHA; the B 
allele of KC; the T allele of FSHR; and the C and 

Table 6
Allelic substitution effects for ten polymorphisms on the molecular breeding value for milk production 
(MP), protein percentage (PP), and somatic cell score (SCS) in Holstein cattle from Antioquia

Gene Substitution
Trait

MP PP SCS

BGH
+/-

-131.099 -0,001 -0.046
c.2141

PRL
A/B

-113.510 -0.0050 -0.128
c.7544

IGF2a
C/T

-69.440 0.011 0.024
c.292

POU1F1
A/B

20.800 0.008 0.054
c. 207

INHA
A/G

-68.320 0.016 -0.054
c.192

LEP
A/C

45.990 0.001 0.183
c.1180

KC
A/B

-144.530 0.032 0.014
c. 380

PPARGC1 (SNP1)
A/C

-71.490 -0.006 0.068
c.1892

PPARGC1 (SNP2)
C/T

-46.620 -0.021 -0.037
c.3359

FSHR
A/T

-201.414 -0,010 -0.097
c.320

BGH: Bovine growth hormone, PRL: Prolactin, IGF2a: Insulin-like growth factor 2a, POU1F1: Pituitary-specific transcription 
factor, INHA: Inhibin, LEP: Leptin. KC: Kappa-Casein, PPARGC1: Peroxisome proliferator activator receptor gamma 
coactivator 1α, FSHR: follicle-stimulating hormone receptor. Substitution: allelic change and polymorphic site within the 
gene.

T alleles of the PPARGC1 gene. The breeding 
value for PP was negatively affected by the (-) 
alleles of bGH, the B allele of PRL, the T allele of 
FSHR, and the C and T alleles of the PPARGC1 
gene. On the other hand, SCS was negatively 
affected by (-) polymorphisms of bGH, the 
B allele of PRL, the G allele of INHA, the T 
allele of FSHR, and the T allele of the second 
polymorphism of the PPARGC1 gene.
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This explains the differences in the 
effects of the M-BLUP model on the heritability 
of the three traits since the greatest effect was 
found for milk production and the smallest 
effect was found for SCS. As different authors 
have reported, there are QTLs with important 
effects for some traits, with a large participation 
in the variation, while having little or no effect 
on other traits (Lipkin et al., 2008b). This means 
that the variance explained by the QTL can 
represent a higher or lower proportion of the 
genetic variance in different traits and different 
populations (Szyda, Liu, Reinhardt, & Reents, 
2005). This determines the efficiency of the 
marker-assisted selection, which is greater 
when these QTLs can be fully identified thanks 
to their influence on the variation of the trait 
(Druet, Boichard, & Colleau, 2006). Likewise, in 
a marker-assisted selection scheme in France, 
it was found that the QTL explained a greater 
proportion of the genetic variance for MP 
than for PP and that the gains obtained with 

the use of selection programs that include 
genetic information depend on the proportion 
of genetic variance explained by the QTL 
(Guillaume, Fritz, Boichard, & Druet, 2008b).

From this, it was possible to generate 
estimated breeding values by animal model 
(EBV), marker-assisted selection model (MEBV), 
and breeding value at 305 days by random 
regression (EBV305), differentiating between 
those individuals for whom phenotypic and 
genetic information was available (that is, cows) 
and those individuals evaluated only based on 
their descendants (that is, bulls) (Table 7). In the 
case of cows, for MP, EBV and EBV305 allowed 
us to estimate higher breeding values with 
respect to those estimated by MEBV, while for 
PP and SCS, MEBV presented higher values on 
average with respect to EBV and EBV305. This 
was because there were more polymorphisms 
with a negative effect on the breeding value for 
MP than for PP and SCS (Table 6).

In the case of bulls, the estimation 
of the different breeding values for PP and 
SCS showed little variation. Unlike what was 
observed for MP, since it had the change of 
greater dimension, but contrary to what was 
observed in cows, the mean of the MEBV for 
bulls was closer to zero, considering that 

Table 7
Mean breeding value (EBV), molecular breeding value (MEBV) and 305-day breeding value by random 
regression model (EBV305) for milk production (MP), protein percentage (PP), and somatic cell score 
(SCS) estimated in Holstein cattle from Antioquia

Trait
Cows Bulls

EBV MEBV EBV305 EBV MEBV EBV305

MP (L) -7.950 -169.120 5.300 262.480 -9.140 -1.681

PP (%) 0.001 0.018 -0.0011 0.046 -0.001 -0.001

SCS -0.004 0.002 -0.00034 0.215 -0.001 -0.001

there was no genotype information for any 
of the studs, it can be suggested that EBV is 
inferior because it agglomerates the effects 
of all the genes influencing the traits, including 
the genes used in the MBLUP model, whose 
polymorphisms had a negative effect.
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Table 8
Correlation coefficients between the genetic value at 305 days for milk production (EBV305MP), protein 
percentage (EBV305PP) and somatic cell score (EBV305SCS) and three random regression coefficients 
(a0, a1, a2) used for modeling the additive genetic effect in Holstein cattle from Antioquia

a0 a1 a2

EBV305PL 0.999 0.198 0.121

EBV305PP 0.999 0.913 -0.322

EBV305SCS 1 -0.995 -0.943

Table 9
Mean, standard deviation (SD), minimum value and maximum value for reliability of estimated breeding 
value ((r2) EBV), molecular estimated breeding value ((r2) MEBV) and breeding value at 305 days by 
random regression model ((r2) EBV305) for milk production (MP), protein percentage (PP), and somatic 
cell score (SCS) estimated in Holstein cattle from the department of Antioquia

Cows Bulls

Trait (r2) EBV (r2) MEBV (r2) EBV305 (r2) EBV (r2) MEBV (r2) EBV305

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

MP 37% b 130% 57% a 6% 32% C 8% 55% b 7% 66% a 4% 23% c 9%

PP 43% b 130% 57% a 9% 61% C 15% 63% b 12% 70% a 8% 43% b 13%

SCS 38% b 130% 42% a 10% 40% C 11% 54% b 10% 56% a 9% 29% c 10%

Table 8 contains the correlation 
coefficients between the genetic value at 305 
days for the three traits under study and the 
three random regression coefficients used for 
modeling the additive genetic effect. The a0 
coefficient had an approximate correlation of 
one with the genetic value at 305 days for the 
three traits; that is, the magnitude and direction 
of this coefficient determines the genetic value 
of each animal, so its reliability was used as 
reliability of the genetic value at 305 days. This 
agrees with reports where the first coefficient 
of the Legendre polynomial for the additive 
genetic effect has been associated with total 
milk production (Strabel & Jamrozik, 2006), 
with similar behavior in this case for the protein 
percentage and somatic cell score.

In this sense, Table 9 shows the 
reliability of the estimated breeding value using 
a traditional animal model ((r2) EBV), molecular 
breeding value ((r2) MEBV) and 305-day breeding 
value by a random regression model ((r2) EBV305) 
obtained for bulls and cows. Thanks to the use of 
the M-BLUP model, a significant increase in the 
reliability of breeding value was obtained for the 
three traits, with milk production being the trait 
that presented the greatest gain in reliability. The 
increase in reliability of breeding value is based on 
the greater additive genetic variance estimated 
by the model including molecular information, 
since this directly influences the reliability of the 
breeding value (Boligon et al., 2011). The above 
is consistent with reports that show an increase 
in the reliability of breeding value as one of the 
main advantages of molecular marker-assisted 
selection (Guillaume et al., 2008a).

Letters in superscripts denote significant differences.
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It has been pointed out that one of the 
main advantages attributed to the random 
regression models compared to the traditional 
linear models is the possible reliability of the 
genetic value, since the control day models 
can better model the environmental effects 
and impact the genetic value of cows even 
more than bulls (Lidauer, Mäntysaari, & 
Strandén, 2003). Although this difference in 
the reliability of the genetic value of cows 
and bulls could be corroborated in this study 
under the random regression model, it did not 
represent an advantage over the MBLUP model 
as a consequence of the lower heritability and 
genetic variance values found for the RRM, 
which condition the lower reliability of the 
genetic value. A difference in the reliability 
of the breeding value that favors the MBLUP 
model compared to the BLUP and RRM is 
presented despite the nullity of genotypes 
available for bulls and the lower of availability 
of genotyped cows for some of the markers 
relative to other reports, since the marker 
with the most genotypes available was the 
polymorphism of the BGH gene with 1126 
individuals. The need to increase the number 
of genotyped individuals in order to increase 
the gains obtained through the use of MAS 
has been noted; by 2004, the French program 
for marker-assisted selection included 34,318 
animals, of which 23,137 had phenotypic 
information and 16,629 had been genotyped 
for 43 microsatellites (Guillaume et al., 2008a), 
while in Germany, the use of 4500 genotypes 
for animals born between 1985 and 2000 was 
reported, with a complete pedigree of 7841 
animals (Szyda et al., 2005). This highlights 
the importance of continuing to increase the 
amount of genetic information available for the 
animals to be evaluated.

Spearman’s correlations between 
BLUP and M-BLUP were high, indicating 
great similarity in the ranking of individuals 
to be selected by both models. However, the 
correlation between RRM and the other two 
methodologies was not relevant, since all were 
close to zero, indicating that the animals to be 
selected under the RRM would be different 
than those selected under the other two 
models (Table 10). The Spearman correlation 
between BLUP and MBLUP was the lowest for 
MP of the three traits, both in bulls and in cows, 
because the greater influence of markers on 
this trait generated a greater change in the 
MEBV. As no genetic information was available 
for the bulls, their molecular breeding value 
was dependent on the performance of their 
daughters. The correlations between RRM 
and BLUP and MBLUP were not relevant since 
they were all close to 0. This indicates that 
the animals to be selected under the RRM 
will be different than those selected under 
the other two models. This can be explained 
by the lower availability of individuals in the 
analysis when the RRM was used compared 
to the other methodologies, which can lead 
to relevant differences in the pedigree used 
in the RRM. There are also differences when 
genetic evaluation is carried out for total milk 
production and when productive controls are 
analyzed, since in the latter case, it is possible 
to accept differences at different points on 
the curve, whereas these differences are 
ignored by the models using total production; 
therefore, the adjustment of the genetic value 
for the accumulated production is different.



Comparison of random regression models, traditional...

1317Semina: Ciênc. Agrár. Londrina, v. 42, n. 3, p. 1303-1322, maio/jun. 2021

Conclusion

The MBLUP model for marker-assisted 
selection led to estimates of greater genetic 
variance along with greater heritability, 
which produced a more reliable molecular 
breeding value than other methodologies. The 
molecular markers under study had different 
effects on the different traits of interest, 
affecting milk production to a greater extent 
than the other traits. Therefore, it is important 
to continue the research to identify molecular 
markers associated with each trait of interest 
and to evaluate their effects on components 
of variance and genetic parameters of each 
particular trait, since this will determine the 
genetic gains that can be achieved with MAS. 
Given that the random regression models 
presented lower heritability and less accurate 
genetic values compared to the BLUP and 
MBLUP models for both bulls and cows, the 
efficient use of these models requires the 
development of stable programs of traceability 
and animal registration, which allow increased 
productivity and kinship information.

Table 10
Spearman correlations between the genetic values estimated by random regression models (RRM) and 
by traditional animal models without (BLUP) or with molecular markers (MBLUP) in bulls and cows for 
three traits of economic importance in Holstein cattle from Antioquia

Trait
Cows Bulls

BLUP-MBLUP RRM-BLUP RRM-MBLUP BLUP-MBLUP RRM-BLUP RRM-MBLUP

Milk 
production

0.910 0.004 0.018 0.960 0.070 0.058

Protein 
percentage

0.950 -0.008 0.009 0.990 -0.009 -0.007

Somatic cell 
score

0.930 -0.009 -0.011 0.990 0.018 0.022
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