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Highlights:
Interaction between genotype and planting season favors seed yield.
Interaction between genotype and planting season favors seed crude protein content.
Interaction between genotype and planting season favors concentrations of zinc and manganese in the seed.
Genotype and season affect phosphorus, iron, potassium, and phenolic compound-accumulation in the seed. 
Genotype affects calcium and magnesium concentration in seeds.

Abstract

The sowing of seeds during different seasons, characterized by distinct environmental conditions, can 
result in different agronomic characteristics and production rates of agricultural crops. Considering the 
lack of information on the effect of climatic variations on the agronomic performance of snap bean 
(Phaseolus vulgaris), it is important to evaluate the productivity and nutrient content when sown at 
different times of the year. Thus, the study aimed to evaluated plant productivity, and seed mineral and 
phenolic compound composition in different genotypes and cultivars of bush snap bean UEL 1, UEL 
2, Isla Macarrão Baixo, Isla Manteiga Baixo, and Feltrin Macarrão Napoli sowed in the spring and 
autumn. The number of pods per plant, seeds per pod, seeds per plant, and seed yield were evaluated. 
Chemical composition of the seeds was determined by measuring the amounts of crude protein, calcium, 
magnesium, potassium, phosphorus, sulfur, iron, zinc, manganese, and total phenolic compounds 
present. The joint analysis of variance of the experiments was performed, with means compared by 
the Tukey test, at 5%. The interaction between genotype and sowing season affects the number of 
seeds per plant, seed productivity, and the seed concentrations of crude protein, zinc, and manganese. 
Spring sowing favored seed yield in the Isla Manteiga Baixo cultivar, the number of pods per plant, and 
the accumulation of phosphorus and iron in the seeds. Autumn sowing resulted in an increase in the 
seed-concentrations of potassium and total phenolic compounds. Seed-concentrations of calcium and 
manganese varied by genotype.
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Resumo

A semeadura de sementes em diferentes épocas do ano encontra condições ambientais distintas, 
que podem resultar em diferentes respostas agronômicas e na produtividade de culturas agrícolas. 
Considerando a falta de informações sobre o efeito das variações climáticas no desempenho agronômico 
do feijão-vagem (Phaseolus vulgaris) é importante avaliar a produtividade e o teor de nutrientes 
quando semeados em diferentes épocas do ano. Assim, o estudo objetivou avaliar a produtividade e 
a composição de compostos minerais e fenólicos em sementes de diferentes genótipos e cultivares de 
feijão-vagem – UEL 1, UEL 2, Isla Macarrão baixo, Isla Manteiga Baixo e Feltrin Macarrão Napoli – 
semeados na primavera e outono.  Foram avaliados o número de vagens por planta, sementes por vagem, 
sementes por planta e produção de sementes. A composição química das sementes foi determinada 
medição das quantidades de proteína bruta, cálcio, magnésio, potássio, fósforo, enxofre, ferro, zinco, 
manganês e compostos fenólicos totais. Foi realizada análise de variância conjunta dos experimentos, 
com médias comparadas pelo teste de Tukey, a 5%. A interação entre genótipo e época de semeadura 
afeta o número de sementes por planta, a produtividade e as concentrações de proteína bruta, zinco 
e manganês. A semeadura na primavera favoreceu a produção de sementes na cultivar Isla Manteiga 
Baixo, o número de vagens produzidas por planta, e o acúmulo de fósforo e ferro nas sementes. A 
semeadura no outono resultou em um aumento nas concentrações de potássio e dos compostos fenólicos 
totais. As concentrações de cálcio e magnésio nas sementes variam de acordo com o genótipo. 
Palavras-chave: Condições ambientais. Desempenho agronômico. Phaseolus vulgaris L. 

Introduction

Approximately 1.9 million tons of snap beans 
(Phaseolus vulgaris) are produced globally per 
year, with 54% from the American continent, and 
10% from South America. The world’s largest 
producer of snap beans is the United States, with 
about 800,000 tons annually (Food and Agriculture 
Organization of the United Nations [FAO], 2018). 
Though data on produce production are incipient 
in Brazil, the most recent survey indicated that the 
production and commercialization of snap beans 
moved around 60 million dollars (Companhia 
Nacional de Abastecimento [CONAB], 2015).

As they are more productive, producers’ growers 
prefer to use snap beans with indeterminate growth, 
also known as pole beans. However, cultivars 
with determinate growth—referred to as bush 
beans—do not require planting, have a shorter 
life cycle, concentrate flowering, and are faster to 
harvest, ultimately reducing the amount of cultural 
treatments used and production costs (Moreira et 
al., 2009). Snap and common bean (of the same 
species) can be grown throughout the year (Araújo 
& Ferreira, 2006). According to Barros, Pelúzio, 

Santos, Brito, and Almeida (2003), the sowing date 
is characterized by distinct environmental conditions 
that can alter the agronomic characteristics and 
production of crops. For beans, the association 
between temperature and relative humidity, as well 
as the amount and distribution of rainfall, decisively 
influence flowering and fruiting, ultimately affecting 
yield (Tsukaguchi et al., 2005). 

During its life cycle, Phaseolus vulgaris L. 
consumes 300-600 mm of water (growing at an 
ideal temperature of 17-25ºC) (Barbosa & Gonzaga, 
2012). However, the irregular distribution of rainfall 
can affect yield, especially if it occurs during the 
reproductive stages. Additionally, temperatures 
above 35ºC cause abscission of the reproductive 
structures, while low temperatures can reduce 
plant growth and development, both of which 
decrease yield (Carvalho, Castro, Dias, & Ferraz, 
2014). The relative air humidity can interfere with 
the atmospheric evaporative demand, which, if 
higher (lower relative air humidity due to higher 
temperature), increases the transpiration rate and 
amount of water needed. Thus, the lack of water in 
the soil can affect the vegetative and reproductive 
stages as well (Gomide & Albuquerque, 2008). 
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Sowing at different times can also interfere with 
the mineral composition of the seeds (Farinelli & 
Lemos, 2010), and consequently, the absorption 
of water and nutrients. The production of phenolic 
compounds by secondary plant metabolism can 
also be altered depending when sowing takes 
place. These are aromatic compounds produced in 
response to biotic and abiotic stresses (Angelo & 
Jorge, 2007), and their quantification contributes 
to an understanding of the relationship between 
environmental stress and the levels of production 
and quality of the harvested product.

Considering that the environment can affect the 
quantity and quality of crop production, in addition 
to the lack of information on the effect of climatic 
variations on the performance of snap beans, it is 

important to evaluate the crop sowed during different 
seasons. We evaluated the productivity, mineral 
composition, and total phenolic compound content 
in bush snap beans sowed in two different seasons.

Materials and Methods

The experiments were carried out in Londrina, 
Paraná, Brazil, in eutropheric red latosol soil at 
23º23’S, 51º11’W, at an altitude of 570 m. The 
region’s climate is of the Cfa type (subtropical 
mesothermal with hot summers), with annual air 
temperatures of 21-22ºC, and rainfall of 1,400-
1,600 mm (Nitsche, Caramori, Ricce, & Pinto, 
2019). Rainfall, average temperature, and relative 
humidity, for the duration of the experiment are 
presented in Figure 1. 
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Figure 1. Precipitation, average temperature, and relative humidity over the durations of the experiments. 

Figure 1. Precipitation, average temperature, and relative humidity over the 
durations of the experiments. Data were taken every ten days during the 
spring-summer (A) and autumn-winter (B) seasons. 
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The genotypes evaluated, all of which have 
determined (bush) growth, included UEL 1 and 
UEL 2, selected from a breeding program at the 
State University of Londrina (UEL), in addition 
to commercial cultivars Isla Macarrão Baixo, Isla 
Manteiga Baixo, and Feltrin Macarrão Napoli. With 
the exception of Isla Manteiga Baixo, which has 
black seeds, the other genotypes have white seeds. 
The experiment was organized into random blocks, 
with four replicates. An independent experiment 
was conducted at for each sowing. 

Experiment I was sowed on 09/08/16 during the 
spring, and completed in the summer. Experiment 
II was sowed on 03/31/17 in the autumn, and 
completed in the winter. To prepare the land, fields 
were kept fallow and planted with the cover crop 
Urochloa decumbens (Stapf) R. D. Webster. Prior 
to each sowing, the soil was plowed and harrowed 
mechanically. 

Prior to sowing, chemical analysis of the soil 
was performed at a depth of 0-20 cm. The soil used 
in the spring had a pH (CaCl2) of 5.0, 19.26 g kg-1 
of organic matter, 5.76 cmolc dm-3 of H+ and Al3+, 
4.19 cmolc dm-3 of Ca2+, 2.05 cmolc dm-3 of Mg2+, 
0.53 cmolc dm-3 of K+, 1.31 mg dm-3 of P, and a base 
saturation of 54.03%. In the autumn, the soil had a 
pH of 5.6, 27.0 g kg-1 of organic matter, 3.97 cmolc 
dm-3 of H+ and Al3+, 3.05 cmolc dm-3 of Ca2+, 1.6 
cmolc dm-3 of Mg2+, 0.3 cmolc dm-3 of K+, 4.6 mg 
dm-3 of P, a base saturation of 55.49%.

Based on the chemical analyzes of the soils, the 
basic mineral fertilization in the sowing furrow, as 
well as the mineral cover fertilization, performed 
at 25 days after emergence, occurred according 
to Parra (2003). In both harvests, the formulated 
fertilizer used was 10-30-10, while urea (45% N) 
served as a source for covering fertilization.

In both experiments, plots were made of two 
rows (45 cm apart), each 2 m in length, with 10 cm 
between plants. Sowing was done manually, at a 
density of 10 seeds per meter. Common beans were 
planted in a border around the plots.

In the spring-summer experiment, 0.47 g ha-1 
of thiamethoxam (Actara 250 WG) was applied to 
treat for whiteflies 41 days post-sowing. To treat for 
anthracnose, 0.19 g ha-1 of azoxystrobin (Amstar 
WG) was applied 77 days post-sowing. Weeding 
was done manually, as needed. In autumn-winter, 
the same strategies were used to control anthracnose 
and weeds, but there was no need for whitefly 
treatment. 

Pods were harvested at the R9 stage for the 
evaluation of the following characteristics. The 
number of pods per plant (NPP) was determined 
by the ratio between the number of pods and plants 
per plot. The number of seeds per pod (NSP) was 
calculated as the number of seeds divided by the 
number of pods per plot. The number of seeds per 
plant (NSPL) was calculated by dividing the number 
of seeds produced by the number of plants per plot. 
Seed productivity (PROD) was determined as the 
seed mass, at a moisture content of 13%, per plot, 
in kg ha-1.

After harvest, seeds were ground for randomized 
analyses in the lab, with four replicates for 
each. Amounts of Ca, Mg, S, Fe, Zn, and Mn 
were determined using an atomic absorption 
spectrophotometer (GBC, Avanta, 932AA). 
Phosphorus-content (P-content) in the seeds was 
measured using a spectrophotometer (Micronal, 
8342), and that of potassium (K-content) using a 
flame photometer (Micronal, B262). Macronutrients 
(in g) and micronutrients (in mg) were quantified 
per kg of tissue. Crude protein-content was 
calculated using the Kjeldahl method, where the 
conversion from nitrogen to crude protein is done 
by multiplying by a factor of 6.25 (Association of 
Official Analytical Chemists [AOAC], 2012).

Total phenolic compound-content was assessed 
in plant-extract obtained as in Vázquez et al. (2008). 
Two grams of ground seed tissue was combined 
with 10 mL of 50% methanol and incubated for 60 
min at room temperature. Subsequently, the mixture 
was centrifuged at 2,500 rpm for 5 min, after which 
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the supernatant (plant extract) was isolated. A 
dilution was made with 1 mL each of the extract, 
distilled water, 0.2 N Folin-Ciocalteau reagent, and 
10% sodium carbonate. The dilution was incubated 
for 30 minutes at room temperature, after which 
the absorbance at 720 nm was measured using a 
spectrophotometer (Micronal, 8342). Gallic acid, at 
concentrations 0-50 mg L-1 (in increments of 10), 
was used as a standard, and the results are expressed 
in mg of gallic acid per 100 g of sample (Swain & 
Hills, 1959). 

Initially, individual analyzes of variance were 
performed for each experiment and, after checking 
the magnitudes of the residual mean squares, joint 
analysis was performed. The effects of sowing 
season and genotype were considered fixed. Joint 
analysis of variance was performed, followed by a 
Tukey’s post hoc test with an α of 0.05. Statistical 
analyses were performed using software from 
SISVAR® software. 

Results and Discussion

With regard to the number of seeds per plant 
(NSPL) and seed productivity (PROD), the 
interaction between genotype and sowing season 
(G×S) was highly significant (p < 0.01; Table 1).

UEL 2 produced the most seeds (per plant) in the 
spring-summer, differing from Isla Macarrão Baixo 
and Isla Manteiga Baixo, while Feltrin Macarrão 

Napoli produced the most in autumn-winter, which 
was higher than that of the Isla Manteiga Baixo 
and UEL 2. Comparing harvests between sowing 
seasons, there was a reduction in the NSPL of Isla 
Manteiga Baixo and UEL 2 grown in autumn-winter 
compared to spring-summer. For the remaining 
genotypes, the NSPL was similar between both 
sowing seasons (Table 2). 

In the spring-summer, Isla Manteiga Baixo 
produced a large quantity of seeds (PROD) 2,140.14 
kg ha-1 in contrast to Feltrin Macarrão Napoli. There 
was no difference in PROD between genotypes in 
the autumn-winter. Among the genotypes analyzed, 
Isla Manteiga Baixo showed the greatest sensitivity 
to change in sowing season, with a 54% reduction in 
seed productivity in autumn-winter. In contrast, the 
other genotypes proved to be suitable for cultivation 
in both seasons (Table 2).

Generally, as compared to the autumn-winter 
season, the production of seeds per plant and 
the productivity of snap beans was higher in the 
spring-summer season, which was characterized 
by regular precipitation throughout, in addition to 
higher atmospheric evaporative-demand (higher 
temperature and lower relative humidity) (Figure 1). 
In line with our findings, other work describes bean 
productivity (the number of seeds) as correlating 
with higher temperatures (Bevilaqua, Antunes, 
Eberhardt, Eicholz, & Grehs, 2013).
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Previously, a study evaluating six genotypes of 
bush snap beans measured a yield of 1,750 kg ha-1 in 
autumn-winter-cultivated plants (Vidal, Junqueira, 
Peixoto, & Moraes, 2007), higher than the 1,315.51 
kg ha-1 we obtained for the same season. In addition 
to the use of different genotypes, it is possible 
that the lower productivity in our experiment is 
related to lower atmospheric evaporative-demand 
(A. R. Pereira, Angelocci, & Sentelhas, 2002), in 
addition to reduced amounts of precipitation during 
intermediate reproductive phases, which reduces 
the absorption of water by the roots (Figure 1).

We found a relationship between the NSPL and 
PROD, which has been observed in other studies on 
common bean cultivars (Bonett et al., 2006). For 
both sowing seasons, genotypes with higher average 
NSPL in the spring-summer also had higher PROD. 
Additionally, we found that if there was a reduction 
in average NSPL, there was a corresponding 
reduction in PROD. For the number of plant pods 
(NPP), the isolated effects of genotype and sowing 
time were found to be significant, while the number 
of seeds per pod (NSP) appeared to only be affected 
by sowing time (Table 1).

UEL 2 and Feltrin Macarrão Napoli had the 
highest average NPP, though it did not differ from 
UEL 1 and Isla Macarrão Baixo. Isla Manteiga 
Baixo produced the fewest pods (Table 2). An 
inverse relationship was observed between NPP 
and NSP for different sowing seasons. In spring-
summer, more pods per plant were produced, with 
fewer seeds per pod. In the autumn-winter, fewer 

pods per plant were produced, but with a greater 
number of seeds per pod (Table 2). This relationship 
can be explained by a change in the source-drain 
relationship as the plants produced more pods, 
fewer photo-assimilates were directed toward seed 
production. Conversely, plants that produced fewer 
pods were able to direct more photo-assimilates 
to the production of seeds, which explains the 
greater number of seeds per pod in plants sowed 
in the autumn-winter season. Previously, G. R. 
Gomes, Moritz, Freiria, Furlan and Takahashi 
(2016) reported an adjustment between supply and 
demand of photo-assimilates in snap beans grown 
in different environments, expressed by the inverse 
relationship between the number of pods per plant 
and unit mass of pods. 

The interaction between G×S was found to be 
significant for the percentage of crude protein, and 
the levels of zinc and manganese in the seeds (Table 
1). In the spring-summer, protein levels in the seeds 
were similar across all genotypes. In autumn-winter, 
Isla Manteiga Baixo and UEL 1 had significantly 
higher protein levels, differed from Isla Macarrão 
Baixo and UEL 2. Isla Macarrão Baixo seeds saw 
a reduction in protein content in autumn-winter 
compared to spring-summer, while Isla Manteiga 
Baixo and UEL 1 showed the opposite (Table 3). 
The percentage of protein in snap beans varied from 
16.01-29.73% across growing season and genotype. 
According to Guzmán-Maldonado and Parede-
López (1998), the percentage of protein in beans (P. 
vulgaris L.) can vary from 16-33%. 



1476
Semina: Ciências Agrárias, Londrina, v. 41, n. 5, p. 1469-1482, set./out. 2020

Gomes, G. R. et al.

Ta
bl

e 
3

Se
ed

-c
on

te
nt

 o
f c

ru
de

 p
ro

te
in

 (P
R

O
T

), 
m

ac
ro

nu
tr

ie
nt

s 
(C

a,
 M

g,
 K

, a
nd

 P
), 

an
d 

m
ic

ro
nu

tr
ie

nt
s 

(F
e,

 Z
n,

 a
nd

 M
n)

 in
 b

us
h 

sn
ap

 b
ea

ns
 s

ow
ed

 in
 d

iff
er

en
t 

se
as

on
s G

en
ot

yp
e

PR
O

T 
(%

)
C

a 
(g

 k
g-1

)
M

g 
(g

 k
g-1

)
K

 (g
 k

g-1
)

SS
AW

M
ea

n
SS

AW
M

ea
n

SS
AW

M
ea

n
SS

AW
M

ea
n

Is
la

 M
ac

ar
rã

o 
B

ai
xo

19
.9

9 
aA

16
.5

0 
bB

18
.2

5
1.

54
2.

23
1.

88
 b

1.
96

2.
13

2.
05

 a
b

17
.6

3
20

.8
5

19
.2

4 
b

Is
la

 M
an

te
ig

a 
B

ai
xo

17
.7

9 
aB

29
.7

3 
aA

23
.7

6
1.

37
1.

71
1.

54
 b

2.
00

2.
21

2.
10

 a
20

.8
1

24
.7

5
22

.7
8 

a
U

EL
 1

19
.9

9 
aB

26
.4

5 
aA

23
.2

2
1.

92
1.

97
1.

95
 b

1.
87

1.
85

1.
86

 b
19

.2
9

19
.4

1
19

.3
5 

b
U

EL
 2

16
.0

1 
aA

16
.4

1 
bA

16
.2

1
1.

82
1.

82
1.

82
 b

1.
94

1.
99

1.
97

 a
b

19
.0

3
21

.4
4

20
.2

4 
ab

Fe
ltr

in
 M

ac
ar

rã
o 

N
ap

ol
i

21
.7

3 
aA

23
.8

9 
ab

A
22

.8
1

2.
81

2.
39

2.
60

 a
1.

94
1.

86
1.

89
 a

b
21

.3
2

20
.1

7
20

.7
5 

ab
M

ea
n

19
.1

0 
B

22
.5

9 
A

1.
89

2.
03

1.
94

2.
01

19
.6

2 
B

21
.3

3 
A

G
en

ot
yp

e
P 

(g
 k

g-1
)

Fe
 (m

g 
kg

-1
)

Zn
 (m

g 
kg

-1
)

M
n 

(m
g 

kg
-1
)

SS
AW

M
ea

n
SS

AW
M

ea
n

SS
AW

M
ea

n
SS

AW
M

ea
n

Is
la

 M
ac

ar
rã

o 
B

ai
xo

5.
01

4.
24

4.
62

 a
b

10
4,

45
71

.6
3

88
.0

4
26

.1
7 

aA
21

.9
5 

bA
24

.0
6

20
.2

5 
bB

31
.0

0 
ab

A
25

.6
3

Is
la

 M
an

te
ig

a 
B

ai
xo

5.
34

5.
26

5.
30

 a
b

77
,7

0
68

.5
3

73
.1

1
22

.1
5 

ab
A

25
.7

0 
ab

A
23

.9
3

22
.0

0 
ab

A
25

.5
5 

bc
A

23
.7

8
U

EL
 1

4.
89

4.
12

4.
50

 b
82

,5
5

72
.1

5
77

.3
5

18
.3

2 
ab

B
30

.7
0 

aA
24

.5
1

22
.0

7 
ab

A
21

.5
5 

cA
21

.8
1

U
EL

 2
4.

68
4.

23
4.

46
 b

94
,7

3
83

.7
5

89
.2

4
16

.6
5 

bA
21

.6
7 

bA
19

.1
6

18
.4

2 
bA

21
.4

7 
cA

19
.9

5
Fe

ltr
in

 M
ac

ar
rã

o 
N

ap
ol

i
5.

83
4.

93
5.

38
 a

85
,7

0
60

.2
0

72
.9

5
22

.9
7 

ab
A

24
.5

7 
ab

A
23

.7
8

28
.2

2 
aA

32
.0

0 
aA

30
.1

1
M

ea
n

5.
15

 A
4.

55
 B

89
.0

3 
A

71
.2

5 
B

21
.2

6 
B

24
.9

2 
A

22
.2

0 
B

26
.3

2 
A

Av
er

ag
es

 fo
llo

w
ed

 b
y 

th
e 

sa
m

e 
lo

w
er

ca
se

 le
tte

r (
ac

ro
ss

 ro
w

s)
, a

nd
 u

pp
er

ca
se

 le
tte

r (
do

w
n 

co
lu

m
ns

), 
ar

e 
no

t s
ig

ni
fic

an
tly

 d
iff

er
en

t (
Tu

ke
y’

s t
es

t, 
α 

= 
0.

05
)

1 S
S 

de
no

te
s s

pr
in

g-
su

m
m

er
 se

as
on

 a
nd

 2 A
W

 d
en

ot
es

 a
ut

um
n-

w
in

te
r s

ea
so

n.



1477
Semina: Ciências Agrárias, Londrina, v. 41, n. 5, p. 1469-1482, set./out. 2020

Productivity, mineral composition, and phenolic compound content in bush snap beans grown during different seasons

Ta
bl

e 
3

Se
ed

-c
on

te
nt

 o
f c

ru
de

 p
ro

te
in

 (P
R

O
T

), 
m

ac
ro

nu
tr

ie
nt

s 
(C

a,
 M

g,
 K

, a
nd

 P
), 

an
d 

m
ic

ro
nu

tr
ie

nt
s 

(F
e,

 Z
n,

 a
nd

 M
n)

 in
 b

us
h 

sn
ap

 b
ea

ns
 s

ow
ed

 in
 d

iff
er

en
t 

se
as

on
s G

en
ot

yp
e

PR
O

T 
(%

)
C

a 
(g

 k
g-1

)
M

g 
(g

 k
g-1

)
K

 (g
 k

g-1
)

SS
AW

M
ea

n
SS

AW
M

ea
n

SS
AW

M
ea

n
SS

AW
M

ea
n

Is
la

 M
ac

ar
rã

o 
B

ai
xo

19
.9

9 
aA

16
.5

0 
bB

18
.2

5
1.

54
2.

23
1.

88
 b

1.
96

2.
13

2.
05

 a
b

17
.6

3
20

.8
5

19
.2

4 
b

Is
la

 M
an

te
ig

a 
B

ai
xo

17
.7

9 
aB

29
.7

3 
aA

23
.7

6
1.

37
1.

71
1.

54
 b

2.
00

2.
21

2.
10

 a
20

.8
1

24
.7

5
22

.7
8 

a
U

EL
 1

19
.9

9 
aB

26
.4

5 
aA

23
.2

2
1.

92
1.

97
1.

95
 b

1.
87

1.
85

1.
86

 b
19

.2
9

19
.4

1
19

.3
5 

b
U

EL
 2

16
.0

1 
aA

16
.4

1 
bA

16
.2

1
1.

82
1.

82
1.

82
 b

1.
94

1.
99

1.
97

 a
b

19
.0

3
21

.4
4

20
.2

4 
ab

Fe
ltr

in
 M

ac
ar

rã
o 

N
ap

ol
i

21
.7

3 
aA

23
.8

9 
ab

A
22

.8
1

2.
81

2.
39

2.
60

 a
1.

94
1.

86
1.

89
 a

b
21

.3
2

20
.1

7
20

.7
5 

ab
M

ea
n

19
.1

0 
B

22
.5

9 
A

1.
89

2.
03

1.
94

2.
01

19
.6

2 
B

21
.3

3 
A

G
en

ot
yp

e
P 

(g
 k

g-1
)

Fe
 (m

g 
kg

-1
)

Zn
 (m

g 
kg

-1
)

M
n 

(m
g 

kg
-1
)

SS
AW

M
ea

n
SS

AW
M

ea
n

SS
AW

M
ea

n
SS

AW
M

ea
n

Is
la

 M
ac

ar
rã

o 
B

ai
xo

5.
01

4.
24

4.
62

 a
b

10
4,

45
71

.6
3

88
.0

4
26

.1
7 

aA
21

.9
5 

bA
24

.0
6

20
.2

5 
bB

31
.0

0 
ab

A
25

.6
3

Is
la

 M
an

te
ig

a 
B

ai
xo

5.
34

5.
26

5.
30

 a
b

77
,7

0
68

.5
3

73
.1

1
22

.1
5 

ab
A

25
.7

0 
ab

A
23

.9
3

22
.0

0 
ab

A
25

.5
5 

bc
A

23
.7

8
U

EL
 1

4.
89

4.
12

4.
50

 b
82

,5
5

72
.1

5
77

.3
5

18
.3

2 
ab

B
30

.7
0 

aA
24

.5
1

22
.0

7 
ab

A
21

.5
5 

cA
21

.8
1

U
EL

 2
4.

68
4.

23
4.

46
 b

94
,7

3
83

.7
5

89
.2

4
16

.6
5 

bA
21

.6
7 

bA
19

.1
6

18
.4

2 
bA

21
.4

7 
cA

19
.9

5
Fe

ltr
in

 M
ac

ar
rã

o 
N

ap
ol

i
5.

83
4.

93
5.

38
 a

85
,7

0
60

.2
0

72
.9

5
22

.9
7 

ab
A

24
.5

7 
ab

A
23

.7
8

28
.2

2 
aA

32
.0

0 
aA

30
.1

1
M

ea
n

5.
15

 A
4.

55
 B

89
.0

3 
A

71
.2

5 
B

21
.2

6 
B

24
.9

2 
A

22
.2

0 
B

26
.3

2 
A

Av
er

ag
es

 fo
llo

w
ed

 b
y 

th
e 

sa
m

e 
lo

w
er

ca
se

 le
tte

r (
ac

ro
ss

 ro
w

s)
, a

nd
 u

pp
er

ca
se

 le
tte

r (
do

w
n 

co
lu

m
ns

), 
ar

e 
no

t s
ig

ni
fic

an
tly

 d
iff

er
en

t (
Tu

ke
y’

s t
es

t, 
α 

= 
0.

05
)

1 S
S 

de
no

te
s s

pr
in

g-
su

m
m

er
 se

as
on

 a
nd

 2 A
W

 d
en

ot
es

 a
ut

um
n-

w
in

te
r s

ea
so

n.

Genetic variation is the underlying cause for 
distinct protein accumulation in the seeds of 
different genotypes. As for sowing season, autumn-
winter saw higher protein concentrations, but not 
seed yield. This dilution-effect, where higher protein 
levels correspond to lower yields, was also reported 
by F. G. Gomes et al. (2005) in common bean. 
The lower availability of water in the reproductive 
phase, as well as the lower average temperature 
in autumn-winter (18ºC) likely contributed to 
the higher amounts of protein found in the seeds. 
Zucareli, Silva, Gazola, Chavez and Nakagawa 
(2014) reported higher protein content in beans 
grown in the dry season, which is known to have 
a lower average temperature than the wet season. 
Generally, seed protein-content is associated with 
better initial seedling development in the field 
(Henning et al., 2010).

In spring-summer, Isla Macarrão Baixo beans 
accumulated more zinc than UEL 2, with 26.17 mg 
kg-1 and 16.65 mg kg-1, respectively. In autumn-
winter, the highest zinc content was found in UEL 
1 (30.70 mg kg-1), and the lowest in both Isla 
Macarrão Baixo (21.95 mg kg-1) and UEL 2 (21.67 
mg kg-1). Comparison between sowing season, 
only UEL 2 had higher amounts of zinc in autumn-
winter. For manganese, Feltrin Macarrão Napoli 
had the highest amount in the spring-summer, 
while in autumn-winter, Isla Macarrão Baixo had 
the highest. There was an increase in manganese-
content in Isla Macarrão Baixo in autumn-winter. 
In general, as well as for protein content, zinc and 
manganese concentrations in seeds were higher in 
autumn-winter (Table 3). 

The dilution-effect observed in protein-
content also explains the higher concentrations 
of zinc and manganese in autumn-winter-sown 
beans. Additionally, the higher organic matter-
content found in the autumn-winter soil may have 
complexed with, and reduced the availability of, 
these micronutrients. This phenomenon has been 
reported by Borkert, Pavan and Bataglia (2001). 
Beans with a higher zinc-content have been found 

to have longer shoots and roots, as well as more dry 
weight (Dorr et al., 2017). Seed manganese-content 
is known to provide adequate nutrition for legume 
seedlings in the field (Mann, Rezende, Carvalho, & 
Corrêa, 2001).

Analysis of variance showed that the potassium 
and phosphorus-content of the seeds were 
influenced, in isolation, by both genotype and 
sowing season (Table 1). Isla Manteiga Baixo 
accumulated more potassium, while Isla Macarrão 
Baixo and UEL 1 accumulated very little. In relation 
to sowing season, seeds harvested in the autumn-
winter had higher concentrations of potassium. For 
phosphorus, Feltrin Macarrão Napoli (5.38 g kg-1) 
differed from UEL 1 (4.50 g kg-1) and UEL 2 (4.46 
g kg-1). In contrast, seeds harvested in the spring-
summer accumulated more phosphorus (Table 3). 
Previously, T. Pereira, Coelho, Santos, Bogo and 
Miquelluti (2011) found higher levels of potassium 
in common beans grown under drought conditions, 
mainly during the reproductive phase of the crop. 
In addition to dilution, the nutrient content in beans 
varies depending on the genotype and environmental 
conditions relevant to plant and seed development 
(Lemos, Oliveira, Palomino, & Silva, 2004). 
Potassium is known to improve the physiological 
quality of legume seeds (Batistella et al., 2013). 
Costa, Barros, Albuquerque, Moura and Santos 
(2006) observed that the greater availability of water 
in the soil assists in the diffusion of phosphorus 
through the roots, facilitating the absorption of this 
nutrient by the plant. Therefore, the higher levels 
of phosphorus in spring-summer-harvested beans 
are likely due to the regular distribution of rainfall 
throughout the crop cycle. 

We found that calcium and magnesium 
accumulation was significantly influenced by 
genotype (Table 1). Feltrin Macarrão Napoli beans 
contained more calcium than the other genotypes, 
while Isla Manteiga Baixo had the highest 
magnesium content, differing from UEL 1 (Table 3). 
Differences in the concentration of calcium in snap 
beans is attributed to genetic variation, as well as its 
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availability in the soil, as reported by Miglioranza, 
Araujo, Endo, Souza and Montanari (2003) in 
snap bean cultivars of bush growth. Additional 
studies have reported that calcium is related to the 
physiological quality of seeds (Bevilaqua, Silva, & 
Possenti, 2002). Genetic variation was also attributed 
to the accumulation of magnesium in P. vulgaris L. 
(Buratto & Moda-Cirino, 2017). Magnesium plays 
an important role in the initial development of bean 
seedlings (Souza, Nascimento, & Martinez, 1998).

Iron accumulation was significantly affected 
by sowing season (Table 1), as spring-summer-
harvested beans contained more (Table 3), likely 
due to the regular supply of water. These findings 

corroborate those described by V. G. C. Pereira et 
al. (2014), where the interaction between genotype 
and soil water availability influenced bean iron-
content. Though the relationship between iron and 
physiological seed quality has been established, is 
not yet fully understood.

There was an isolated response between genotype 
and sowing season in relation to the amount of 
total phenolic compounds in the beans (Table 1). 
UEL 1 had the highest average amount of phenolic 
compounds, differing from Feltrin Macarrão 
Napoli, and the beans harvested in autumn-winter 
had a higher phenolic compound-content compared 
to spring-summer (Figure 2).

Figure 2. Total phenolic compound-content in seeds from different genotypes of bush 
snap beans, sowed during different seasons.

 

We found that calcium and magnesium accumulation was significantly influenced by genotype 

(Table 1). Feltrin Macarrão Napoli beans contained more calcium than the other genotypes, while Isla 

Manteiga Baixo had the highest magnesium content, differing from UEL 1 (Table 3). Differences in the 

concentration of calcium in snap beans is attributed to genetic variation, as well as its availability in the soil, 

as reported by Miglioranza, Araujo, Endo, Souza and Montanari (2003) in snap bean cultivars of bush 

growth. Additional studies have reported that calcium is related to the physiological quality of seeds 

(Bevilaqua, Silva, & Possenti, 2002). Genetic variation was also attributed to the accumulation of 

magnesium in P. vulgaris L. (Buratto & Moda-Cirino, 2017). Magnesium plays an important role in the 

initial development of bean seedlings (Souza, Nascimento, & Martinez, 1998). 

Iron accumulation was significantly affected by sowing season (Table 1), as spring-summer-

harvested beans contained more (Table 3), likely due to the regular supply of water. These findings 

corroborate those described by V. G. C. Pereira et al. (2014), where the interaction between genotype and 

soil water availability influenced bean iron-content. Though the relationship between iron and physiological 

seed quality has been established, is not yet fully understood. 

There was an isolated response between genotype and sowing season in relation to the amount of 

total phenolic compounds in the beans (Table 1). UEL 1 had the highest average amount of phenolic 

compounds, differing from Feltrin Macarrão Napoli, and the beans harvested in autumn-winter had a higher 

phenolic compound-content compared to spring-summer (Figure 2). 

 

 
 
Figure 2. Total phenolic compound-content in seeds from different genotypes of bush snap beans, sowed 
during different seasons. 

 

In vegetables, the production of phenolic compounds varies depending on the genotype (Luthria & 

Pastor-Corrales, 2005), as well as biotic and abiotic stresses in the environment (Angelo & Jorge, 2007). In 

autumn-winter, there was lower atmospheric evaporative-demand and water availability during the 

reproductive phase both of which reduce water uptake by the plants. Thus, the plants were under more stress 
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In vegetables, the production of phenolic 
compounds varies depending on the genotype 
(Luthria & Pastor-Corrales, 2005), as well as biotic 
and abiotic stresses in the environment (Angelo 
& Jorge, 2007). In autumn-winter, there was 
lower atmospheric evaporative-demand and water 
availability during the reproductive phase both of 
which reduce water uptake by the plants. Thus, the 

plants were under more stress in the autumn-winter 
in relation to the water harvest. This is evident 
quantitatively, as beans harvested in autumn-winter 
were less productive and contained more phenolic 
compounds. Ferrera, Heldwein, Santos, Somavilla 
and Sautter (2016) also reported higher levels of 
phenolic compounds in yerba mate leaves harvested 
in autumn compared to the summer.



1479
Semina: Ciências Agrárias, Londrina, v. 41, n. 5, p. 1469-1482, set./out. 2020

Productivity, mineral composition, and phenolic compound content in bush snap beans grown during different seasons

In autumn-winter, the maximum daily 
temperatures did not exceed 30ºC. In contrast, 
several days throughout the spring-summer reached 
temperatures above 35ºC. According to Taiz and 
Zeiger (2013), the degradation of phenols in plant 
tissues is intensified at 35ºC— another explanation 
for the higher amounts of these compounds in 
autumn-winter beans.

Of the evaluated characteristics, bean sulfur 
content the only one not affected by the isolated 
effect of the sources of variation, and by the 
interaction between them (Table 1).

Sowing season affects the agronomic 
performance of bush beans. The proper employment 
of particular genotypes and cultivars during the 
seasons that they perform best in would maximize 
productivity and influence chemical composition 
the produce.

Conclusions

The interaction between genotype and sowing 
season affects the number of seeds per plant, 
seed productivity, and the concentrations of crude 
protein, zinc, and manganese in the seeds of bush 
beans. The Isla Manteiga Baixo cultivar had higher 
productivity during the spring-summer season, 
determined by the number of pods per plant, and the 
accumulation of phosphorus and iron in the seeds. 
Plants grown during fall-winter saw increased 
concentrations of potassium and total phenolic 
compounds in their seeds, while the concentration 
of calcium and magnesium depended on the cultivar 
used.
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