Acúmulo de nutrientes e rendimento de óleo em plantas de girassol influenciados pelo vigor dos aquênios e pela densidade de semeadura

Sunflower plants nutrients accumulation and oil yield as affected by achenes vigour and sowing density

Madelon Rodrigues Sá Braz^{1*}; Claudia Antônia Vieira Rossetto²

Resumo

O objetivo do trabalho foi avaliar o acúmulo de nutrientes e o rendimento de óleo dos aquênios em plantas de girassol produzidas sob a influência do vigor dos aquênios e da densidade de semeadura. Para isto, foi instalado um experimento no campo experimental no município de Seropédica/RJ, em outubro de 2006, com três distintos lotes de aquênios de girassol cv Embrapa 122 V2000, classificados como de baixo, de médio e de alto vigor, sob duas densidades de semeadura (45.000 e 75.000 sementes ha¹). Aos 20, 60 e 100 dias após a semeadura (DAS), foram coletadas as plantas para avaliação da massa de matéria seca e do acúmulo de nitrogênio, de fósforo, de potássio e de cálcio, no caule, nas folhas e nos capítulos. Nas plantas coletadas aos 100 DAS, foi feita também a avaliação do rendimento de aquênios (kg ha¹), do teor de óleo e do rendimento de óleo (kg ha¹). Observou-se que aos 60 DAS, no período entre o florescimento e o enchimento, ocorreu maior acúmulo de massa de matéria seca e de N, P, K e Ca no caule, nas folhas e total nas plantas de girassol produzidas sob a densidade de 45.000 sementes ha¹. Não houve efeito do vigor dos aquênios e da densidade de semeadura no rendimento de óleo dos aquênios de girassol e nos índices de colheita de aquênios e nutrientes. Houve translocação preferencial de N e P para os aquênios.

Palavras-chave: Helianthus annuus L, grãos, época de colheita, macronutrientes

Abstract

The objective this work was to evaluate the nutrients accumulation and achenes oil yield in sunflower plants as affected by achenes vigour and sowing density. An experiment was installed in the field at Seropédica, State of Rio de Janeiro, in October 2006 with three lots of sunflower achenes, cultivar Embrapa 122 V2000, classified as low, medium and high vigour and two sowing density (45,000 e 75,000 seeds.ha⁻¹). The collected were realized at 20, 60 and 100 days after planting (DAP) to the determination the dry mater, nitrogen, phosphorus, potassium and calcium. In the collecting at 100 DAP too it was evaluated the achene yield (kg ha⁻¹), the content oil and oil yield (kg ha⁻¹). The results indicated that to the 60 days high accumulation of dry mater, N, P K and Ca in stem, leaves and total at density of 45,000 seeds ha⁻¹. The sunflower achenes oil yield and achenes and nutrients harvest index not affected by the achenes vigour and sowing density to. There was a preferential translocation of N and P for the achenes.

Key words: Helianthus annuus L, grain, harvest time, macronutrients

¹ Parte da Tese de Doutorado da autora apresentado a UFRRJ. Prof^a Adjunta I do Departamento de Engenharia da Universidade Federal Rural do Rio de Janeiro, UFRR Seropédica, RJ; CEP:23.890-000. E-mail: madelonsa@ufrrj.br

² Prof^a Associada III da Universidade Federal Rural do Rio de Janeiro, UFRRJ do Departamento de Fitotecnia, Seropédica, RJ; CEP:23.890-000. E-mail: cavrosse@ufrrj.br

^{*} Autor para correspondência

Introdução

O girassol ocupa destaque entre as oleaginosas. sendo considerada a quinta oleaginosa em produção de grãos e a quarta em produção de óleo no mundo (ESTADOS UNIDOS, 2008). O óleo do girassol, presente nos grãos denominados de aquênios. apresenta alta qualidade para o consumo humano, bem como ainda pode ser usado como biodiesel (LAZZAROTTO; ROESSING; MELLO, 2005). Para a cultivar Embrapa 122 V2000, Carvalho et al. (2007) constataram que o rendimento de óleo variou entre 437.6 kg ha⁻¹ para o estado do Rio Grande do Sul e 1282,0 kg ha⁻¹ para o Distrito Federal. Também, Porto et al. (2008) verificaram que o rendimento de óleo, para esta cultivar variou de 598,31 kg ha⁻¹ a 893,33 kg ha⁻¹, dependendo das condições ambientais.

Entre os fatores que contribuem para elevada produção da cultura, destaca-se o acúmulo de nutrientes nas plantas. Oliveira et al. (2005) constataram que a quantidade total extraída de macronutrientes na parte aérea para uma produção de 3.176 kg de aquênios ha-1 foi de 130 kg ha-1 de N, 25 kg ha-1 de P e 400 kg ha-1 de K, no período do florescimento. Para o hibrido Hélio 251, Castro e Farias (2005) verificaram que há aumento máximo de acúmulo de nutrientes no período entre 56 e 84 dias após a emergência, que corresponde a fase entre o florescimento e enchimento dos aquênios.

Outro fator que contribui para a alta produção da cultura é o estabelecimento de uma população de plantas adequada e uniformemente distribuída, que depende do vigor dos aquênios (MURCIA et al., 2001). Além disso, de acordo com Mussi (2005), o ciclo de vida da planta pode ser influenciado pelas características fisiológicas dos aquênios e com isso apresentar capacidade diferenciada de acumular matéria seca.

Em relação ao rendimento de óleo, tem sido observado que este é influenciado por vários fatores genéticos e ambientais, dentre estes o arranjo de plantas. Silva e Nepomuceno (1991) verificaram que

para a cultivar Contisol 711, quando foi aumentada a densidade de 30.000 para 70.000 plantas ha⁻¹, o teor de óleo aumentou de 42 para 45%. Silva et al. (1995) também trabalhando com a mesma cultivar, constataram que além do teor de óleo aumentar de 38 para 40%, o rendimento de óleo também aumentou de 911 para 1081kg ha⁻¹ com a elevação da densidade de plantas de 25.000 para 50.000 plantas ha⁻¹.

Diante do exposto, o objetivo do trabalho foi avaliar o acúmulo de nutrientes e o rendimento de óleo dos aquênios em plantas de girassol produzidas sob influência do vigor dos aquênios e da densidade de semeadura.

Material e Métodos

Oexperimento foi instalado em 27/10/2006, no setor de campo da Bovinocultura de Leite da Universidade Federal Rural do Rio de Janeiro, em Planossolo, cujo resultado da análise química apresentava: pH(água)=5,5; Ca=3,2cmol_dm⁻³; Mg=1,7cmol_dm⁻³; P=21mgL⁻¹; K=32mgL⁻¹; H+Al=3,0cmol₂dm⁻³ e V%=63. Três meses antes da semeadura (DAS), foi realizada calagem, visando atingir 70% de saturação por bases no solo. Na semeadura, foi feita a adubação com 10 kg ha⁻¹ de N (sulfato de amônio), com 30 kg ha⁻¹ de P₂O₅ (superfosfato simples) e com 50 kg ha⁻¹ de K₂O (cloreto de potássio). Aos 30 DAS, foi feita a adubação de cobertura com 40 kg ha-1 de N (sulfato de amônio) (RAIJ; CANTARELLA; FURLANI, 1997). Durante a condução, também foram coletados os dados médios diários de temperatura média e de umidade relativa (UR) do ar na estação meteorológica da PESAGRO (INMET/PESAGRO-RIO).

O delineamento experimental adotado foi de blocos ao acaso com parcelas subdivididas, com quatro repetições. As parcelas foram representadas por duas densidades de semeadura (45 e 75 mil sementes ha-1) e as subparcelas por três lotes de aquênios de girassol cv. Embrapa 122 V2000, previamente classificados como de baixo, médio e alto vigor, com 82, 82, 87% de germinação;

50, 62 e 70% de plântulas normais no teste de envelhecimento acelerado e 41, 34 e 28 μ S cm g⁻¹ no teste de condutividade elétrica, designados, respectivamente, de lote 1, 2 e 3. Cada subparcela foi formada por oito linhas de 3,5 m, com espaçamento de 0,7 m.

Aos 20, 60 e 100 dias após a semeadura (DAS), que correspondem, respectivamente, a fase vegetativa (V8 – 8 folhas com pelo menos 4 cm de comprimento), a fase entre o florescimento e o enchimento das sementes (R5 – 100 % das flores liguladas expandidas e 50 % das flores tubulares em antese) e a fase após a maturação fisiológica (R9) (SCHNEITER; MILLER, 1981), foram realizadas coletas de plantas para análise. Em cada coleta, as plantas foram colhidas em um metro linear e separadas em caule, folhas+pecíolos e capítulo, e colocadas para secar a 60°C, em estufa, até atingir peso constante, para avaliação da massa seca. Após a secagem, as amostras foram pesadas, moídas e submetidas à digestão, sendo o nitrogênio quantificado pelo método de destilação semi-micro-Kjeldahl, o potássio por fotometria de emissão de chama e o cálcio por fotometria de absorção (TEDESCO, 1995). O fósforo foi quantificado pelo método de colorimetria do metavanadato (MALAVOLTA; VITTI; OLIVEIRA, 1997). Os resultados das análises forneceram as concentrações dos nutrientes (N, P, K e Ca) e para se determinar a quantidade acumulada em cada parte da planta, multiplicou-se a concentração pela massa seca da referida parte. Foi calculado o índice de colheita para cada nutriente, por meio da relação entre o acúmulo do nutriente nos aquênios e o acúmulo de nutrientes total (CASTRO; FARIAS, 2005).

Os capítulos colhidos aos 100 DAS foram debulhados e os aquênios, previamente pesados, foram submetidos à determinação do teor de óleo, por extração com éter sulfúrico, no aparelho Soxhlet (UNGARO et al., 1992). O rendimento de óleo (kg ha⁻¹) foi obtido por cálculo, considerando o teor de óleo nos aquênios e o rendimento dos aquênios (kg ha⁻¹).

Os dados foram inicialmente submetidos aos testes de Lilliefors e de Bartlett, para verificar a normalidade e homogeneidade dos erros (RIBEIRO JÚNIOR, 2001). Somente os dados coletados aos 20 DAS não foram submetidos à transformação de Log(x). Posteriormente, por época de coleta, foi realizada a análise de variância e, em seguida, a avaliação da relação entre o maior e menor quadrado médio do erro, para verificar a possibilidade da análise conjunta dos dados (BANZATTO; KRONKA, 2006). No entanto, com base nos resultados não foi realizada a análise conjunta. As médias foram comparadas pelo teste Tukey, a 5% de probabilidade. Nas tabelas encontram-se os dados originais.

Resultados e Discussão

Aos 20 dias após a semeadura (DAS), não foi constatada diferença significativa entre as densidades de semeadura e entre lotes de aquênios para massa de matéria seca de caule, folhas e total (Tabela 1). No entanto, foi constatado, aos 60 DAS, na fase de florescimento, maior acúmulo de massa de matéria seca na parte aérea das plantas de girassol, sob a densidade de 45.000 sementes ha⁻¹, independente do nível de vigor dos aquênios, apresentando valor médio de 4944 kg ha⁻¹, com partição de 2561 kg ha⁻¹ (51,80%) do caule, de 1604 kg ha⁻¹ (32,44%) das folhas e de 778 kg ha⁻¹ (15,74%) dos capítulos (Tabela 1). No entanto, Oliveira et al. (2005) relataram que na fase de florescimento a produção de matéria seca total no girassol hibrido 251 foi de 8000 kg ha⁻¹. De acordo com Castro e Farias (2005), o acúmulo de matéria seca está relacionado às características fenotípicas e ambientais. Assim, estes resultados podem ser devido à ausência de precipitação pluvial e de temperatura máxima de 36°C (dados não apresentados) no período entre 52 e 56 DAS. Essa condição é considerada desfavorável para o girassol (COX; JOLLIFF, 1986) e, com isso, pode ter prejudicado o acúmulo máximo de matéria seca por parte das plantas.

Tabela 1. Dados médios de massa de matéria seca de caule, folhas, capítulo, aquênios e total, e de índice de colheita dos aquênios, obtidos de plantas de girassol colhidas aos 20, 60 e 100 DAS, provenientes de lotes de aquênios com distintos níveis de vigor, designados de lote 1, 2 e 3, sob 45.000 e 75.000 sementes ha-1.

	20				60			100		
Lotes	45.000	75.000	médias	45.000	75.000	médias	45.000	75.000	médias	
				C	aule (kg	ha ⁻¹)	,			
1	5	6	5a	1717	1123	1420a	1181	1182	1181a	
2	4	6	5a	3511	2148	2829a	1395	786	1090a	
3	5	5	5a	2456	1777	2116a	1085	1164	1124a	
Médias	5A	6A		2561A	1683B		1220A	1044A		
C.V.(%) parcela		31,09		5,11			7,02			
C.V.(%) subparcela		32,10		13,36			9,63			
				F	olhas (kg	ha-1)				
1	14	15	14a	1477	964	1220a	246	181	213a	
2	15	17	16a	1651	1312	1481a	222	208	215a	
3	17	18	17a	1683	1388	1535a	156	210	183a	
Médias	15A	17A		1604A	1221B		208A	200A		
C.V.(%) parcela		39,15		6,39			9,67			
C.V.(%) subparcela		30,48		9,74			27,58			
					pítulo (k	g ha ⁻¹)				
1	-	-	-	722	399	560a	723	637	680a	
2	-	-	-	756	534	645a	753	550	651a	
3	-	-	-	857	539	698a	637	589	613a	
Médias	-	-	-	778A	491B		704A	592A		
C.V.(%) parcela				15,11			5,98			
C.V.(%) subparcela				10,35			7,69			
				Aq	uênios (k	g ha-1)				
1	-	-	-	-	-	_	1149	1165	1157a	
2	-	-	-	-	-	-	1635	1064	1349a	
3	-	-	-	-	-	-	1474	1073	1273a	
Médias	-	-	-	-	-	-	1419A	1101A		
C.V.(%) parcela							8,41			
C.V.(%) subparcela							10,41			
				F	Total (kg	ha ⁻¹)				
1	19	21	20a	3916	2485	3200a	3299	3165	3232a	
2	19	23	21a	5918	3994	4956a	4005	2608	3306a	
3	21	22	21a	4997	3704	4350a	3352	3037	3277a	
Médias	20A	22A		4944A	3394B		3551A	2937A		
C.V.(%) parcela	,	34,03		5,28	,		5,32			
C.V.(%) subparcela		35,85		9,45			6,38			
		•			IC					
1	-	-	-	-	-	-	0,34	0,36	0,35a	
2	-	-	-	-	-	-	0,40	0,41	0,40a	
3	-	-	-	-	-	-	0,44	0,35	0,40a	
Médias	-	-	-	-	-	-	0,40A	0,37A	•	
C.V.(%) parcela							3,63			
C.V.(%) subparcela							10,12			

Já para massa de matéria seca de caule, folhas, capítulos e de aquênios, aos 100 DAS, não foi constatada diferença entre tratamentos (Tabela 1). Rizzardi e Silva (1992) constataram que a massa de matéria seca nos aquênios diminuiu com o aumento da densidade de semeadura de 10.000 para 50.000 sementes ha-1, indicando que a cultivar Contisol 711 mostrou-se sensível ao aumento da competição intraespecífica. Observou-se que para índice de colheita não foi constatada diferença entre os tratamentos (Tabela 1). Cox e Jolliff (1986) também não verificaram diferença no índice de colheita de plantas de girassol, mesmo quando apresentaram diferenças na produção de massa de matéria seca em condição de restrição hídrica no solo.

Aos 20 DAS, para acúmulo de N no caule, nas folhas e total, não foi constatada diferença significativa entre as densidades de semeadura e entre lotes de aquênios (Tabela 2). No entanto, aos 60 DAS, o maior acúmulo de N no caule, folhas e total, foi observado sob 45.000 sementes ha⁻¹, independente do lote de aquênios (Tabela 2). Neste período, a média do acúmulo total foi de 127 kg ha-1, com partição de 43 kg ha-1 (33,85%) do caule e 64 kg ha⁻¹ (50,39%) das folhas, coincidindo com a época de maior acúmulo de massa de matéria seca da parte aérea das plantas (Tabela 1). Esses resultados foram semelhantes ao observado por Castro e Oliveira (2005), que verificaram que o acúmulo de nitrogênio em plantas de girassol do hibrido 251 foi em torno de 130 kg ha⁻¹, também aos 60 DAS. Para o índice de colheita de nitrogênio não foi constatada diferença entre as densidades de semeadura e entre lotes de aquênios (Tabela 2). O mesmo foi verificado aos 100 DAS para teor de nitrogênio no caule, nas

folhas, no capítulo, nos aquênios, total e índice de colheita de nitrogênio (Tabela 2).

Para acúmulo de P no caule, nas folhas e total aos 20 DAS, não foi constatada diferença significativa entre as densidades de semeadura e entre lotes de aquênios (Tabela 3). No entanto,aos 60 DAS, para o acúmulo de P no caule, nas folhas e total, os maiores valores foram observados sob 45.000 sementes ha⁻¹, independente do lote de aquênios (Tabela 3). No entanto, aos 100 DAS, não houve diferença entre tratamentos. De acordo com Sfredo, Campo e Sarruge (1984), para a cultivar Contisol, após a floração, a absorção de P pelas folhas e caule é menor, já que este é translocado para os capítulos e aquênios. Também para o índice de colheita de fósforo não foi constatada diferença entre os tratamentos (Tabela 3).

Pela (Tabela 4), foi constatado aos 20 DAS, que não houve diferença significativa entre as densidades de semeadura e entre lotes de aquênios para acúmulo de K no caule, nas folhas e total. Já aos 60 DAS, para o acúmulo de K, no caule, nas folhas e total, o maior valor foi obtido sob a menor densidade de semeadura (45.000 sementes ha⁻¹), atingindo um total de 149 kg ha-1 (Tabela 4). Segundo Castro e Oliveira (2005), a concentração de potássio na parte aérea, no período do florescimento, deve estar próxima de 427 kg ha⁻¹. Assim, o resultado encontrado no experimento é considerado baixo e pode estar relacionado ao baixo acúmulo de massa de matéria seca no período (Tabela 1). Além disso, não foi constatada diferença significativa entre os tratamentos para capítulos, aquênios e para índice de colheita, em todas as épocas de coleta (Tabela 4).

Tabela 2. Dados médios de acúmulo de nitrogênio no caule, nas folhas, no capítulo, nos aquênios e total, e de índice de colheita dos aquênios, obtidos de plantas de girassol colhidas aos 20, 60 e 100 DAS, provenientes de lotes de aquênios com distintos níveis de vigor, designados de lote 1, 2 e 3, sob 45.000 e 75.000 sementes ha⁻¹.

Lotes 20 60 45.000 75.000 médias 45.00 75.000 médias 45.00 Caule (kg ha ⁻¹) 1 0,1 0,2 0,1a 35 15 25a 7 2 0,1 0,2 0,1a 52 22 37a 6 3 0,1 0,1 0,1a 42 22 32a 5 Múlica 0,1A 0,2A 42A 20D 6A	100 00 75.000 médias 6 6a 3 5a 6 5a
1 0,1 0,2 0,1a 35 15 25a 7 2 0,1 0,2 0,1a 52 22 37a 6 3 0,1 0,1 0,1a 42 22 32a 5	3 5a
1 0,1 0,2 0,1a 35 15 25a 7 2 0,1 0,2 0,1a 52 22 37a 6 3 0,1 0,1 0,1a 42 22 32a 5	3 5a
3 0,1 0,1 0,1a 42 22 32a 5	
, , , , , , , , , , , , , , , , , , , ,	6 5a
M(4) 000 (4)	
Médias 0,1A 0,2A 43A 20B 6A	5A
C.V.(%) parcela 24,68 11,74 27,33	3
C.V.(%) subparcela 28,88 24,39 20,52	2
Folhas (kg ha ⁻¹)	
1 0,7 0,7 0,7a 50 41 45a 5	4 4a
2 0,8 0,8 0,8a 72 55 63a 4	4 4a
3 0,8 0,8 0,8a 71 61 66a 3	4 3a
Médias 0,8A 0,8A 64A 52B 4A	4A
C.V.(%) parcela 32,40 4,67 20,99)
C.V.(%) subparcela 30,94 13,63 18,10	5
Capítulo (kg ha ⁻¹)	
1 16 13 14a 14	14 14a
2 20 16 18a 16	10 13a
3 24 18 21a 12	11 11a
Médias 20A 15A 14A	12A
C.V.(%) parcela 21,69 5,74	
C.V.(%) subparcela 15,31 17,57	7
Aquênios (kg ha ⁻¹)	
1 68	63 66a
2 97	66 82a
3 106	66 86a
Médias 88A	
C.V.(%) parcela 9,56	
C.V.(%) subparcela	5
Total (kg ha ⁻¹)	
1 0,8 0,9 0,8a 101 69 85a 94	87 90a
2 0,9 1,0 0,9a 144 93 118a 123	83 104a
3 0,9 0,9 0,9a 137 101 119a 126	87 105a
Médias 0,9A 0,9A 127A 87B 112A	A 86A
C.V.(%) parcela 37,94 2,13 8,18	
C.V.(%) subparcela 37,32 13,86 9,47	
IC	
1 0,72	0,72 0,72a
2 0,79	0,79 0,79a
3 0,84	0,76 0,80a
Médias 0,791	
C.V.(%) parcela 12,16	
C.V.(%) subparcela 7,23	

Tabela 3. Dados médios de acúmulo de fósforo no caule, nas folhas, no capítulo, nos aquênios e total, e de índice de colheita dos aquênios obtidos de plantas de girassol colhidas aos 20, 60 e 100 dias após a semeadura, provenientes de lotes de aquênios com distintos níveis de vigor, designados de lote 1, 2 e 3, sob 45.000 e 75.000 sementes ha⁻¹.

		20			60			100	
Lotes	45.000	75.000	médias	45.000	75.000	médias	45.000	75.000	médias
				Са	ule (kg ha	·1)			
1	0,01	0,01	0,01a	3	2	3a	1	1	1a
2	0,01	0,01	0,01a	6	4	5a	2	1	1a
3	0,01	0,01	0,01a	4	3	3a	1	2	1a
Médias	0,01A	0,01A		4A	2,86B		1A	1A	
C.V.(%) p	parcela	36,93		20,41			18,37		
	subparcela	20,60		34,34			18,74		
				Fo	lhas (kg ha	-1)			
1	0,05	0,04	0,04a	4	3	4a	0,55	0,43	0,49a
2	0,05	0,05	0,05a	5	3	4a	0,50	0,52	0,51a
3	0,06	0,05	0,05a	4	3	4a	0,34	0,42	0,38a
Médias	0,05A	0,05A	,	4A	3B		0,46A	0,46A	,
C.V.(%) r		31,08		23,23			30,46		
	subparcela	31,98		37,81			21,26		
		· · · · ·			ítulo (kg h	a ⁻¹)			
1	_	_	-	2	1	la	17	16	16a
2	_	_	_	2	1	1a	21	18	20a
3	_	_	-	2	1	1a	19	20	19a
Médias	_	_	-	2A	1A		19A	18A	
C.V.(%) r	parcela			25,72			7,03		
	subparcela			19,69			14,96		
				Aqu	ênios (kg h	na ⁻¹)			
1	-	_	-	-	-	-	24	20	22a
2	_	_	-	-	-	-	35	23	29a
3	-	_	-	-	_	-	32	25	29a
Médias	_	_	-	-	_	_	30A	23A	
C.V.(%) p	parcela						7,53		
C.V.(%) s	subparcela						14,70		
` ` `				To	otal (kg ha ⁻	1)			
1	0,06	0,05	0,05a	9	6	7a	43	38	40a
2	0,06	0,06	0,06a	12	8	10a	58	42	50a
3	0,07	0,06	0,06a	10	7	8a	53	47	50a
Médias	0,06A	0,06A	,	10A	7B		51A	42A	
C.V.(%) r		20,90		11,87			5,98		
· / I	subparcela	28,92		29,87			9,15		
					IC				
1	_	_	_	_	_	-	0,55	0,53	0,54a
2	-	-	-	-	-	-	0,60	0,53	0,56a
3	-	_	-	-	_	_	0,61	0,54	0,57a
Médias	-	_	-	-	_	-	0,59A	0,53A	- ,
C.V.(%) p	parcela						7,12		
	subparcela						15,16		

Tabela 4. Dados médios de acúmulo de potássio no caule, nas folhas, no capítulo, nos aquênios e total, e de índice de colheita dos aquênios obtidos de plantas de girassol colhidas aos 20, 60 e 100 dias após a semeadura, provenientes de lotes de aquênios com distintos níveis de vigor, designados de lote 1, 2 e 3, sob 45.000 e 75.000 sementes ha⁻¹.

		20			60			100	
Lotes	45.000	75.000	médias	45.000	75.000	médias	45.000	75.000	médias
				(Caule (kg h	na ⁻¹)			
1	0,17	0,19	0,18a	47	30	38a	22	19	20a
2	0,12	0,19	0,15a	109	61	85a	23	10	16a
3	0,15	0,16	0,15a	78	51	64a	16	18	17a
Médias	0,15A	0,18A		78A	47B		20A	15A	
C.V.(%) p	arcela	31,17		7,83			18,51		
C.V.(%) s	ubparcela	34,19		17,24			14,75		
					Folhas (kg l	na ⁻¹)			
1	0,49	0,53	0,51a	55	27	41a	4	3	3a
2	0,56	0,68	0,62a	46	40	43a	4	4	4a
3	0,60	0,66	0,63a	53	45	49a	3	3	3a
Médias	0,55A	0,62A		52A	38B		4A	3A	
C.V.(%) p	oarcela	35,94		6,47			26,97		
C.V.(%) s	ubparcela	28,59		14,15			24,96		
					apítulo (kg				
1	-	-	-	19	11	15a	23	19	21a
2	-	-	-	19	13	16a	20	17	18a
3	-	-	-	21	14	18a	17	18	17a
Médias	-	-	-	20A	13A		20A	18A	
C.V.(%) p				20,62			8,96		
C.V.(%) s	ubparcela			16,47			15,41		
				Ac	quênios (kg	; ha ⁻¹)			
1	-	-	-	-	-	-	24	21	23a
2	-	-	-	-	-	-	34	30	32a
3	-	-	-	-	-	-	33	29	31a
Médias	-	-	-	-	-	-	30A	27A	
C.V.(%) p							8,54		
C.V.(%) s	ubparcela				m . 1./1 . 1	15	13,05		
	0.66	0.70	0.60		Total (kg h			(2.20	
1	0,66	0,72	0,69a	121	68	94a	73,11	62,30	68a
2	0,68	0,87	0,77a	174	115	145a	79,74	60,72	70a
3	0,75	0,82	0,78a	152	110	131a	69,39	67,42	68a
Médias	0,70A	0,80A		149A	98B		74,08A	63,48A	
C.V.(%) p		29,72		4,88			6,86		
C. V.(%) S	ubparcela	24,60		12,32	IC		8,02		
1					IC		0.22	0.24	0.225
1	-	-	-	=	-	-	0,33	0,34	0,33a
2 3	-	-	-	=	-	-	0,42	0,50	0,46a
	-	-	-	=	-	-	0,47	0,42	0,44a
Médias C V (%) r	- voranle	-	-	-	-		0,41A	0,42A	
C.V.(%) p	ubparcela						11,13		
C. v.(%) S	uoparceia			,			21,52	,	

Pela (Tabela 5), pode-se constatar que, aos 20 DAS, não houve diferença significativa entre as densidades de semeadura e entre lotes de aquênios para acúmulo de Ca no caule, nas folhas e total. No entanto, aos 60 DAS, o maior acúmulo de Ca, no caule, nas folhas e total foi obtido sob a menor densidade de semeadura (45.000 sementes.ha⁻¹), sendo que neste período o acúmulo total foi de 116 kg ha⁻¹ (Tabela 5). Sfredo, Campo e Sarruge (1984). verificaram que o acúmulo de Ca por plantas de girassol da cultivar Contisol, nesta mesma fase de desenvolvimento, foi de 110 kg ha⁻¹. Para o índice de colheita de cálcio não foi constatada diferença entre os tratamentos (Tabela 5). Constatou-se que os índices de colheita de nitrogênio (Tabela 2) e de fósforo (Tabela 3) foram superiores aos índices de colheita de aquênios (Tabela 1), de potássio (Tabela 4) e de cálcio (Tabela 5), indicando uma translocação preferencial de N e P para os aquênios. Nesse aspecto, Castro e Oliveira (2005) relataram que para a cultura do girassol, apenas o N e o P são exportados em grandes quantidades para os aquênios, enquanto os demais nutrientes apresentam taxa de exportação reduzida, ficando as maiores quantidades nos restos vegetais como caule e folhas.

Observou-se que sob a menor densidade de semeadura (45.000 sementes ha⁻¹), a maior

porcentagem de óleo nos aquênios foi obtido de plantas provenientes do lote 1, considerado de menor vigor, enquanto que, sob a densidade de 75.000 sementes ha-1, a maior porcentagem foi observada para os lotes 2 e 3, sendo respectivamente considerados de médio e alto vigor (Tabela 6). Além disso, o teor de óleo dos aquênios foi em média de 48,98% e 50,66% quando obtidos nas densidades de semeadura de 45.000 e 75.000 sementes ha-1, respectivamente. Silva e Nepomuceno (1991) verificaram que para a cultivar Contisol 711, ao aumentar a densidade de 30.000 para 70.000 sementes ha-1, o teor de óleo aumentou de 42,4% para 45.6%.

Para o rendimento de aquênios, foi verificado maior valor médio sob a densidade de 45.000 sementes ha⁻¹, independente do vigor dos lotes de aquênios (Tabela 6). No entanto, para rendimento de óleo, não foi constatada diferença entre os tratamentos. Para a cultivar Contisol 711, Silva et al. (1995) relataram que o rendimento de óleo aumentou de 793kg ha⁻¹ para 1024kg ha⁻¹ ao aumentar a densidade de 30.000 para 70.000 plantas ha⁻¹, já para a cultivar GR 10, o rendimento de óleo reduziu de 1500 para 1200kg ha⁻¹ à medida que se elevou a densidade de 30.000 para 80.000 plantas ha⁻¹, principalmente devido ao decréscimo no rendimento de aquênios.

Tabela 5. Dados médios de acúmulo de cálcio no caule, nas folhas, no capítulo, nos aquênios e total, e de índice de colheita dos aquênios obtidos de plantas de girassol colhidas aos 20, 60 e 100 dias após a semeadura, provenientes de lotes de aquênios com distintos níveis de vigor, designados de lote 1, 2 e 3, sob 45.000 e 75.000 sementes ha⁻¹.

	20				60			100	
Lotes	45.000	75.000	médias	45.000	75.000	médias	45.000	75.000	médias
					Caule (kg				
1	0,14	0,16	0,15a	37	26	31a	21	23	22a
2	0,11	0,17	0,14a	73	45	59a	24	15	20a
3	0,14	0,13	0,13a	55	42	49a	20	23	22a
Médias	0,13A	0,15A		55A	37B		22A	20A	
C.V.(%) p	arcela	28,62		6,22			9,49		
C.V.(%) s	ubparcela	32,79		19,62			16,89		
					Folhas (kg	ha-1)			
1	0,37	0,41	0,39a	40	27	33a	6	3	4a
2	0,46	0,51	0,48a	44	31	37a	5	4	4a
3	0,45	0,46	0,45a	45	35	40a	3	4	3a
Médias	0,43A	0,46A		43A	31B		5A	4A	
C.V.(%) p	arcela	28,45		7,75			19,46		
C.V.(%) s	ubparcela	28,64		13,81			31,47		
				C	apítulo (kg	g ha ⁻¹)			
1	-	-	-	15	10	12a	14	13	13a
2	-	-	-	19	12	16a	15	11	13a
3	-	-	-	20	15	17a	11	11	10a
Médias	-	-	-	18A	12A		13A	12A	
C.V.(%) p	oarcela			23,19			10,01		
C.V.(%) s	ubparcela			17,60			16,99		
				A	quênios (k	g ha ⁻¹)			
1	-	-	-	-	-	-	12	11	11a
2	-	-	-	-	-	-	15	18	16a
3	-	-	-	-	-	-	22	13	18a
Médias	-	-	-	-	-	-	16A	14A	
C.V.(%) p							13,32		
C.V.(%) s	ubparcela						17,71		
					Total (kg				
1	0,51	0,57	0,54a	91	62	77a	52	50	51a
2	0,57	0,68	0,62a	137	88	112a	59	48	53a
3	0,59	0,59	0,59a	120	91	106a	57	51	54a
Médias	0,56A	0,61A		116A	80B		56A	50A	
C.V.(%) p		32,32		5,90			6,61		
C.V.(%) s	ubparcela	34,11		12,60			10,51		
					IC				
1	-	-	-	-	-	-	0,23	0,22	0,22a
2	-	-	-	-	-	-	0,25	0,37	0,31a
3	-	-	-	-	-	-	0,39	0,25	0,32a
Médias		-	-	-	-	-	0,29A	0,28A	
C.V.(%) p							13,14		
C.V.(%) s	ubparcela						10,12		

Tabela 6. Dados médios de teor de óleo dos aquênios (%) e de rendimento de aquênios e de óleo (kg.ha⁻¹) obtidas de plantas de girassol provenientes de lotes de aquênios com distintos níveis de vigor, designados de lote 1, 2 e 3, sob 45.000 e 75.000 sementes ha⁻¹.

Lotes	45.000	75.000	Médias	
	Teo	r de óleo (%)		
1	49,96Aa	48,99Bb	49,48	
2	49,38Bb	51,01Aa	50,19	
3	47,62Bc	51,98Aa	49,80	
Médias	48,98	50,66		
C.V.(%) parcela	0,41			
C.V.(%) subparcela	0,71			
	Rendimento	de aquênios (kg ha-1)		
1	1242,88	1287,62	1265,25a	
2	1587,39	1365,40	1476,39a	
3	2000,35	1139,81	1570,08a	
Médias	1610,21A	1264,27B		
C.V.(%) parcela	6,25			
C.V.(%) subparcela	10,13			
	Rendimer	nto de óleo (kg ha-1)		
1	620,94	630,80	625,87a	
2	783,85	696,49	740,14a	
3	952,57	592,47	772,52a	
Médias	785,78A	639,92 ^a		
C.V.(%) parcela	12,61			
C.V.(%) subparcela	8,94			

Conclusões

Aos 60 DAS, entre o florescimento e o enchimento, ocorreu maior acúmulo de massa de matéria seca e de N, P, K e Ca no caule, nas folhas e total nas plantas de girassol produzidas sob a menor densidade de 45.000 sementes ha-1. Não houve efeito do vigor dos aquênios e da densidade de semeadura no rendimento de óleo dos aquênios de girassol e nos índices de colheita de aquênios e nutrientes. Houve translocação preferencial de N e P para os aquênios.

Referências

BANZATTO, D. A.; KRONKA, S. N. *Experimentação agrícola*. 4. ed. Jaboticabal: Funep, 2006. 237 p.

CARVALHO, C. G. P.; OLIVEIRA, A. C. B.; MARQUES, C. R. G.; SALASAR, F. P. L. T.; PANDOLFI, T. J. F.;

CAMPOS, R.; FAGUNDES, R. A. *Informes da avaliação de genótipos de girassol 2005/2006 e 2006*. Londrina: CNPSo, 2007, 120 p.

CASTRO, C.; FARIAS, J. R. B. Ecofisiologia do girassol. In: LEITE, R. M. V. B. de C.; BRIGHENTI, A. M.; CASTRO, C. (Ed.). *Girassol no Brasil*. Londrina: Embrapa Soja, 2005. p. 163-218.

CASTRO, C.; OLIVEIRA, F. A. Nutrição e adubação do girassol. In: LEITE, R. M. V. B. de C.; BRIGHENTI, A. M.; CASTRO, C. (Ed.). *Girassol no Brasil*. Londrina: Embrapa Soja, 2005. p. 317-373.

COX, W. J.; JOLLIFF, G. D. Growth and yield of sunflower and soybean under soil water deficits. *Agronomy Journal*, Madison, v. 78, n. 1, p. 226-230, 1986.

ESTADOS UNIDOS. Departament of Agriculture. Foreign Agricultural Service. *Oilseeds:* world markets and trade. Washington, 2008. 34 p. (Circular Series, FOP 2-08).

- LAZZAROTTO, J. J.; ROESSING, A. C.; MELLO, A. C. Agronegócio do girassol no mundo e no Brasil. In: LEITE, R. M.V. B. C.; BRIGHENTI, A. M.; CASTRO, C. (Ed.). *Girassol no Brasil*. Londrina: Embrapa Soja, 2005. p. 15-42.
- MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. *Avaliação do estado nutricional das plantas:* princípios e aplicações. Piracicaba: Associação Brasileira para Pesquisa da Potasa e do Fosfato, 1997. 319 p.
- MURCIA, M.; PERETTI, A.; MARTINO, S. S.; PEREYRA, V. Vigor de semillas y emergência a campo de girassol (*Helianthus annus* L.) em siembras anticipadas em el sudeste de la província de Buenos Aires (Argentina). *Revista Brasileira de Sementes*, Brasília, v. 23, n. 2, p. 263-267, 2001.
- MUSSI, M. M. Germinação e vigor de sementes de girassol (Helianthus annuus L.) submetidas a diferentes concentrações de CO₂, períodos de exposição e embalagens. 2005. Dissertação (Mestrado em Agronomia) Departamento de Fitotecnia e Fitossanitarismo. Universidade Federal do Paraná, Curitiba.
- OLIVEIRA, F. A.; CASTRO, C.; FRANCHINI, J. C.; TORRES, E. Manejo do solo. In: LEITE, R. M. V. B. C.; BRIGHENTI, A. M.; CASTRO, C. (Ed.). *Girassol no Brasil*. Londrina: Embrapa Soja, 2005. p. 299-316.
- PORTO, W. S.; CARVALHO, C. G. P.; PINTO, R. J. B.; OLIVEIRA, M. F.; OLIVEIRA, A. C. B. Evaluation of sunflower cultivars for Central Brazil. *Scientia Agricola*, Piracicaba, v. 65, n. 2, p. 139-144, 2008.
- RAIJ, B. V.; CANTARELLA, H.; FURLANI, A. M. C. Recomendações de adubação e calagem para o Estado

- de São Paulo. 2 ed. Campinas: Instituto Agronômico/Fundação IAC, 1997 198 p.
- RIBEIRO JÚNIOR, J. I. Análises estatísticas no SAEG. 19. ed. Viçosa, MG: UFV, 2001. 301 p.
- RIZZARDI, M. A.; SILVA, P. R. F. Partição de matéria seca e óleo nos aquênios de girassol em função da densidade de plantas. *Revista Brasileira de Fisiologia Vegetal*, Brasília, v. 4, n. 2, p. 113-116, 1992.
- SCHNEITER, A. A.; MILLER, J. F. Description of sunflower growth stages. *Crop Science*, Madison, v. 21, n. 6, p. 901-903, 1981.
- SFREDO, G. J.; CAMPO, R. J.; SARRUGE, J. R. *Girassol:* nutrição mineral e adubação. Londrina: Embrapa-CNPSo, 1984. 36 p.
- SILVA, P. P. R.; NEPOMUCENO, A. L. Efeito do arranjo de plantas no rendimento de grãos., componentes de rendimento, teor de óleo e no controle de plantas daninhas em girassol. *Pesquisa Agropecuária Brasileira*, Brasília, v. 26, n. 9, p. 1503-1508, 1991.
- SILVA, P. R. P.; RIZZARDI, M. A.; TREZZI, M. M.; ALMEIDA, M. L. de. Densidade e arranjo de plantas em girassol. *Pesquisa Agropecuária Brasileira*, Brasília, v. 30, n. 6, p. 797-810, 1995.
- TEDESCO, M. J. Análise de solo, plantas e outros materiais. Porto Alegre: UFRGS, 1995. 174 p.
- UNGARO, M. R. G.; TOLEDO, N. M. P.; TEIXEIRA, J. P. F.; SUASSUNA FILHO, J. Determinação do teor de óleo em sementes de girassol pelos métodos de ressonância magnética nuclear e "soxhlet". *Bragantia*, Campinas, v. 51, n. 1, p. 1-5, 1992.