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Study of a parallel algorithm in liquid front propagation for Ceará’s 
soils using the finite difference method1

Estudo de um algorítmo paralelo em frentes de propagação líquidas 
para solos do Ceará usando o método de diferenças finitas

Paulo Alexandre Costa Rocha2*; Daniel Albiero3; 
Maria Eugênia Vieira da Silva2; Ernesto da Silva Pitombeira4 

Abstract

This work presents a numerical model to simulate the propagation of a liquid front in unsaturated soils. 
The governing flow equations were discretized using centered finite differences for the space coordinate 
and backward differences for the time coordinate. The generated scheme is fully implicit, but “lagging 
the non-linearities” as referred to the determination of the soil characteristic properties as function of the 
hydraulic head. The soil properties, moisture content and the unsaturated hydraulic conductivity, were 
curve fitted for two types of soil (Alluvial Eutrophic and Red-Yellow Podsol) found in the Northeast 
region of Brazil. The results show that the Alluvial Eutrophic liquid front diffuses faster than the Red-
Yellow Podsol front. The use of a parallel algorithm showed that it can be indicated for bigger problems 
(2-D), where the processing speed gain can reach values between 2-3 times, against simple problems 
(1-D).
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Resumo

Este trabalho apresenta um modelo numérico para simular a propagação de uma frente de onda líquida 
em solos insaturados. As equações de governo do fluxo de água foram discretizadas usando o método das 
diferenças finitas centradas para as coordenadas de espaço e diferenças atrasadas para a coordenada de 
tempo. O esquema gerado é completamente implícito, mas as “influências das não linearidades” foram 
referidas na determinação das propriedades características do solo como função do recalque hidráulico. 
As propriedades do solo, teor de água e condutividade hidráulica insaturada foram representadas 
por curvas de regressão para dois tipos de solos (Aluvial Eutrófico e Podzólico Vermelho Amarelo) 
normalmente encontrados na região Nordeste do Brasil. Os resultados mostraram que a frente de onda 
do solo Aluvial Eutrófico difunde-se mais rápido do que o solo Podzólico Vermelho Amarelo. O uso do 
algoritmo paralelo mostrou-se adequado a grandes problemas na simulação 2-D, onde a velocidade de 
processamento pode alcançar valores entre 2-3 vezes maiores do que problemas simples (1-D).
Palavras-chave: Equações de richards, simulação numérica, águas subterrâneas
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Introduction 

The study of infiltration processes is very 
important in many technological and environmental 
applications, particularly in water resources 
research, in the determination of liquid fronts 
propagation in soils. The literature in this area is 
very wide (ZACHMANN, 1978; ZACHMANN; 
DUCHATEAU; KLUTE, 1981; ROSS, 1990; 
CELIA; BOULOUTAS, 1990). The knowledge 
of the behavior of a water front propagation in 
unsaturated soils helps on the rational planning of 
the water reserves use, e.g. in irrigation systems and 
in raining areas. 

Another example of an infiltration process is the 
spill of a liquid contaminant on unsaturated porous 
surfaces that can cause many kinds of ecological 
problems, particularly if the liquid front reaches 
any underground aquifer. The determination of 
the contaminating propagation can avoid larger 
environmental injuries and help the recuperation of 
the region.

The prediction of groundwater flow and 
contaminant transport from mathematical models 
deals with considerable uncertainty due to the 
presence of heterogeneities in natural soil formations 
(Aguire and Highighi, 2002). The principles of 
continuity of mass and momentum or energy may 
be applied to describe overland flow conditions in 
surface irrigation systems (SHAYYA; BRALTS; 
SEGERLIND, 1993).

The understanding of hydrological processes 
at watershed scale is an important task in order to 
optimize management of the available surface water 
and groundwater resources, mainly the mechanisms 
overland flow and perched zones of saturated soil 
and regolith water (NUÑES-GONZALEZ et al., 
2011).

	 If the determination of the liquid front 
propagation as a function of the space coordinates 
and time is desired, the mass and momentum 
conservation equations for an infinitesimal control 
volume of the flow (for a study of a one dimensional 

finite difference implicit scheme, see Johnsen 
(1992)) need to be solved. The partial differential 
equation for the pressure head as a function of the 
spatial coordinates and time, commonly known as 
the Richards Equation, which express the mass and 
momentum balances, needs information about the 
specific characteristics of the soil. The soil can be 
characterized using experimental expressions based 
on field measures to estimate the moisture content 
and the hydraulic conductivity, as a function of 
the pressure head. We also have to define proper 
boundary and initial conditions for the solution of 
the system. 

Recent interests in unsaturated flow has shifted 
to the determination of the velocity (specific 
discharge or flux) in the unsaturated soil because 
it was realized that this zone acts as a buffer for 
contaminants that eventually move to the ground 
water table (MISRA; NIEBER, 2004).

The partial differential equation that describes the 
system is parabolic, of second order, and non linear. 
And a general analytical solution is not available, 
except for specific cases, where the equations for 
the hydraulic conductivity and the moisture content 
are constant or expressed as special functions 
(ZACHMANN, 1978). 

Accurate and efficient numerical wave 
approximation is important in many areas of study 
as liquid front waves, and finite difference methods 
have the advantage of ease of use as well as high 
order convergence, but often require a uniform 
grid, and stable boundary closure can be non-trivial 
(FERNANDO; HU, 2011).

This work presents a numerical model to 
determinate the propagation of a water front, in 
unsteady-state flow in a unsaturated soil, using 
finite differences to discretize the domain. The 
program developed includes information about two 
kind of Ceará’s soils: The Alluvial Eutrophic and 
the Red-Yellow Podsol, which have experimental 
data published in the literature about hydraulic 
conductivity (BEZERRA, 1998; CORDEIRO, 
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1998) and moisture content (D’ÁVILA, 1983; 
BEZERRA, 1985; SAUNDERS, 1990; FERREIRA, 
1990; GOMES FILHO, 1991), commonly known 
as the characteristic curve. The parallel algorithm 
was developed in a modular way to easily permit 
the application of another kind of soils. It was used 
both in one and two dimensional cases, to permit a 
comparison of processing speed gains.

Material and methods

This work was developed in two parts. In the 
first, a literature search on the experimental data for 
the moisture content (q) as a function of the pressure 
head (y), and the hydraulic conductivity (K) as a 
function of the moisture content (q) was carried 
out. These data were then statistically studied, 
and the procedure is presented in the next section. 
The second part presents the discretization of the 
Richards equation in both one and two dimensions, 
using centered finite differences for the spatial 
derivatives and forward differences for the time 
derivative, to obtain a fully implicit scheme. This 
scheme generated a system of equations equivalent 
to the number of discrete points in the domain, 
which was solved for the one and two dimensional 
cases. To carry out the computational work, parallel 
routines were introduced in the program, basically 
in three stages: The determination of the initial 
and boundary conditions, the creation of the linear 
system of equations and finally its resolution. The 
processing times were then measured for a different 
number of processors.

Soils data and characteristics curves

As already mentioned, the experimental data 
used to characterize the soil were obtained from 
the literature published by local authors. The 
characteristic curves for the both studied soils are 
presented in the results section.

The experimental data were curve fitted, using 
non linear regression. The expressions obtained 

were used a posteriori in the numerical resolution 
of the Richards equation.

For the two soils studied (Alluvial Eutrophic 
and Red-Yellow Podsol), these characteristic 
curves were fitted using the Van Genuchten (1980) 
model as, 
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where C1, C2, C3, C4, C5 e C6 are constants determined 
in the adjust of the experimental curves.

The hydraulic conductivity (K) data as a 
function of the soil moisture content (q) were used 
in a non linear exponential regression to fit the 
curves and find a relationship between the hydraulic 
conductivity (K) and the pressure head (y) for the 
two soils in study.

Description and discretization of the problem

Using the mass and momentum conservation 
laws in an infinitesimal control volume, the liquid 
flow in an unsaturated media, the Richards equation, 
is presented (ZACHMANN; DUCHATEAU; 
KLUTE, 1981; CELIA; BOULOUTAS, 1990; 
ROSS, 1990) as,
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where the Darcy’s model was applied. This model relates the liquid flow with its hydraulic 

conductivity and the gradient of hydraulic head as 
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The expressions (2) and (3) are second order parabolic partial differential equations. For the 
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xL = -61,5 cm, xL = 100 cm and zL = 100 cm were used in the numerical calculation. 

The discretization of the Richards equation was made by centered finite differences for the 

spatial derivatives and forward differences for the time derivative. The application of these differences on 

the continuous equations resulted in a fully implicit scheme, and the correspondent discretized forms of 
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for the one dimension case and 
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for the one dimension case and 

(3)

where the Darcy’s model was applied. This model 
relates the liquid flow with its hydraulic conductivity 
and the gradient of hydraulic head as

                      )( zhKq −⋅∇−= 	             (4) 
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The expressions (2) and (3) are second order 
parabolic partial differential equations. For the 
hydraulic conductivity and moisture content 
expressions used, equations (2) and (3) are non-
linear, with no analytical solution. Two Dirichlet 
boundary conditions and an initial condition were 
used. For the one dimensional case, these conditions 
are,

                   y(z,0) = y0,	           0 < z < zL           (5)

                   y(0,t) = y1,

                   y(zL,t) = yL,	              t > 0	             (6)

where for the numerical simulation, the values y0 = 
–61,5 cm, y1 = –20,7 cm, yL = –61,5 cm and zL = 
100 cm were used.

Four Dirichlet conditions, and one initial, were 
used for the two-dimensional case,

y(x,z,0) = y0,	   0 < x < xL, 0 < z < zL	             (7)

y(0,z,t) = y0z,

y(xL,z,t) = yLz,	   t > 0, 0 < z < zL	              (8)

y(x,0,t) = yfilm,	   0,4.xL ≤ x ≤ 0,6.xL

y(x,0,t) = yx0,	   0 < x < 0,4.xL, 0,6.xL < x < xL

y(x,zL,t) = yxL,	   t > 0, 0 < x < xL	              (9)

where the values y0 = –61,5 cm, y0z = –61,5 cm, yLz 
= –61,5 cm, yfilm = –20,7 cm, yx0 = –61,5 cm, yxL = 
–61,5 cm, xL = 100 cm and zL = 100 cm were used 
in the numerical calculation.

The discretization of the Richards equation was 
made by centered finite differences for the spatial 
derivatives and forward differences for the time 
derivative. The application of these differences on 
the continuous equations resulted in a fully implicit 
scheme, and the correspondent discretized forms of 
(2) and (3) are,

	 (10)

for the one dimension case and

		

(11)

for the two-dimensional case.

Numerical solution

The algorithm developed to solve both problems 
(one and two dimensions) consisted basically of 
three subroutines, for each different instant of time:

Subroutine a: definition of the boundary and 
initial conditions;

Subroutine b: construction of the linear system, 
which generates one equation per domain point. 
Since the soil’s properties depend upon the pressure 
head at that instant of time, which are not known, 
the values of (y) used were from the previous 
instant (lagging in time solution);

Subroutine c: the numerical resolution of the 
linear system.

This algorithm generated a FORTRAN code 
which solved the one and two dimensional problems.

Results and Discussion

Characteristic curves

The following figures 1(a) and 1 (b) presents the 
characteristic curves for the two soils studied using 
the experimental data.
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Figure 1. (a) Non linear curve fit for the characteristic curve of the Alluvial Eutrophic soil. Data: Ferreira (1990), (b) 
Non linear curve fit for the characteristic curve of the Red-Yellow Podsol soil. Data:Gomes Filho (1991).

Figure 1. (a) Non linear curve fit for the characteristic curve of the Alluvial Eutrophic soil. Data: Ferreira 
(1990), (b) Non linear curve fit for the characteristic curve of the Red-Yellow Podsol soil. Data:Gomes Filho 
(1991).
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Hydraulic Condutivity (K) versus soil Moisture Content ()

The hydraulic conductivity coefficient (K) versus the soil moisture content () data was treated in 

an analogous way. Using the same criteria as in the previous section, the works of El-Husny (1979) for the 

(a)

(b)

Source: Elaboration of the authors.
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Hydraulic Condutivity (K) versus soil Moisture 
Content (q)

The hydraulic conductivity coefficient (K) 
versus the soil moisture content (q) data was treated 
in an analogous way. Using the same criteria as in 
the previous section, the works of El-Husny (1979) 
for the Alluvial Eutrophic soil and Bezerra (1998), 
for the Red-Yellow Podsol soil were used. The non 
linear regression model is an exponential growth, 
which generated the graphs on the Figures 2a and 
2b, as well as the following expressions:

For the Alluvial Eutrophic soil (Figure 2(a)),

                  
0433,0/.00003,0)( θθ eK = 	           (12)

and for the Red-Yellow Podsol soil (Figure 2(b)),

               
01648,0/.80213,2)( θθ eEK −=          (13)

It is concluded that the hydraulic conductivity 
in the Alluvial Eutrophic soil is higher than in the 
Red-Yellow Podsol soil, in the range of values used 
as boundary and initial conditions, what will lead 
to a faster liquid propagation in the first case. It 
is important to say that the hydraulic conductivity 
units were converted to SI in equations (10) and 
(11), once the primary obtained values were in cm/
day, as can be seen in Figure 2. 

The curve fit was not so good for the Alluvial 
soil, as it was for the Red-Yellow Podsol soil, 
showing a variability of the properties as the depth 
changes.

As a result of the previous non linear regression, 
with pressure head values expressed in cm, the 
following expressions shown were obtained:

For the Alluvial Eutrophic soil (Figure 3 a),
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For the Red-Yellow Podsol soil (Figure 3 b),
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It can be seen that the Alluvial soil retains more 
moisture than the Red-Yellow Podsol, for equal 
pressure head values. Even using data from different 
depths, the curve fit is good, what justifies the use of 
only one expression for all depths.

Propagation – one dimensional model

The propagation of the liquid front was 
simulated, using the discretized form of Richards 
equation (10) as well as equations (12), (13), (14) 
and (15). The results show the pressure head profiles 
(y) as a function of the depth (z), for the two soils 
in study, in several instants of time (1 s, 10 s, 100 s, 
1.000 s, 10.000 s, 100.000 s and 200.000 s) as seen 
in Figures 3(a) and 3(b).
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Figure 2. (a) Non linear regression graph for the Alluvial Euthophic K(q). Data: El-Husny (1979), (b) Non linear 
regression graph for the Red-Yellow Podsol K(q). Data: Bezerra (1998).
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Figure 3. (a) Simulation results of the liquid front propagation for the Alluvial Eutrophic soil with time, (b) Simulation 
results of the liquid front propagation for the Red-Yellow Podsol soil with time.
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Figure 3(a) illustrates the liquid propagation in the Alluvial soil. The front propagates fast, taking 

200.000s to reach the domain’s bottom. The same instants are presented in Figure 3(b), for the Red-Yellow 

Podsol soil. The liquid front propagates slower than in the Alluvial soil, and for t = 200.000s it is still at the 

80cm depth. 

The difference in the propagation velocities can also be noted comparing the pressure head profiles 

in Figures 3(a) and 3(b). In the Red-Yellow Podsol soil it is not as smooth as in the Alluvial Eutrophic. This 

means that the soil works as a barrier to the water flow. These numerical results are in accordance to the 

results presented by El-Husny (1979) and Bezerra (1998), showing that the numerical schemes applied (fully 

(b)

(a)

Source: Elaboration of the authors.

Figure 3(a) illustrates the liquid propagation in 
the Alluvial soil. The front propagates fast, taking 
200.000s to reach the domain’s bottom. The same 
instants are presented in Figure 3(b), for the Red-
Yellow Podsol soil. The liquid front propagates 
slower than in the Alluvial soil, and for t = 200.000s 
it is still at the 80cm depth.

The difference in the propagation velocities can 
also be noted comparing the pressure head profiles in 
Figures 3(a) and 3(b). In the Red-Yellow Podsol soil 
it is not as smooth as in the Alluvial Eutrophic. This 
means that the soil works as a barrier to the water 

flow. These numerical results are in accordance 
to the results presented by El-Husny (1979) and 
Bezerra (1998), showing that the numerical schemes 
applied (fully implicit lagging the non linearities) 
are proper to model the problem. This behavior is 
expected for fully implicit discretization, because 
of its unconditional stability. The non linearities 
provided by the soil matrix, which are generated 
by the adhesion-cohesion processes between the 
soil’s aggregates and the water, were well predicted 
by the lagging approach. This procedure gave the 
necessary computational gains without losing the 
physical characteristics of the percolation process.
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Propagation – two-dimensional model

For the boundary and initial conditions of the 
physical model, the two-dimensional case of the 
liquid front propagation was simulated, using the 
discretized Richards equation (11), as well as (12), 
(13), (14) and (15), applied to the two kinds of soil 
in study. Results were determined in several instants 
of time (1 s, 100 s, 10.000 s and 100.000 s) as a 
function of the (x) and (z) coordinates. These are 
shown in the Figures 4a, b, c, d.

Figure 4 (a) shows the results at t = 1s, which 
practically shows the initial conditions of the 
problem. Figures 4 (b, c e d) show the front 
propagation for the other values of time. As in the 
one-dimensional simulation, the flow velocity in 
the Alluvial soil is higher than in the Red-Yellow 
Podsol soil. The numerical solution presented the 
same stability as in the one-dimensional simulation.

Parallel algorithm and performance

After the application of algorithm parallelization 
on the three main subroutines, the processing 
time was measured and compared with the one-
processor run (speed up). This generated the results 
showed in Figures 5a (one dimension) and 5b (two 
dimensions).

Once the parallel routines were running in the 
program, the processing times were measured for 
a different number of processors and the speed 
up results were good. Shang, He e Luo (2011) 
affirm this is a very attractive feature of a parallel 
algorithm, in addition to the efficient parallelization, 
the communication between processors and the 
simplicity of its implementation must be taken into 
account since the merit of efficient parallelization 
may be canceled out by large communication cost 
and extreme human effort required for writing, 
debugging and modifying a code based on a 
complex algorithm.

In the allocation of the initial conditions process, 
the speed up shows the highest values. This happens 
because there is almost no communication between 
the processors. A different behavior occurs in 
the system resolution process, which has higher 
communications load. As can be seen in Figures 
5, one can even lose computational time if the 
parallelization is performed with two processors. 
The results are similar for the one- and two 
dimensional cases.



2968
Semina: Ciências Agrárias, Londrina, v. 33, suplemento 1, p. 2959-2972, 2012

Rocha, P. A. C. et al.

Figure 4. (a) Simulation results of the liquid propagation for the Alluvial Eutrophic soil (left) and the Red-Yellow 
Podsol soil (right), at t = 1 s, (b) Simulation results of the liquid propagation for the Alluvial Eutrophic soil (left) 
and the Red-Yellow Podsol soil (right), at t =100s, (c) Simulation results of the liquid propagation for the Alluvial 
Eutrophic soil (left) and the Red-Yellow Podsol soil (right), at t = 10.000 s, (d) Simulation results of the liquid 
propagation for the Alluvial Eutrophic soil (left) and the Red-Yellow Podsol soil (right), at t = 100.000 s.

Source: Elaboration of the authors. 

Figure 4 (a) shows the results at t = 1s, which practically shows the initial conditions of the problem. Figures 4 (b, c e d) show the front propagation for the 

other values of time. As in the one-dimensional simulation, the flow velocity in the Alluvial soil is higher than in the Red-Yellow Podsol soil. The numerical 

solution presented the same stability as in the one-dimensional simulation. 
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Source: Elaboration of the authors.
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Figure 5. (a) Average speed up graph for 100 (hundred) runnings in a 1.000.000 points one-dimensional mesh, (b) 
Average speed up graph for 100 (hundred) runnings in a 1.000x1.000 points two-dimensional mesh.
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After the application of algorithm parallelization on the three main subroutines, the processing time was measured and compared with the one-processor 
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Once the parallel routines were running in the program, the processing times were measured for a different number of processors and the speed up results 

were good. Shang, He e Luo (2011) affirm this is a very attractive feature of a parallel algorithm, in addition to the efficient parallelization, the communication 

between processors and the simplicity of its implementation must be taken into account since the merit of efficient parallelization may be canceled out by large 

communication cost and extreme human effort required for writing, debugging and modifying a code based on a complex algorithm. 

In the allocation of the initial conditions process, the speed up shows the highest values. This happens because there is almost no communication between 

the processors. A different behavior occurs in the system resolution process, which has higher communications load. As can be seen in Figures 5, one can even lose 

computational time if the parallelization is performed with two processors. The results are similar for the one- and two dimensional cases. 

Conclusion

It can be said that the characteristic curves generated for the two kinds of soils studied had a good approximation. This denotes that the use of only one 

expression for any depth is acceptable, and does give reasonable values (R2  0,9). The development of these expressions still give a general vision of the behavior of 

the different soils studied, which indicates that the Alluvial Eutrophic soil has more potential to accumulate water, both experimentally and numerically. 

The adjust of the hydraulic conductivity as a function of the moisture content, for the Alluvial Eutrophic soil, was not so accurate as the one for the Red-

Yellow Podsol soil. This indicates that a better adjustment, which could contemplate the depth (z) value, can still be done, and would lead the simulation to still more 

realistic results. For the Red-Yellow Podsol soil the fitting results were very good, even without consider the influence of the depth. 

After the discretization of the equations that described the problem, in the one- and two-dimensional forms, and the solution of the linear system, the 

problem was solved numerically at several instants of time. The solutions obtained and put in graphs showed clearly how the liquid front behaves for different types 

of soils. These results also indicate the velocity that the moisture spreads itself in the soils, showing that the Alluvial Eutrophic gets wet faster than the Red-Yellow 

Podsol soil, for the same initial pressure head profile. 

The parallelization process resulted in speed up curves, presented for the main subroutines of the developed code. These curves showed that the gains in 

the processing time can be satisfactory, as long as the subroutine has lower communications load, in comparison to the computational one. 
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Conclusion

It can be said that the characteristic curves 
generated for the two kinds of soils studied had a 
good approximation. This denotes that the use of 
only one expression for any depth is acceptable, 
and does give reasonable values (R2 @ 0,9). The 
development of these expressions still give a 
general vision of the behavior of the different soils 
studied, which indicates that the Alluvial Eutrophic 
soil has more potential to accumulate water, both 
experimentally and numerically.

The adjust of the hydraulic conductivity as a 
function of the moisture content, for the Alluvial 
Eutrophic soil, was not so accurate as the one for 

the Red-Yellow Podsol soil. This indicates that a 
better adjustment, which could contemplate the 
depth (z) value, can still be done, and would lead 
the simulation to still more realistic results. For the 
Red-Yellow Podsol soil the fitting results were very 
good, even without consider the influence of the 
depth.

After the discretization of the equations that 
described the problem, in the one- and two-
dimensional forms, and the solution of the linear 
system, the problem was solved numerically at 
several instants of time. The solutions obtained and 
put in graphs showed clearly how the liquid front 
behaves for different types of soils. These results 
also indicate the velocity that the moisture spreads 
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itself in the soils, showing that the Alluvial Eutrophic 
gets wet faster than the Red-Yellow Podsol soil, for 
the same initial pressure head profile.

The parallelization process resulted in speed up 
curves, presented for the main subroutines of the 
developed code. These curves showed that the gains 
in the processing time can be satisfactory, as long as 
the subroutine has lower communications load, in 
comparison to the computational one.
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