Aplicación del modelo de densidad lateral global UNB_TopoDens en la modelación de la RTM en el estado de Paraná

Autores/as

DOI:

https://doi.org/10.5433/2447-1747.2025v34n2p193

Palabras clave:

RTM, Integral de Newton, densidad lateral

Resumen

El RTM (o efecto residual de la modelización topográfica) se calculó para la parte continental del estado de Paraná, utilizando 2535 puntos, que forman parte de una malla regular de 5'x5' de arco esférico del modelo de relieve global ETOPO1, asociado a los modelos de densidad lateral, UNB_TopoDens (global) y Harkness (densidad media global de 2670 kg/m³). El modelo matemático utilizado fue la integral de Newton para el punto material. El RTM para cada uno de los 2535 puntos consideró un vecindario de puntos dentro de un círculo con un radio de 210 km. Los resultados de los RTM calculados (para los dos diferentes modelos de densidad) superaron los 2.3 mm (con un valor promedio de aproximadamente 1.7 mm), indicando la importancia de considerar el RTM en estudios altimétricos de precisión. Los modelos de densidad probados, UNB_TopoDens (densidad promedio = 2630 kg/m³) y Harkness (densidad promedio = 2670 kg/m³), el valor variable y el promedio arbitrado, variaron solo un 1.5% y tuvieron un coeficiente de correlación del 99.1%.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Roosevelt de Lara Santos Junior, Universidade Federal do Rio Grande do Sul

Professor da Universidade Federal do Rio Grande do Sul - UFRGS, Instituto de Geociências, Departamento de Geodesia. Doutorado no Curso de Pós-Graduação em Ciências Geodésicas pela Universidade Federal do Paraná (UFPR).

Citas

BEAR, Gregory William; AL-SHUKRI, Haydar Jamil; RUDMAN, Andrew James. Linear inversion of gravity data for 3-D density distributions. Geophysics, v. 60, n. 5, p. 1354-1364, 1995. DOI: https://doi.org/10.1190/1.1443871

CARMICHAEL, Robert Samuel. Practical Handbook of Physical Properties of Rocks and Minerals. Boca Raton, Flórida: CRC Press, 1989.

HARKNESS, William. Solar parallax and its related constants, including the figure and density of the Earth. Washington, D.C.: Government Printing Office, 1891.

HARTMANN, Jens; MOOSDORF, Nils. The new global lithological map database GLiM: a representation of rock properties at the Earth surface. Geochemistry, Geophysics, Geosystems, v. 13, p. 1-37, 2012. DOI: https://doi.org/10.1029/2012GC004370

HECK, Bernhard; SEITZ, Klaus. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. Journal of Geodesy, v. 81, p. 121-136, 2007. DOI: https://doi.org/10.1007/s00190-006-0094-0

HEISKANEN, Weikko Aleksanteri; MORITZ, Helmut. Physical geodesy. San Francisco, USA: Freeman, 1967. DOI: https://doi.org/10.1007/BF02525647

HINZE, William J. Bouguer reduction density, why 2.67? Geophysics, v. 68, p. 1559-1560, 2003. DOI: https://doi.org/10.1190/1.1620629

LASKE, Gabi; MASTERS, Geoffrey; MA, Zhong; PASYANOS, Michael E. CRUST1.0: an updated global model of Earth's CRUST. Geophysical Research Abstracts. EGU2012-37431, p. 1-10, 2012.

MOLODENSKII, Mikhail Sergeyevich; EREMEEV, Vladimir Fedorovich; YURKINA, Marina Ivanovna. Methods for Study of the External Gravitational Field and Figure of the Earth. Jerusalem, Israel: Israeli Programme for the Translation of Scientific Publications, 1962.

MORITZ, Helmut. Advanced physical geodesy. Karlsruhe, Alemanha: Wichmann, 1980.

NAGY, Dénes; PAPP, Gábor; BENEDEK, János. The gravitational potential and its derivatives for the prism. Journal of Geodesy, v. 74, p. 552-560, 2000. DOI: https://doi.org/10.1007/s001900000116

NOAA. National Geophysical Data Center. 2009: ETOPO1 1 Arc-Minute Global Relief Model. Disponível em: https://www.ngdc.noaa.gov/mgg/global/relief/ETOPO1/data/. Acesso em: 12 fev. 2025.

ODALOVIĆ, Olivera R.; GREKULOVIĆ, Svetlana M.; STARČEVIĆ, Milorad; NIKOLIĆ, Darko; DRAKUL, Marko S. T.; JOKSIMOVIĆ, Dragana. Terrain correction computations using digital density model of topographic masses. Geodetsky Vestnik, v. 62, n. 1, p. 79-97, 2018. DOI: https://doi.org/10.15292/geodetski-vestnik.2018.01.79-97

SHENG, Ming-Bo; SHAW, Chris; VANÍÄŒEK, Petr; KINGDON, Robert W.; SANTOS, Marcelo; FOROUGHI, Iraj. Formulation and validation of a global laterally varying topographical density model. Tectonophysics, v. 672, p. 45-60, 2019. DOI: https://doi.org/10.1016/j.tecto.2019.04.005

SJÖBERG, Lars. The effect on the geoid of lateral topographic density variations. Journal of Geodesy, v. 78, p. 34-39, 2004. DOI: https://doi.org/10.1007/s00190-003-0363-0

TENZER, Robert; HAMAYUN, Zia; PRUTKIN, Igor. A comparison of various integration methods for solving Newton's integral in detailed forward modelling. In: MERTIKAS, Stelios (ed.). Gravity, Geoid and Earth Observation. International Association of Geodesy Symposia 135. Berlin, Heidelberg: Springer, 2010. p. 1 - 12. DOI: https://doi.org/10.1007/978-3-642-10634-7_48

TENZER, Robert; CHEN, Wenbin; BARANOV, Alexey A.; BAGHERBANDI, Mohammad. Gravity maps of Antarctic lithospheric structure from remote-sensing and seismic data. Pure and Applied Geophysics, p. 1-15, 2018. DOI: https://doi.org/10.1007/s00024-018-1795-z

TENZER, Robert; CHEN, Wenbin; RATHNAYAKE, Sanjeewa; PITOŇÁK, Miroslav. The effect of anomalous global lateral topographic density on the geoid to quasigeoid separation. Journal of Geodesy, v. 95, n. 12, p. 1-20, 2021. DOI: https://doi.org/10.1007/s00190-020-01457-6

TOUSHMALANI, Reza; SAIBI, Hamed. 3D gravity inversion using Tikhonov regularization. Acta Geophysica, v. 63, n. 4, p. 1044-1065, 2015. DOI: https://doi.org/10.1515/acgeo-2015-0029

VANÍÄŒEK, Petr; KRAKIWSKY, Edward John. Geodesy the Concepts. Amsterdam: North-Holland, 1986. p. 1-697.

VANÍÄŒEK, Petr; TENZER, Robert; SJÖBERG, Lars Erik; MARTINEC, ZdenÄ›k; FEATHERSTONE, Will Edward. New views of the spherical Bouguer gravity anomaly. Geophysical Journal International, v. 159, p. 460-472, 2004. DOI: https://doi.org/10.1111/j.1365-246X.2004.02435.x

WANG, Yong-Wei; SANCHEZ, Laura; Ã…GREN, Jonas; HUANG, Jin; FORSBERG, René; ABD-ELMOTAAL, Hani Ahmed. Colorado geoid computation experiment - overview and summary. Journal of Geodesy, v. 95, p. 1-15, 2021. DOI: https://doi.org/10.1007/s00190-021-01567-9

Publicado

2025-06-26

Cómo citar

Santos Junior, R. de L. (2025). Aplicación del modelo de densidad lateral global UNB_TopoDens en la modelación de la RTM en el estado de Paraná. Geografia (Londrina), 34(2), 193–206. https://doi.org/10.5433/2447-1747.2025v34n2p193